THE

UNIVERSITY
OF UTAH

Primary/Backup

CS6450: Distributed Systems
Lecture 4

Ryan Stutsman

Material taken/derived from Princeton COS-418 materials created by Michael Freedman and Kyle Jamieson at Princeton
University.

Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Some material taken/derived from MIT 6.824 by Robert Morris, Franz Kaashoek, and Nickolai Zeldovich.



Takeaways

 State machine replication for synchronizing multiple
replica of an object

* Order all operations, replicate log, feed (deterministic) operations
to all replicas of an object

* Linearizability: appearance of totally ordered atomic
application of all client ops consistent with real-world
timing of request/response

* Lets us reason with precondition/postconditions as if object was
local and unreplicated

e Easy to preserve application invariants

* P-B: choose a primary and backup
* Primary orders operations and replicates them to backups
* Backups apply operations in order dictated by primary

* View service/coordinator chooses new primary from up-to-date
backups



Simplified Fault Tolerance in MapReduce

User
Program

1) fork .- . .
(1) fork (1) foik (l)‘fork

Input Map Intermediate files Reduce Output
files phase (on local disks) phase files




Preview of where we’re
heading



Replication and Consistency

* Replicate for fault-tolerance and/or performance

* But, now modification is hard
* Updates to any single copy result in inconsistency

* Hence, replication, consistency, and fault
tolerance are all tightly intertwined
* And, sadly, concurrency too!



Building Correct Stateful Systems?

* NFS wanted performance, so it gave up on
consistency

* Given some application-level invariant, if the
appll?catlon shares state over NFS, will the invariant
hold"

* Proof is easy if shared state is read-only

* Proof may be easy if each application process accesses
independent pieces of state

* Proof seems nearly impossible otherwise

* How do we build systems that maintain application-
level invariants?

* What invariants/techniques do those systems need
to rely on internally?



Brute Force Proof?

e Given some application-level invariants we could
try to prove something knowing the details of the
underlying systems it relies on

e Basically intractable
e Systems are massive, fault scenarios are numerous

* Cross product of application-level states and states of
the underlying systems

* Plus, no “narrow waist”, would need to fresh proof
effort for each application x system combination



Then what? A Common Approach

 Assume some abstract data type T
e (Just a type and some methods on that type.)

 Assume that a developer has reasoned about the
invariants of that ADT locally

* Now, imagine the developer wants to replicate instances
of that T for fault tolerance

* Can we create systems such that if that ADT is exported
over the network its local invariants hold?

* Yes .=
* Do we need an application-specific protocol to do it?
e No &

* Can this work even in the presence of faults/crashes?
* Yes .=



Piece #1: Replicated State Machines

* Order all operations targeted to an object
* Basically, just log them in order as they come in
* Replicate that log

* Once a log entry is safely replicated, feed the
logged operation to the object

* |If operations are deterministic, object instances
will be “virtually” in sync

e Great, but how does this lead to semantics
equivalent to local?



Piece #2: Linearizability (Herlihy and Wing ‘91)

All operations on an object appear as if they are executed
atomically in some (single, total) sequential order between
Invocation and response

1. Note: consistent with each client’s own local ordering

2. Note: consistent with invocation and response
* Preserves real-time guarantee

 [f Xcompletes before Y starts,
then X precedes Y in sequence

* Once write completes, all later reads (by wall-clock start time) should
return value of that write or value of later write.

* Once read returns particular value, all later reads should return that
value or value of later write.



Intuition: Real-time ordering

write(A,1)
— ucces
commltted t(A \

* Once write completes, all later reads (by wall-clock start time) should
return value of that write or value of later write.

