
Review:	System	Types

• File	systems
• GFS/HDFS,	NFS…

• Batch	processing	frameworks
• Map-reduce,	Spark

• Key-value	stores
• Dynamo

• Peer-to-peer
• Bayou

Review:	Algorithms/Components

• Fault-tolerance	+	Replication
• Primary-backup	(GFS)
• Consensus	(Raft)
• Sloppy	quorum	(Dynamo)
• Lineage	(Spark)

• Fail-over
• Asynchronous	safe	(Raft)
• Synchronous	assumption	(P-B	with	leases)

Review:	Algorithms/Components

• Messaging	Semantics
• RPC
• At-least	once
• At-most	once

• Naming,	Routing,	Partitioning
• Explicit	map
• Consistent	Hashing

Review:	Algorithms/Components

• Clocks
• Clock	drift/clock	skew
• Causality
• Lamport clocks
• Vector	clocks

• Consistency	Models
• Linearizability
• Eventual	consistency

• CAP	Theorem

What’s	Coming

• Distributed	transactions
• Spanner	and	more

• Large	scale	caching	infrastructure
• Facebook

• Cluster	Management
• Borg

• Byzantine	Fault	Tolerance/P2P
• PBFT,	Bitcoin

Putting	the	Pieces	Together

provide a response within 300ms for 99.9% of its requests for a
peak client load of 500 requests per second.

In Amazon’s decentralized service oriented infrastructure, SLAs
play an important role. For example a page request to one of the
e-commerce sites typically requires the rendering engine to
construct its response by sending requests to over 150 services.
These services often have multiple dependencies, which
frequently are other services, and as such it is not uncommon for
the call graph of an application to have more than one level. To
ensure that the page rendering engine can maintain a clear bound
on page delivery each service within the call chain must obey its
performance contract.

Figure 1 shows an abstract view of the architecture of Amazon’s
platform, where dynamic web content is generated by page
rendering components which in turn query many other services. A
service can use different data stores to manage its state and these
data stores are only accessible within its service boundaries. Some
services act as aggregators by using several other services to
produce a composite response. Typically, the aggregator services
are stateless, although they use extensive caching.

A common approach in the industry for forming a performance
oriented SLA is to describe it using average, median and expected
variance. At Amazon we have found that these metrics are not
good enough if the goal is to build a system where all customers
have a good experience, rather than just the majority. For
example if extensive personalization techniques are used then
customers with longer histories require more processing which
impacts performance at the high-end of the distribution. An SLA
stated in terms of mean or median response times will not address
the performance of this important customer segment. To address
this issue, at Amazon, SLAs are expressed and measured at the
99.9th percentile of the distribution. The choice for 99.9% over an
even higher percentile has been made based on a cost-benefit
analysis which demonstrated a significant increase in cost to
improve performance that much. Experiences with Amazon’s

production systems have shown that this approach provides a
better overall experience compared to those systems that meet
SLAs defined based on the mean or median.

In this paper there are many references to this 99.9th percentile of
distributions, which reflects Amazon engineers’ relentless focus
on performance from the perspective of the customers’
experience. Many papers report on averages, so these are included
where it makes sense for comparison purposes. Nevertheless,
Amazon’s engineering and optimization efforts are not focused on
averages. Several techniques, such as the load balanced selection
of write coordinators, are purely targeted at controlling
performance at the 99.9th percentile.

Storage systems often play an important role in establishing a
service’s SLA, especially if the business logic is relatively
lightweight, as is the case for many Amazon services. State
management then becomes the main component of a service’s
SLA. One of the main design considerations for Dynamo is to
give services control over their system properties, such as
durability and consistency, and to let services make their own
tradeoffs between functionality, performance and cost-
effectiveness.

2.3 Design Considerations
Data replication algorithms used in commercial systems
traditionally perform synchronous replica coordination in order to
provide a strongly consistent data access interface. To achieve this
level of consistency, these algorithms are forced to tradeoff the
availability of the data under certain failure scenarios. For
instance, rather than dealing with the uncertainty of the
correctness of an answer, the data is made unavailable until it is
absolutely certain that it is correct. From the very early replicated
database works, it is well known that when dealing with the
possibility of network failures, strong consistency and high data
availability cannot be achieved simultaneously [2, 11]. As such
systems and applications need to be aware which properties can
be achieved under which conditions.

For systems prone to server and network failures, availability can
be increased by using optimistic replication techniques, where
changes are allowed to propagate to replicas in the background,
and concurrent, disconnected work is tolerated. The challenge
with this approach is that it can lead to conflicting changes which
must be detected and resolved. This process of conflict resolution
introduces two problems: when to resolve them and who resolves
them. Dynamo is designed to be an eventually consistent data
store; that is all updates reach all replicas eventually.

An important design consideration is to decide when to perform
the process of resolving update conflicts, i.e., whether conflicts
should be resolved during reads or writes. Many traditional data
stores execute conflict resolution during writes and keep the read
complexity simple [7]. In such systems, writes may be rejected if
the data store cannot reach all (or a majority of) the replicas at a
given time. On the other hand, Dynamo targets the design space
of an “always writeable” data store (i.e., a data store that is highly
available for writes). For a number of Amazon services, rejecting
customer updates could result in a poor customer experience. For
instance, the shopping cart service must allow customers to add
and remove items from their shopping cart even amidst network
and server failures. This requirement forces us to push the
complexity of conflict resolution to the reads in order to ensure
that writes are never rejected.

