
More Time and Clocks
(Lamport and Vector Clocks)

CS6450: Distributed Systems
Lecture 5

Ryan Stutsman

1

Material taken/derived from Princeton COS-418 materials created by Michael Freedman and Kyle Jamieson at Princeton
University.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Some material taken/derived from MIT 6.824 by Robert Morris, Franz Kaashoek, and Nickolai Zeldovich.

Takeaways

• Lamport Clock algorithm
• Understand guarantee it provides:

if a → b then C(a) < C(b)
• Understand how to use it to generate a total order of

events (even if those events happen independently)

• Vector Clocks
• If V(a) < V(b) then a → b
• If V(a) ≮ V(b) and V(b) ≮ V(a) then a ∥ b
• Can use to infer when an event b was aware

of/influenced by a

2

Today

1. The need for time synchronization

2. “Wall clock time” synchronization
• Cristian’s algorithm, Berkeley algorithm, NTP

3. Logical Time
• Lamport clocks
• Vector clocks

3

• Enables clients to be accurately synchronized to
UTC despite message delays

• Provides reliable service
• Survives lengthy losses of connectivity
• Communicates over redundant network paths

• Provides an accurate service
• Unlike the Berkeley algorithm, leverages

heterogeneous accuracy in clocks

4

The Network Time Protocol (NTP)

• Servers and time sources are arranged in layers (strata)

• Stratum 0: High-precision time sources themselves
• e.g., atomic clocks, shortwave radio time receivers

• Stratum 1: NTP servers directly connected to Stratum 0

• Stratum 2: NTP servers that synchronize with Stratum 1
• Stratum 2 servers are clients of Stratum 1 servers

• Stratum 3: NTP servers that synchronize with Stratum 2
• Stratum 3 servers are clients of Stratum 2 servers

• Users’ computers synchronize with Stratum 3 servers

5

NTP: System structure

• Messages between an NTP client and server are exchanged in
pairs: request and response
• Use Cristian’s algorithm

• For ith message exchange with a particular server, calculate:
1. Clock offset !i from client to server
2. Round trip time "i between client and server

• Over last eight exchanges with server k, the client computes its
dispersion #k = maxi "i − mini "i
• Client uses the server with minimum dispersion

• Cristian's algorithm used only one sided delay
• potential inaccuracy is half the additional RTT delay

6

NTP operation: Server selection

NTP operation: How to change time

• Can’t just change time: Don’t want time to run
backwards
• Recall the make example

• Instead, change the update rate for the clock
• Changes time in a more gradual fashion
• Prevents inconsistent local timestamps

7

• Clocks on different systems will always behave
differently
• Disagreement between machines can result in undesirable

behavior

• NTP, Berkeley clock synchronization
• Rely on timestamps to estimate network delays
• 100s !s−ms accuracy
• Clocks never exactly synchronized

• Often inadequate for distributed systems
• Often need to reason about the order of events
• Might need precision on the order of ns

8

Clock synchronization: Take-away points

Today

1. The need for time synchronization

2. “Wall clock time” synchronization
• Cristian’s algorithm, Berkeley algorithm, NTP

3. Logical Time
• Lamport clocks
• Vector clocks

9

• A New York-based bank wants to make its transaction ledger database
resilient to whole-site failures

• Replicate the database, keep one copy in sf, one in nyc

Motivation: Multi-site database replication

New York
San
Francisco

10

• Replicate the database, keep one copy in sf, one in nyc
• Client sends query to the nearest copy
• Client sends update to both copies

The consequences of concurrent updates

“Deposit
$100”

“Pay 1%
interest”

$1,000
$1,000

$1,100

$1,111

$1,010

$1,110

Inconsistent replicas!
Updates should have been performed in
the same order at each copy

11

Idea: Logical clocks

• Landmark 1978 paper by Leslie Lamport

• Insight: only the events themselves matter

12

Idea: Disregard the precise clock time
Instead, capture just a “happens before”
relationship between a pair of events

In a classic paper, Lamport (1978) showed that although clock
synchronization is possible, it need not be absolute. If two
processes do not interact, it is not necessary that their
clocks be synchronized because the lack of
synchronization would not be observable and thus could
not cause problems. Furthermore, he pointed out that what
usually matters is not that all processes agree on exactly
what time it is, but rather that they agree on the order in
which events occur. In the make example, what counts is
whether input.c is older or newer than input.o, not their
absolute creation times.