* Once read returns particular value, all later reads should return that
value or value of later write. 11



>

write(A,1)
uccess

>

12



E >

write(A,1)
uccess

E / read(A) \? >

13



E >

write(A,1)
uccess

E / read(A) \ ? >

14






The Dream

* Sequence all operations in a log

* Replicate logged operations safely, even if the
system is in a state of partial failure

* Apply them in order and atomically to replicas of
an object

* Result: our single-method, local reasoning works,

but our object is more reliable than a single-node
object



Rewinding:
Primary-Backup



Plan

1. Introduction to Primary-Backup
replication

2. If we have time: VMWare’s fault-tolerant
virtual machine



Primary-Backup: Goals

 Mechanism: Replicate and separate servers

e Goal #1: Provide a highly reliable service
* Despite some server and network failures
* Continue operation after failure

* Goal #2: Servers should behave just like a
single, more reliable server



State machine replication

* Any server is essentially a state machine
» Set of (key, value) pairs is state
e Operations transition between states

* Need an op to be executed on all replicas, or none at all
* j.e., we need distributed all-or-nothing atomicity

* |[f op is deterministic, replicas will end in same
state

» Key assumption: Operations are deterministic
* This assumption can be (carefully) relaxed

20



Primary-Backup (P-B) approach

e Nominate one server the call the
other the

* Clients send all operations (get, put) to
current primary

* The primary orders clients’ operations
e Should be only one primary at a time

iNeed to keep clients, primary, and backup in

Isync: who is primary and who is backup



Challenges

 Network and server failures

* Network partitions

* Within each network partition, near-
perfect communication between servers

* Between network partitions, no
communication between servers

22



Primary-Backup (P-B) approach

A)

ﬁ a o
: .. S, (Back
Client PUt(x’ y 60\(‘ > (Backup)

()

S1 (Primary)

1. Primary logs the operation locally

2. Primary sends operation to backup and waits for ack
* Backup performs or just adds it to its

3. Primary performs op and acks to the client
 After backup has applied the operation and ack’ed



. {
View server I

* A view server decides who is primary, who is
backup

 Clients and servers depend on view server
* Don’t decide on their own (might not agree)

e Challenge in designing the view service:
* Only want one primary at a time
 Careful protocol design needed

 FOr now, assume view server never fails



Monitoring server liveness

* Each replica periodically pings view server
* View server declares replica dead if it missed

N pings in a row
* Considers replica alive after single ping

25



Monitoring server liveness

* Each replica periodically pings view server
* View server declares replica dead if it missed
N pings in a row
* Considers replica alive after single ping
e Can a replica be alive but declared “dead”
by view server?
* Yes, if network failure or partition

e Common approach: use leases if clock
skew assumption is ok

26



The view server decides the current view

* View = (view #, primary server, backup server)

I
ﬁ (1,S,, S,)

Client

Ss (Idle)



The view server decides the current view

* View = (view #, primary server, backup server)

y X
ﬁ 1;3»2

Client (2 82 )

Ss (Idle)



The view server decides the current view

* View = (view #, primary server, backup server)

y X
ﬁ 1;3»2

Client (2 82 )

Ss (Idle)



The view server decides the current view

* View = (view #, primary server, backup server)

y X
ﬁ 1;32

Client (2 82 )
(3’ 82’ 83)

I- Challenge: All parties make their
| . .

I own local decision of the current
L view number

30



Agreeing on the current view

* In general, any number of servers can ping view
server

* Okay to have a view with a primary and no backup

* Want everyone to agree on the view number
* Include the view # in RPCs between all parties



Transitioning between views

 How do we ensure new primary has up-to-date state?

* Only promote a previous backup
* j.e., don’t make a previously-idle server primary

» State transfer can take awhile, so may take time for backup
to take up role

* How does view server know whether backup is up to date?

* View server sends message to all
 New primary must ack new view once new backup is up-to-
date

* View server cannot move to (another) new view until ack
* Even if new primary has or appears to have failed



Split Brain?

View Server

§




Split Brain?

View Server




Split Brain?