Figure 1: Service-oriented architecture of Amazon’s
platform

197207

Traditional replicated relational database systems focus on the
problem of guaranteeing strong consistency to replicated data.
Although strong consistency provides the application writer a
convenient programming model, these systems are limited in
scalability and availability [7]. These systems are not capable of
handling network partitions because they typically provide strong
consistency guarantees.

3.3 Discussion
Dynamo differs from the aforementioned decentralized storage
systems in terms of its target requirements. First, Dynamo is
targeted mainly at applications that need an “always writeable”
data store where no updates are rejected due to failures or
concurrent writes. This is a crucial requirement for many Amazon
applications. Second, as noted earlier, Dynamo is built for an
infrastructure within a single administrative domain where all
nodes are assumed to be trusted. Third, applications that use
Dynamo do not require support for hierarchical namespaces (a
norm in many file systems) or complex relational schema
(supported by traditional databases). Fourth, Dynamo is built for
latency sensitive applications that require at least 99.9% of read
and write operations to be performed within a few hundred
milliseconds. To meet these stringent latency requirements, it was
imperative for us to avoid routing requests through multiple nodes
(which is the typical design adopted by several distributed hash
table systems such as Chord and Pastry). This is because multi-
hop routing increases variability in response times, thereby
increasing the latency at higher percentiles. Dynamo can be
characterized as a zero-hop DHT, where each node maintains
enough routing information locally to route a request to the
appropriate node directly.

4. SYSTEM ARCHITECTURE
The architecture of a storage system that needs to operate in a
production setting is complex. In addition to the actual data
persistence component, the system needs to have scalable and
robust solutions for load balancing, membership and failure
detection, failure recovery, replica synchronization, overload
handling, state transfer, concurrency and job scheduling, request
marshalling, request routing, system monitoring and alarming,
and configuration management. Describing the details of each of
the solutions is not possible, so this paper focuses on the core
distributed systems techniques used in Dynamo: partitioning,
replication, versioning, membership, failure handling and scaling.

Table 1 presents a summary of the list of techniques Dynamo uses
and their respective advantages.

4.1 System Interface
Dynamo stores objects associated with a key through a simple
interface; it exposes two operations: get() and put(). The get(key)
operation locates the object replicas associated with the key in the
storage system and returns a single object or a list of objects with
conflicting versions along with a context. The put(key, context,
object) operation determines where the replicas of the object
should be placed based on the associated key, and writes the
replicas to disk. The context encodes system metadata about the
object that is opaque to the caller and includes information such as
the version of the object. The context information is stored along
with the object so that the system can verify the validity of the
context object supplied in the put request.

Dynamo treats both the key and the object supplied by the caller
as an opaque array of bytes. It applies a MD5 hash on the key to
generate a 128-bit identifier, which is used to determine the
storage nodes that are responsible for serving the key.

4.2 Partitioning Algorithm
One of the key design requirements for Dynamo is that it must
scale incrementally. This requires a mechanism to dynamically
partition the data over the set of nodes (i.e., storage hosts) in the
system. Dynamo’s partitioning scheme relies on consistent
hashing to distribute the load across multiple storage hosts. In
consistent hashing [10], the output range of a hash function is
treated as a fixed circular space or “ring” (i.e. the largest hash
value wraps around to the smallest hash value). Each node in the
system is assigned a random value within this space which
represents its “position” on the ring. Each data item identified by
a key is assigned to a node by hashing the data item’s key to yield
its position on the ring, and then walking the ring clockwise to
find the first node with a position larger than the item’s position.

A

B

C

D E

F

G

Key K

Nodes B, C
and D store

keys in
range (A,B)

including
K.

Figure 2: Partitioning and replication of keys in Dynamo
ring.

Table 1: Summary of techniques used in Dynamo and
their advantages.

Problem Technique Advantage

Partitioning Consistent Hashing Incremental
Scalability

High Availability
for writes

Vector clocks with
reconciliation during

reads

Version size is
decoupled from

update rates.

Handling temporary
failures

Sloppy Quorum and
hinted handoff

Provides high
availability and

durability guarantee
when some of the
replicas are not

available.

Recovering from
permanent failures

Anti-entropy using
Merkle trees

Synchronizes
divergent replicas in

the background.

Membership and
failure detection

Gossip-based
membership protocol
and failure detection.

Preserves symmetry
and avoids having a
centralized registry

for storing
membership and

node liveness
information.

199209

of the measured peak load), fewer popular keys are accessed,
resulting in a higher load imbalance.

This section discusses how Dynamo’s partitioning scheme has
evolved over time and its implications on load distribution.