-Tanenbaum

13

Will any (total) order do?

• 2143 < 2144 è make doesn’t call compiler

14

Physical time à

No – here timestamps on the events
don’t respect causal relationship
between them!

• Consider three processes: P1, P2, and P3

• Notation: Event a happens before event b (a à b)

Defining “happens-before”

Physical time ↓

P1 P2
P3

15

1. Can observe event order at a single process

Defining “happens-before”

Physical time ↓

P1 P2
P3

a

b

16

1. If same process and a occurs before b, then a à b

Defining “happens-before”

Physical time ↓

P1 P2
P3

a

b

17

1. If same process and a occurs before b, then a à b

2. Can observe ordering when processes communicate

Defining “happens-before”

P1 P2
P3

a

b
c

18

Physical time ↓

1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

Defining “happens-before”

P1 P2
P3

a

b
c

19

Physical time ↓

1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

3. Can observe ordering transitively

Defining “happens-before”

P1 P2
P3

a

b
c

20

Physical time ↓

1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

3. If a à b and b à c, then a à c

Defining “happens-before”

P1 P2
P3

a

b
c

21

Physical time ↓

• Not all events are related by à

• a, d not related by à so concurrent, written as a || d

Concurrent events

22

P1

a

b
c

P2
P3

Physical time ↓

d

•We seek a clock time C(a) for every event a

• Clock condition: If a à b, then C(a) < C(b)

Lamport clocks: Objective

23

Plan: Tag events with clock times; use clock
times to make distributed system correct

• Each process Pi maintains a local clock Ci

1. Before executing an event, Ciß Ci + 1

The Lamport Clock algorithm

P1
C1=0

a

b
c

P2
C2=0 P3

C3=0

24

Physical time ↓

1. Before executing an event a, Ciß Ci + 1:

• Set event time C(a) ß Ci

The Lamport Clock algorithm

P1
C1=1

a

b
c

P2
C2=0 P3

C3=0C(a) = 1

25

Physical time ↓

1. Before executing an event b, Ciß Ci + 1:

• Set event time C(b) ß Ci

The Lamport Clock algorithm

P1
C1=2

a

b
c

P2
C2=0 P3

C3=0

C(b) = 2

C(a) = 1

26

Physical time ↓

1. Before executing an event b, Ciß Ci + 1

2. Send the local clock in the message m

The Lamport Clock algorithm

P1
C1=2

a

b
c

P2
C2=0 P3

C3=0

C(b) = 2

C(a) = 1

C(m) = 2

27

Physical time ↓

3. On process Pj receiving a message m:

• Set Cj and receive event time C(c) ß1 + max{ Cj, C(m) }

The Lamport Clock algorithm

P1
C1=2

a

b
c

P2
C2=3 P3

C3=0

C(b) = 2

C(a) = 1

C(m) = 2

C(c) = 3

28

Physical time ↓

Ordering all events

• Break ties by appending the process number to each
event:

1. Process Pi timestamps event e with Ci(e).i

2. C(a).i < C(b).j when:
• C(a) < C(b), or C(a) = C(b) and i < j

• Now, for any two events a and b, C(a) < C(b) or C(b) < C(a)
• This is called a total ordering of events

29

• Recall multi-site database replication:
• San Francisco (P1) deposited $100:
• New York (P2) paid 1% interest:

Making concurrent updates consistent

P1
P2

$
%

30

Could we design a system that uses Lamport Clock
total order to make multi-site updates consistent?

We reached an inconsistent state

• Client sends update to one replica àLamport timestamp C(x)

• Key idea: Place events into a local queue
• Sorted by increasing C(x)

Totally-Ordered Multicast

P1

%
1.2

$
1.1

P2

%
1.2P2’s local

queue:
P1’s local
queue:

31

Goal: All sites apply the updates in
(the same) Lamport clock order

1. On receiving an event from client, broadcast to others
(including yourself)

2. On receiving an event from replica:
a) Add it to your local queue
b) Broadcast an acknowledgement message to every process

(including yourself)

3. On receiving an acknowledgement:
• Mark corresponding event acknowledged in your queue

4. Remove and process events everyone has ack’ed from
head of queue

Totally-Ordered Multicast (Almost correct)