View Server




Server S, in the old view

View Server




Server S, in the old view

37



Server S, in the old view

View Server




Server S, in the old view

View Server

39



Server S, in the new view

View Server




Server S, in the new view

View Server

41



Server S, in the new view

View Server




Server S, in the new view

View Server

43



State transfer via operation log

* How does a new backup get the current state?
* If S, is backup in view i but was not in view i—1
* S, asks primary to transfer the state

* One alternative: transfer the entire operation log



State transfer via snapshot

* Every op must be either before or after state transfer
* |f op before transfer, transferred state must reflect
op
* |f op after transfer, primary forwards the op to the
backup after the state transfer finishes

 |f each client has only one RPC outstanding at a
time, state = map + result of the last RPC from
each client

* (Had to save this anyway for “at most once” RPC)



Summary of rules

1. View /s primary must have been primary/backup in view
i—1

2. A non-backup must reject forwarded requests

* Backup accepts forwarded requests only if they are in its
idea of the current view

3. A non-primary must reject direct client requests

4. Every operation must be before or after state
transfer



Primary-Backup: Summary

* First step in our goal of making stateful
replicas fault-tolerant

* Allows replicas to provide continuous service
despite persistent net and machine failures

* Finds repeated application in practical
systems (next)

a7



Questions

* What happens if view service is
down/partitioned?
* View service could use P-B, but then...

e Suppose we want to use P-B to tolerate up to f
simultaneous failures

« How many replicas do we need?



P-B with VMs



VMware vSphere Fault Tolerance (VM-FT)

e Goals:
1. Replication of the whole virtual machine

2. Completely transparent to applications
and clients

3. High availability for any existing software

50



Overview

 Two virtual machines
(primary, backup) on
different bare metal

* Logging channel runs over
network

ﬁ Loggln ﬁ
channe

* Fiber channel-attached shared \Shared Disk /

disk E i




Virtual Machine 1/0

* VM inputs

* Incoming network packets

* Disk reads

* Keyboard and mouse events
* Clock timer interrupt events

* VM outputs
* Qutgoing network packets
* Disk writes



Overview

* Primary sends inputs to backup Primary Backup

Loggin
channe

)

« Backup outputs dropped

* Primary-backup heartbeats \Shared Disk /

* If primary fails, backup takes over E i

53




VM-FT: Challenges

1. Making the backup an exact replica of primary

2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)



Log-based VM replication

 Step 1: Hypervisor at the primary logs the causes
of non-determinism:

1. Log results of input events
* Including current program counter value for each

2. Log results of non-deterministic instructions
* e.8. log result of timestamp counter read (RDTSC)

55



Log-based VM replication

 Step 2: Primary hypervisor sends log entries to
backup hypervisor over the logging channel

* Backup hypervisor replays the log entries

 Stops backup VM at next input event or non-
deterministic instruction

* Delivers same input as primary

e Delivers same non-deterministic instruction
result as primary

56



VM-FT Challenges

1. Making the backup an exact replica of primary

2. Making the system behave like a single server
* FT Protocol

3. Avoiding two primaries (Split Brain)

57



Primary to backup failover

* When backup takes over, non-determinism
will make it execute differently than primary
would have done

* This is okay!

* Output requirement: When backup VM
takes over, its execution is consistent with
outputs the primary VM has already sent

58



The problem of inconsistency

.
Input @ Output
N 7

Primary —3—| I‘Q—>

Backup i

A,
’b@/}
2

S,
%



FT protocol

* Primary logs each output operation
* Delays any output until Backup acknowledges it

D
S ‘\&
Input Q\Q S
* ~ O /lﬂQ{@
Primary — —8>
~/
3
Backup |\ >



VM-FT: Challenges

1. Making the backup an exact replica of primary

2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)
 Logging channel may break

61



Detecting and responding to failures

* Primary and backup each run UDP heartbeats,
monitor logging traffic from their peer

* Before “going live” (backup) or finding new backup
(primary), execute an atomlc test-and-set on a
variable in shared storage

* Note the “lease” assumpt|on on successful CAS assume old
primary has “stopped”

* Why is this guaranteed here?

* If the replica finds variable already set, it aborts



VM-FT: Conclusion

 Challenging application of primary-backup
replication

* Design for correctness and consistency of
replicated VM outputs despite failures

* Performance results show generally high
performance, low logging bandwidth overhead

63