Strategy 1: T random tokens per node and partition by token
value: This was the initial strategy deployed in production (and
described in Section 4.2). In this scheme, each node is assigned T
tokens (chosen uniformly at random from the hash space). The
tokens of all nodes are ordered according to their values in the
hash space. Every two consecutive tokens define a range. The last
token and the first token form a range that "wraps" around from
the highest value to the lowest value in the hash space. Because
the tokens are chosen randomly, the ranges vary in size. As nodes
join and leave the system, the token set changes and consequently
the ranges change. Note that the space needed to maintain the
membership at each node increases linearly with the number of
nodes in the system.

While using this strategy, the following problems were
encountered. First, when a new node joins the system, it needs to
“steal” its key ranges from other nodes. However, the nodes
handing the key ranges off to the new node have to scan their
local persistence store to retrieve the appropriate set of data items.
Note that performing such a scan operation on a production node
is tricky as scans are highly resource intensive operations and they
need to be executed in the background without affecting the
customer performance. This requires us to run the bootstrapping
task at the lowest priority. However, this significantly slows the
bootstrapping process and during busy shopping season, when the
nodes are handling millions of requests a day, the bootstrapping
has taken almost a day to complete. Second, when a node
joins/leaves the system, the key ranges handled by many nodes
change and the Merkle trees for the new ranges need to be
recalculated, which is a non-trivial operation to perform on a
production system. Finally, there was no easy way to take a
snapshot of the entire key space due to the randomness in key
ranges, and this made the process of archival complicated. In this
scheme, archiving the entire key space requires us to retrieve the
keys from each node separately, which is highly inefficient.

The fundamental issue with this strategy is that the schemes for
data partitioning and data placement are intertwined. For instance,
in some cases, it is preferred to add more nodes to the system in
order to handle an increase in request load. However, in this
scenario, it is not possible to add nodes without affecting data
partitioning. Ideally, it is desirable to use independent schemes for
partitioning and placement. To this end, following strategies were
evaluated:

Strategy 2: T random tokens per node and equal sized partitions:
In this strategy, the hash space is divided into Q equally sized
partitions/ranges and each node is assigned T random tokens. Q is
usually set such that Q >> N and Q >> S*T, where S is the
number of nodes in the system. In this strategy, the tokens are
only used to build the function that maps values in the hash space
to the ordered lists of nodes and not to decide the partitioning. A
partition is placed on the first N unique nodes that are encountered
while walking the consistent hashing ring clockwise from the end
of the partition. Figure 7 illustrates this strategy for N=3. In this
example, nodes A, B, C are encountered while walking the ring
from the end of the partition that contains key k1. The primary
advantages of this strategy are: (i) decoupling of partitioning and
partition placement, and (ii) enabling the possibility of changing
the placement scheme at runtime.

Strategy 3: Q/S tokens per node, equal-sized partitions: Similar to
strategy 2, this strategy divides the hash space into Q equally
sized partitions and the placement of partition is decoupled from
the partitioning scheme. Moreover, each node is assigned Q/S
tokens where S is the number of nodes in the system. When a
node leaves the system, its tokens are randomly distributed to the
remaining nodes such that these properties are preserved.
Similarly, when a node joins the system it "steals" tokens from
nodes in the system in a way that preserves these properties.

The efficiency of these three strategies is evaluated for a system
with S=30 and N=3. However, comparing these different
strategies in a fair manner is hard as different strategies have
different configurations to tune their efficiency. For instance, the
load distribution property of strategy 1 depends on the number of
tokens (i.e., T) while strategy 3 depends on the number of
partitions (i.e., Q). One fair way to compare these strategies is to

Figure 7: Partitioning and placement of keys in the three strategies. A, B, and C depict the three unique nodes that form the
preference list for the key k1 on the consistent hashing ring (N=3). The shaded area indicates the key range for which nodes A,
B, and C form the preference list. Dark arrows indicate the token locations for various nodes.

206216

evaluate the skew in their load distribution while all strategies use
the same amount of space to maintain their membership
information. For instance, in strategy 1 each node needs to
maintain the token positions of all the nodes in the ring and in
strategy 3 each node needs to maintain the information regarding
the partitions assigned to each node.

In our next experiment, these strategies were evaluated by varying
the relevant parameters (T and Q). The load balancing efficiency
of each strategy was measured for different sizes of membership
information that needs to be maintained at each node, where Load
balancing efficiency is defined as the ratio of average number of
requests served by each node to the maximum number of requests
served by the hottest node.

The results are given in Figure 8. As seen in the figure, strategy 3
achieves the best load balancing efficiency and strategy 2 has the
worst load balancing efficiency. For a brief time, Strategy 2
served as an interim setup during the process of migrating
Dynamo instances from using Strategy 1 to Strategy 3. Compared
to Strategy 1, Strategy 3 achieves better efficiency and reduces the
size of membership information maintained at each node by three
orders of magnitude. While storage is not a major issue the nodes
gossip the membership information periodically and as such it is
desirable to keep this information as compact as possible. In
addition to this, strategy 3 is advantageous and simpler to deploy
for the following reasons: (i) Faster bootstrapping/recovery:
Since partition ranges are fixed, they can be stored in separate
files, meaning a partition can be relocated as a unit by simply
transferring the file (avoiding random accesses needed to locate
specific items). This simplifies the process of bootstrapping and
recovery. (ii) Ease of archival: Periodical archiving of the dataset
is a mandatory requirement for most of Amazon storage services.
Archiving the entire dataset stored by Dynamo is simpler in
strategy 3 because the partition files can be archived separately.
By contrast, in Strategy 1, the tokens are chosen randomly and,
archiving the data stored in Dynamo requires retrieving the keys
from individual nodes separately and is usually inefficient and
slow. The disadvantage of strategy 3 is that changing the node
membership requires coordination in order to preserve the
properties required of the assignment.