32

• P1 queues $, P2 queues %

• P1 queues and ack’s %
• P1 marks %fully ack’ed

• P2 marks % fully ack’ed

Totally-Ordered Multicast (Almost correct)

P1 P2
$ 1.1

%
1.2

$
1.1

%
1.2

%ack

$
1.1

%
1.2

%

(Ack’s to self not shown here)
33

P2 processes %

1. On receiving an event from client, broadcast to others
(including yourself)

2. On receiving or processing an event:
a) Add it to your local queue
b) Broadcast an acknowledgement message to every process

(including yourself) only from head of queue

3. When you receive an acknowledgement:
• Mark corresponding event acknowledged in your queue

4. Remove and process events everyone has ack’ed from
head of queue

Totally-Ordered Multicast (Correct version)

34

35

Totally-Ordered Multicast (Correct version)

P1
P2

$ 1.1

%
1.2

$
1.1

%
1.2

%ack

ack $

%
1.2

$

%
%

$

(Ack’s to self not shown here)

$
1.1

• Does totally-ordered multicast solve the problem
of multi-site replication in general?
• Not by a long shot!

1. Our protocol assumed:
• No node failures
• No message loss
• No message corruption

2. All to all communication does not scale
3. Waits forever for message delays

(performance?)

So, are we done?

36

• Can totally-order events in a distributed system: that’s useful!

• But: while by construction, a à b implies C(a) < C(b),
• The converse is not necessarily true:

• C(a) < C(b) does not imply a à b (possibly, a || b)

37

Take-away points: Lamport clocks

Can’t use Lamport clock timestamps to infer
causal relationships between events

Today

1. The need for time synchronization

2. “Wall clock time” synchronization
• Cristian’s algorithm, Berkeley algorithm, NTP

3. Logical Time
• Lamport clocks
• Vector clocks

38

• Label each event e with a vector V(e) = [c1, c2 …, cn]
• ci is a count of events in process i that causally precede e

• Initially, all vectors are [0, 0, …, 0]

• Two update rules:

1. For each local event on process i, increment local entry ci

2. If process j receives message with vector [d1, d2, …, dn]:
• Set each local entry ck = max{ck, dk}
• Increment local entry cj

39

Vector clock (VC)

• All counters start at [0, 0, 0]

• Applying local update rule

• Applying message rule
• Local vector clock

piggybacks on inter-
process messages

40

Vector clock: Example

P1

a

b
c

P2 P3

Physical time ↓

d

e

f

[2,0,0]

[1,0,0]
[2,0,0]

[2,1,0]

[2,2,0]

[2,2,2]

[0,0,1]

[2,2,0]

• Rule for comparing vector clocks:
• V(a) = V(b) when ak = bk for all k
• V(a) < V(b) when ak ≤ bk for all k and V(a) ≠ V(b)

• Concurrency: a || b if ai < bi and aj > bj, some i, j

• V(a) < V(z) when there is a
chain of events linked by à
between a and z

41

Vector clocks can establish causality

b
c

[1,0,0]
[2,0,0]

[2,1,0]

[2,2,0]

a

z

Lamport vs Vector Clocks

42

P1 P2 P3

C(a) = 1
C(b) = 2

C(c) = 1

C(d) = 3

C(e) = 4

C(g) = 5

C(f) = 1

P1 P2 P3

<1,0,0>
<2,0,0>

<0,1,0>

<2,2,0>

<2,3,0>
<2,3,2>

<0,0,1>

a → g? Yes, V(a) < V(g)
f → e? No, V(f) ≮ V(e)

Two events a, z

Lamport clocks: C(a) < C(z)
Conclusion: None

Vector clocks: V(a) < V(z)
Conclusion: a à … à z

43

Vector clock timestamps tell us about
causal event relationships

VC application:
Causally-ordered bulletin board system
• Distributed bulletin board application
• Each post à multicast of the post to all other users

• Want: No user to see a reply before the
corresponding original message post

• Deliver message only after all messages that
causally precede it have been delivered
• Otherwise, the user would see a reply to a message

they could not find

44

• User 0 posts, user 1 replies to 0’s post; user 2 observes
45

VC application:
Causally-ordered bulletin board system
P0

P1

P2

 VC = (0,0,0)2 VC = (1,0,0)2

VC = (1,1,0)1

VC = (1,0,0)0 VC = (1,1,0)0

VC = (1,1,0)2

m

m*

Physical time à

Original
post

1’s reply