6.3 Divergent Versions: When and
How Many?
As noted earlier, Dynamo is designed to tradeoff consistency for
availability. To understand the precise impact of different failures
on consistency, detailed data is required on multiple factors:
outage length, type of failure, component reliability, workload etc.
Presenting these numbers in detail is outside of the scope of this
paper. However, this section discusses a good summary metric:
the number of divergent versions seen by the application in a live
production environment.

Divergent versions of a data item arise in two scenarios. The first
is when the system is facing failure scenarios such as node
failures, data center failures, and network partitions. The second is
when the system is handling a large number of concurrent writers
to a single data item and multiple nodes end up coordinating the
updates concurrently. From both a usability and efficiency
perspective, it is preferred to keep the number of divergent
versions at any given time as low as possible. If the versions
cannot be syntactically reconciled based on vector clocks alone,
they have to be passed to the business logic for semantic
reconciliation. Semantic reconciliation introduces additional load
on services, so it is desirable to minimize the need for it.

In our next experiment, the number of versions returned to the
shopping cart service was profiled for a period of 24 hours.
During this period, 99.94% of requests saw exactly one version;
0.00057% of requests saw 2 versions; 0.00047% of requests saw 3
versions and 0.00009% of requests saw 4 versions. This shows
that divergent versions are created rarely.

Experience shows that the increase in the number of divergent
versions is contributed not by failures but due to the increase in
number of concurrent writers. The increase in the number of
concurrent writes is usually triggered by busy robots (automated
client programs) and rarely by humans. This issue is not discussed
in detail due to the sensitive nature of the story.

6.4 Client-driven or Server-driven
Coordination
As mentioned in Section 5, Dynamo has a request coordination
component that uses a state machine to handle incoming requests.
Client requests are uniformly assigned to nodes in the ring by a
load balancer. Any Dynamo node can act as a coordinator for a
read request. Write requests on the other hand will be coordinated
by a node in the key’s current preference list. This restriction is
due to the fact that these preferred nodes have the added
responsibility of creating a new version stamp that causally
subsumes the version that has been updated by the write request.
Note that if Dynamo’s versioning scheme is based on physical
timestamps, any node can coordinate a write request.

An alternative approach to request coordination is to move the
state machine to the client nodes. In this scheme client
applications use a library to perform request coordination locally.
A client periodically picks a random Dynamo node and
downloads its current view of Dynamo membership state. Using
this information the client can determine which set of nodes form
the preference list for any given key. Read requests can be
coordinated at the client node thereby avoiding the extra network
hop that is incurred if the request were assigned to a random
Dynamo node by the load balancer. Writes will either be
forwarded to a node in the key’s preference list or can be

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000 35000

Size of metadata maintained at each node (in abstract units)

E
ffi

ci
en

y
(m

ea
n

lo
ad

/m
ax

 lo
ad

)

Strategy 1
Strategy 2
Strategy 3

Figure 8: Comparison of the load distribution efficiency of
different strategies for system with 30 nodes and N=3 with
equal amount of metadata maintained at each node. The
values of the system size and number of replicas are based on
the typical configuration deployed for majority of our
services.

207217

Dynamo has access to multiple branches that cannot be
syntactically reconciled, it will return all the objects at the leaves,
with the corresponding version information in the context. An
update using this context is considered to have reconciled the
divergent versions and the branches are collapsed into a single
new version.

To illustrate the use of vector clocks, let us consider the example
shown in Figure 3. A client writes a new object. The node (say
Sx) that handles the write for this key increases its sequence
number and uses it to create the data's vector clock. The system
now has the object D1 and its associated clock [(Sx, 1)]. The
client updates the object. Assume the same node handles this
request as well. The system now also has object D2 and its
associated clock [(Sx, 2)]. D2 descends from D1 and therefore
over-writes D1, however there may be replicas of D1 lingering at
nodes that have not yet seen D2. Let us assume that the same
client updates the object again and a different server (say Sy)
handles the request. The system now has data D3 and its
associated clock [(Sx, 2), (Sy, 1)].

Next assume a different client reads D2 and then tries to update it,
and another node (say Sz) does the write. The system now has D4
(descendant of D2) whose version clock is [(Sx, 2), (Sz, 1)]. A
node that is aware of D1 or D2 could determine, upon receiving
D4 and its clock, that D1 and D2 are overwritten by the new data
and can be garbage collected. A node that is aware of D3 and
receives D4 will find that there is no causal relation between
them. In other words, there are changes in D3 and D4 that are not
reflected in each other. Both versions of the data must be kept and
presented to a client (upon a read) for semantic reconciliation.

 Now assume some client reads both D3 and D4 (the context will
reflect that both values were found by the read). The read's
context is a summary of the clocks of D3 and D4, namely [(Sx, 2),
(Sy, 1), (Sz, 1)]. If the client performs the reconciliation and node
Sx coordinates the write, Sx will update its sequence number in
the clock. The new data D5 will have the following clock: [(Sx,
3), (Sy, 1), (Sz, 1)].

A possible issue with vector clocks is that the size of vector
clocks may grow if many servers coordinate the writes to an

object. In practice, this is not likely because the writes are usually
handled by one of the top N nodes in the preference list. In case of
network partitions or multiple server failures, write requests may
be handled by nodes that are not in the top N nodes in the
preference list causing the size of vector clock to grow. In these
scenarios, it is desirable to limit the size of vector clock. To this
end, Dynamo employs the following clock truncation scheme:
Along with each (node, counter) pair, Dynamo stores a timestamp
that indicates the last time the node updated the data item. When
the number of (node, counter) pairs in the vector clock reaches a
threshold (say 10), the oldest pair is removed from the clock.
Clearly, this truncation scheme can lead to inefficiencies in
reconciliation as the descendant relationships cannot be derived
accurately. However, this problem has not surfaced in production
and therefore this issue has not been thoroughly investigated.

4.5 Execution of get () and put () operations
Any storage node in Dynamo is eligible to receive client get and
put operations for any key. In this section, for sake of simplicity,
we describe how these operations are performed in a failure-free
environment and in the subsequent section we describe how read
and write operations are executed during failures.

Both get and put operations are invoked using Amazon’s
infrastructure-specific request processing framework over HTTP.
There are two strategies that a client can use to select a node: (1)
route its request through a generic load balancer that will select a
node based on load information, or (2) use a partition-aware client
library that routes requests directly to the appropriate coordinator
nodes. The advantage of the first approach is that the client does
not have to link any code specific to Dynamo in its application,
whereas the second strategy can achieve lower latency because it
skips a potential forwarding step.

A node handling a read or write operation is known as the
coordinator. Typically, this is the first among the top N nodes in
the preference list. If the requests are received through a load
balancer, requests to access a key may be routed to any random
node in the ring. In this scenario, the node that receives the
request will not coordinate it if the node is not in the top N of the
requested key’s preference list. Instead, that node will forward the
request to the first among the top N nodes in the preference list.

 Read and write operations involve the first N healthy nodes in the
preference list, skipping over those that are down or inaccessible.
When all nodes are healthy, the top N nodes in a key’s preference
list are accessed. When there are node failures or network
partitions, nodes that are lower ranked in the preference list are
accessed.

To maintain consistency among its replicas, Dynamo uses a
consistency protocol similar to those used in quorum systems.
This protocol has two key configurable values: R and W. R is the
minimum number of nodes that must participate in a successful
read operation. W is the minimum number of nodes that must
participate in a successful write operation. Setting R and W such
that R + W > N yields a quorum-like system. In this model, the
latency of a get (or put) operation is dictated by the slowest of the
R (or W) replicas. For this reason, R and W are usually
configured to be less than N, to provide better latency.

Upon receiving a put() request for a key, the coordinator generates
the vector clock for the new version and writes the new version
locally. The coordinator then sends the new version (along with

Figure 3: Version evolution of an object over time.

201211

coordinated locally if Dynamo is using timestamps based
versioning.

An important advantage of the client-driven coordination
approach is that a load balancer is no longer required to uniformly
distribute client load. Fair load distribution is implicitly
guaranteed by the near uniform assignment of keys to the storage
nodes. Obviously, the efficiency of this scheme is dependent on
how fresh the membership information is at the client. Currently
clients poll a random Dynamo node every 10 seconds for
membership updates. A pull based approach was chosen over a
push based one as the former scales better with large number of
clients and requires very little state to be maintained at servers
regarding clients. However, in the worst case the client can be
exposed to stale membership for duration of 10 seconds. In case,
if the client detects its membership table is stale (for instance,
when some members are unreachable), it will immediately refresh
its membership information.

Table 2 shows the latency improvements at the 99.9th percentile
and averages that were observed for a period of 24 hours using
client-driven coordination compared to the server-driven
approach. As seen in the table, the client-driven coordination
approach reduces the latencies by at least 30 milliseconds for
99.9th percentile latencies and decreases the average by 3 to 4
milliseconds. The latency improvement is because the client-
driven approach eliminates the overhead of the load balancer and
the extra network hop that may be incurred when a request is
assigned to a random node. As seen in the table, average latencies
tend to be significantly lower than latencies at the 99.9th
percentile. This is because Dynamo’s storage engine caches and
write buffer have good hit ratios. Moreover, since the load
balancers and network introduce additional variability to the
response time, the gain in response time is higher for the 99.9th
percentile than the average.

6.5 Balancing background vs. foreground
tasks
Each node performs different kinds of background tasks for
replica synchronization and data handoff (either due to hinting or
adding/removing nodes) in addition to its normal foreground
put/get operations. In early production settings, these background
tasks triggered the problem of resource contention and affected
the performance of the regular put and get operations. Hence, it
became necessary to ensure that background tasks ran only when
the regular critical operations are not affected significantly. To
this end, the background tasks were integrated with an admission
control mechanism. Each of the background tasks uses this
controller to reserve runtime slices of the resource (e.g. database),

shared across all background tasks. A feedback mechanism based
on the monitored performance of the foreground tasks is
employed to change the number of slices that are available to the
background tasks.

The admission controller constantly monitors the behavior of
resource accesses while executing a "foreground" put/get
operation. Monitored aspects include latencies for disk operations,
failed database accesses due to lock-contention and transaction
timeouts, and request queue wait times. This information is used
to check whether the percentiles of latencies (or failures) in a
given trailing time window are close to a desired threshold. For
example, the background controller checks to see how close the
99th percentile database read latency (over the last 60 seconds) is
to a preset threshold (say 50ms). The controller uses such
comparisons to assess the resource availability for the foreground
operations. Subsequently, it decides on how many time slices will
be available to background tasks, thereby using the feedback loop
to limit the intrusiveness of the background activities. Note that a
similar problem of managing background tasks has been studied
in [4].

6.6 Discussion
This section summarizes some of the experiences gained during
the process of implementation and maintenance of Dynamo.
Many Amazon internal services have used Dynamo for the past
two years and it has provided significant levels of availability to
its applications. In particular, applications have received
successful responses (without timing out) for 99.9995% of its
requests and no data loss event has occurred to date.

Moreover, the primary advantage of Dynamo is that it provides
the necessary knobs using the three parameters of (N,R,W) to tune
their instance based on their needs.. Unlike popular commercial
data stores, Dynamo exposes data consistency and reconciliation
logic issues to the developers. At the outset, one may expect the
application logic to become more complex. However, historically,
Amazon’s platform is built for high availability and many
applications are designed to handle different failure modes and
inconsistencies that may arise. Hence, porting such applications to
use Dynamo was a relatively simple task. For new applications
that want to use Dynamo, some analysis is required during the
initial stages of the development to pick the right conflict
resolution mechanisms that meet the business case appropriately.
Finally, Dynamo adopts a full membership model where each
node is aware of the data hosted by its peers. To do this, each
node actively gossips the full routing table with other nodes in the
system. This model works well for a system that contains couple
of hundreds of nodes. However, scaling such a design to run with
tens of thousands of nodes is not trivial because the overhead in
maintaining the routing table increases with the system size. This
limitation might be overcome by introducing hierarchical
extensions to Dynamo. Also, note that this problem is actively
addressed by O(1) DHT systems(e.g., [14]).

7. CONCLUSIONS
This paper described Dynamo, a highly available and scalable
data store, used for storing state of a number of core services of
Amazon.com’s e-commerce platform. Dynamo has provided the
desired levels of availability and performance and has been
successful in handling server failures, data center failures and
network partitions. Dynamo is incrementally scalable and allows
service owners to scale up and down based on their current

Table 2: Performance of client-driven and server-driven
coordination approaches.

99.9th
percentile

read
latency

(ms)

99.9th
percentile

write
latency

(ms)

Average
read

latency
(ms)

Average
write

latency
(ms)

Server-
driven 68.9 68.5 3.9 4.02
Client-
driven 30.4 30.4 1.55 1.9

208218

machine waits for a small period of time to receive any
outstanding responses. If stale versions were returned in any of
the responses, the coordinator updates those nodes with the latest
version. This process is called read repair because it repairs
replicas that have missed a recent update at an opportunistic time
and relieves the anti-entropy protocol from having to do it.

As noted earlier, write requests are coordinated by one of the top
N nodes in the preference list. Although it is desirable always to
have the first node among the top N to coordinate the writes
thereby serializing all writes at a single location, this approach has
led to uneven load distribution resulting in SLA violations. This is
because the request load is not uniformly distributed across
objects. To counter this, any of the top N nodes in the preference
list is allowed to coordinate the writes. In particular, since each
write usually follows a read operation, the coordinator for a write
is chosen to be the node that replied fastest to the previous read
operation which is stored in the context information of the
request. This optimization enables us to pick the node that has the
data that was read by the preceding read operation thereby
increasing the chances of getting “read-your-writes” consistency.
It also reduces variability in the performance of the request
handling which improves the performance at the 99.9 percentile.

6. EXPERIENCES & LESSONS LEARNED

Dynamo is used by several services with different configurations.
These instances differ by their version reconciliation logic, and
read/write quorum characteristics. The following are the main
patterns in which Dynamo is used:

• Business logic specific reconciliation: This is a popular use
case for Dynamo. Each data object is replicated across
multiple nodes. In case of divergent versions, the client
application performs its own reconciliation logic. The
shopping cart service discussed earlier is a prime example of
this category. Its business logic reconciles objects by
merging different versions of a customer’s shopping cart.

• Timestamp based reconciliation: This case differs from the
previous one only in the reconciliation mechanism. In case of
divergent versions, Dynamo performs simple timestamp
based reconciliation logic of “last write wins”; i.e., the object
with the largest physical timestamp value is chosen as the
correct version. The service that maintains customer’s
session information is a good example of a service that uses
this mode.

• High performance read engine: While Dynamo is built to be
an “always writeable” data store, a few services are tuning its
quorum characteristics and using it as a high performance
read engine. Typically, these services have a high read
request rate and only a small number of updates. In this
configuration, typically R is set to be 1 and W to be N. For
these services, Dynamo provides the ability to partition and
replicate their data across multiple nodes thereby offering
incremental scalability. Some of these instances function as
the authoritative persistence cache for data stored in more
heavy weight backing stores. Services that maintain product
catalog and promotional items fit in this category.

The main advantage of Dynamo is that its client applications can
tune the values of N, R and W to achieve their desired levels of
performance, availability and durability. For instance, the value of
N determines the durability of each object. A typical value of N
used by Dynamo’s users is 3.

The values of W and R impact object availability, durability and
consistency. For instance, if W is set to 1, then the system will
never reject a write request as long as there is at least one node in
the system that can successfully process a write request. However,
low values of W and R can increase the risk of inconsistency as
write requests are deemed successful and returned to the clients
even if they are not processed by a majority of the replicas. This
also introduces a vulnerability window for durability when a write
request is successfully returned to the client even though it has
been persisted at only a small number of nodes.

Figure 4: Average and 99.9 percentiles of latencies for read and

write requests during our peak request season of December 2006.

The intervals between consecutive ticks in the x-axis correspond

to 12 hours. Latencies follow a diurnal pattern similar to the

request rate and 99.9 percentile latencies are an order of

magnitude higher than averages

Figure 5: Comparison of performance of 99.9th percentile

latencies for buffered vs. non-buffered writes over a period of

24 hours. The intervals between consecutive ticks in the x-axis

correspond to one hour.

204214

machine waits for a small period of time to receive any
outstanding responses. If stale versions were returned in any of
the responses, the coordinator updates those nodes with the latest
version. This process is called read repair because it repairs
replicas that have missed a recent update at an opportunistic time
and relieves the anti-entropy protocol from having to do it.

As noted earlier, write requests are coordinated by one of the top
N nodes in the preference list. Although it is desirable always to
have the first node among the top N to coordinate the writes
thereby serializing all writes at a single location, this approach has
led to uneven load distribution resulting in SLA violations. This is
because the request load is not uniformly distributed across
objects. To counter this, any of the top N nodes in the preference
list is allowed to coordinate the writes. In particular, since each
write usually follows a read operation, the coordinator for a write
is chosen to be the node that replied fastest to the previous read
operation which is stored in the context information of the
request. This optimization enables us to pick the node that has the
data that was read by the preceding read operation thereby
increasing the chances of getting “read-your-writes” consistency.
It also reduces variability in the performance of the request
handling which improves the performance at the 99.9 percentile.

6. EXPERIENCES & LESSONS LEARNED

Dynamo is used by several services with different configurations.
These instances differ by their version reconciliation logic, and
read/write quorum characteristics. The following are the main
patterns in which Dynamo is used:

• Business logic specific reconciliation: This is a popular use
case for Dynamo. Each data object is replicated across
multiple nodes. In case of divergent versions, the client
application performs its own reconciliation logic. The
shopping cart service discussed earlier is a prime example of
this category. Its business logic reconciles objects by
merging different versions of a customer’s shopping cart.

• Timestamp based reconciliation: This case differs from the
previous one only in the reconciliation mechanism. In case of
divergent versions, Dynamo performs simple timestamp
based reconciliation logic of “last write wins”; i.e., the object
with the largest physical timestamp value is chosen as the
correct version. The service that maintains customer’s
session information is a good example of a service that uses
this mode.

• High performance read engine: While Dynamo is built to be
an “always writeable” data store, a few services are tuning its
quorum characteristics and using it as a high performance
read engine. Typically, these services have a high read
request rate and only a small number of updates. In this
configuration, typically R is set to be 1 and W to be N. For
these services, Dynamo provides the ability to partition and
replicate their data across multiple nodes thereby offering
incremental scalability. Some of these instances function as
the authoritative persistence cache for data stored in more
heavy weight backing stores. Services that maintain product
catalog and promotional items fit in this category.

The main advantage of Dynamo is that its client applications can
tune the values of N, R and W to achieve their desired levels of
performance, availability and durability. For instance, the value of
N determines the durability of each object. A typical value of N
used by Dynamo’s users is 3.

The values of W and R impact object availability, durability and
consistency. For instance, if W is set to 1, then the system will
never reject a write request as long as there is at least one node in
the system that can successfully process a write request. However,
low values of W and R can increase the risk of inconsistency as
write requests are deemed successful and returned to the clients
even if they are not processed by a majority of the replicas. This
also introduces a vulnerability window for durability when a write
request is successfully returned to the client even though it has
been persisted at only a small number of nodes.

Figure 4: Average and 99.9 percentiles of latencies for read and

write requests during our peak request season of December 2006.

The intervals between consecutive ticks in the x-axis correspond

to 12 hours. Latencies follow a diurnal pattern similar to the

request rate and 99.9 percentile latencies are an order of

magnitude higher than averages

Figure 5: Comparison of performance of 99.9th percentile

latencies for buffered vs. non-buffered writes over a period of

24 hours. The intervals between consecutive ticks in the x-axis

correspond to one hour.

204214

Traditional wisdom holds that durability and availability go hand-
in-hand. However, this is not necessarily true here. For instance,
the vulnerability window for durability can be decreased by
increasing W. This may increase the probability of rejecting
requests (thereby decreasing availability) because more storage
hosts need to be alive to process a write request.

The common (N,R,W) configuration used by several instances of
Dynamo is (3,2,2). These values are chosen to meet the necessary
levels of performance, durability, consistency, and availability
SLAs.

All the measurements presented in this section were taken on a
live system operating with a configuration of (3,2,2) and running
a couple hundred nodes with homogenous hardware
configurations. As mentioned earlier, each instance of Dynamo
contains nodes that are located in multiple datacenters. These
datacenters are typically connected through high speed network
links. Recall that to generate a successful get (or put) response R
(or W) nodes need to respond to the coordinator. Clearly, the
network latencies between datacenters affect the response time
and the nodes (and their datacenter locations) are chosen such that
the applications target SLAs are met.

6.1 Balancing Performance and Durability
While Dynamo’s principle design goal is to build a highly
available data store, performance is an equally important criterion
in Amazon’s platform. As noted earlier, to provide a consistent
customer experience, Amazon’s services set their performance
targets at higher percentiles (such as the 99.9th or 99.99th
percentiles). A typical SLA required of services that use Dynamo
is that 99.9% of the read and write requests execute within 300ms.

Since Dynamo is run on standard commodity hardware
components that have far less I/O throughput than high-end
enterprise servers, providing consistently high performance for
read and write operations is a non-trivial task. The involvement of
multiple storage nodes in read and write operations makes it even
more challenging, since the performance of these operations is
limited by the slowest of the R or W replicas. Figure 4 shows the
average and 99.9th percentile latencies of Dynamo’s read and
write operations during a period of 30 days. As seen in the figure,
the latencies exhibit a clear diurnal pattern which is a result of the
diurnal pattern in the incoming request rate (i.e., there is a

significant difference in request rate between the daytime and
night). Moreover, the write latencies are higher than read latencies
obviously because write operations always results in disk access.
Also, the 99.9th percentile latencies are around 200 ms and are an
order of magnitude higher than the averages. This is because the
99.9th percentile latencies are affected by several factors such as
variability in request load, object sizes, and locality patterns.

While this level of performance is acceptable for a number of
services, a few customer-facing services required higher levels of
performance. For these services, Dynamo provides the ability to
trade-off durability guarantees for performance. In the
optimization each storage node maintains an object buffer in its
main memory. Each write operation is stored in the buffer and
gets periodically written to storage by a writer thread. In this
scheme, read operations first check if the requested key is present
in the buffer. If so, the object is read from the buffer instead of the
storage engine.

This optimization has resulted in lowering the 99.9th percentile
latency by a factor of 5 during peak traffic even for a very small
buffer of a thousand objects (see Figure 5). Also, as seen in the
figure, write buffering smoothes out higher percentile latencies.
Obviously, this scheme trades durability for performance. In this
scheme, a server crash can result in missing writes that were
queued up in the buffer. To reduce the durability risk, the write
operation is refined to have the coordinator choose one out of the
N replicas to perform a “durable write”. Since the coordinator
waits only for W responses, the performance of the write
operation is not affected by the performance of the durable write
operation performed by a single replica.

6.2 Ensuring Uniform Load distribution
Dynamo uses consistent hashing to partition its key space across
its replicas and to ensure uniform load distribution. A uniform key
distribution can help us achieve uniform load distribution
assuming the access distribution of keys is not highly skewed. In
particular, Dynamo’s design assumes that even where there is a
significant skew in the access distribution there are enough keys
in the popular end of the distribution so that the load of handling
popular keys can be spread across the nodes uniformly through
partitioning. This section discusses the load imbalance seen in
Dynamo and the impact of different partitioning strategies on load
distribution.

To study the load imbalance and its correlation with request load,
the total number of requests received by each node was measured
for a period of 24 hours - broken down into intervals of 30
minutes. In a given time window, a node is considered to be “in-
balance”, if the node’s request load deviates from the average load
by a value a less than a certain threshold (here 15%). Otherwise
the node was deemed “out-of-balance”. Figure 6 presents the
fraction of nodes that are “out-of-balance” (henceforth,
“imbalance ratio”) during this time period. For reference, the
corresponding request load received by the entire system during
this time period is also plotted. As seen in the figure, the
imbalance ratio decreases with increasing load. For instance,
during low loads the imbalance ratio is as high as 20% and during
high loads it is close to 10%. Intuitively, this can be explained by
the fact that under high loads, a large number of popular keys are
accessed and due to uniform distribution of keys the load is
evenly distributed. However, during low loads (where load is 1/8th

Figure 6: Fraction of nodes that are out-of-balance (i.e., nodes
whose request load is above a certain threshold from the
average system load) and their corresponding request load.
The interval between ticks in x-axis corresponds to a time
period of 30 minutes.

205215

