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Takeaways

 State machine replication for synchronizing multiple
replica of an object

* Order all operations, replicate log, feed (deterministic) operations
to all replicas of an object

* Linearizability: appearance of totally ordered atomic
application of all client ops consistent with real-world
timing of request/response

* Lets us reason with precondition/postconditions as if object was
local and unreplicated

e Easy to preserve application invariants

* P-B: choose a primary and backup
* Primary orders operations and replicates them to backups
* Backups apply operations in order dictated by primary

* View service/coordinator chooses new primary from up-to-date
backups



Simplified Fault Tolerance in MapReduce

User
Program
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files phase (on local disks) phase files




Preview of where we’re
heading



Replication and Consistency

* Replicate for fault-tolerance and/or performance

* But, now modification is hard
* Updates to any single copy result in inconsistency

* Hence, replication, consistency, and fault
tolerance are all tightly intertwined
* And, sadly, concurrency too!



Building Correct Stateful Systems?

* NFS wanted performance, so it gave up on
consistency

* Given some application-level invariant, if the
appll?catlon shares state over NFS, will the invariant
hold"

* Proof is easy if shared state is read-only

* Proof may be easy if each application process accesses
independent pieces of state

* Proof seems nearly impossible otherwise

* How do we build systems that maintain application-
level invariants?

* What invariants/techniques do those systems need
to rely on internally?



Brute Force Proof?

e Given some application-level invariants we could
try to prove something knowing the details of the
underlying systems it relies on

e Basically intractable
e Systems are massive, fault scenarios are numerous

* Cross product of application-level states and states of
the underlying systems

* Plus, no “narrow waist”, would need to fresh proof
effort for each application x system combination



Then what? A Common Approach

 Assume some abstract data type T
e (Just a type and some methods on that type.)

 Assume that a developer has reasoned about the
invariants of that ADT locally

* Now, imagine the developer wants to replicate instances
of that T for fault tolerance

* Can we create systems such that if that ADT is exported
over the network its local invariants hold?

* Yes .=
* Do we need an application-specific protocol to do it?
e No &

* Can this work even in the presence of faults/crashes?
* Yes .=



Piece #1: Replicated State Machines

* Order all operations targeted to an object
* Basically, just log them in order as they come in
* Replicate that log

* Once a log entry is safely replicated, feed the
logged operation to the object

* |If operations are deterministic, object instances
will be “virtually” in sync

e Great, but how does this lead to semantics
equivalent to local?



Piece #2: Linearizability (Herlihy and Wing ‘91)

All operations on an object appear as if they are executed
atomically in some (single, total) sequential order between
Invocation and response

1. Note: consistent with each client’s own local ordering

2. Note: consistent with invocation and response
* Preserves real-time guarantee

 [f Xcompletes before Y starts,
then X precedes Y in sequence

* Once write completes, all later reads (by wall-clock start time) should
return value of that write or value of later write.

* Once read returns particular value, all later reads should return that
value or value of later write.



Intuition: Real-time ordering

write(A,1)
— ucces
commltted t(A \

* Once write completes, all later reads (by wall-clock start time) should
return value of that write or value of later write.

* Once read returns particular value, all later reads should return that
value or value of later write. 11
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The Dream

* Sequence all operations in a log

* Replicate logged operations safely, even if the
system is in a state of partial failure

* Apply them in order and atomically to replicas of
an object

* Result: our single-method, local reasoning works,

but our object is more reliable than a single-node
object



Rewinding:
Primary-Backup



Plan

1. Introduction to Primary-Backup
replication

2. If we have time: VMWare’s fault-tolerant
virtual machine



Primary-Backup: Goals

 Mechanism: Replicate and separate servers

e Goal #1: Provide a highly reliable service
* Despite some server and network failures
* Continue operation after failure

* Goal #2: Servers should behave just like a
single, more reliable server



State machine replication

* Any server is essentially a state machine
» Set of (key, value) pairs is state
e Operations transition between states

* Need an op to be executed on all replicas, or none at all
* j.e., we need distributed all-or-nothing atomicity

* |[f op is deterministic, replicas will end in same
state

» Key assumption: Operations are deterministic
* This assumption can be (carefully) relaxed
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Primary-Backup (P-B) approach

e Nominate one server the call the
other the

* Clients send all operations (get, put) to
current primary

* The primary orders clients’ operations
e Should be only one primary at a time

iNeed to keep clients, primary, and backup in

Isync: who is primary and who is backup



Challenges

 Network and server failures

* Network partitions

* Within each network partition, near-
perfect communication between servers

* Between network partitions, no
communication between servers
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Primary-Backup (P-B) approach

A)

ﬁ a o
: .. S, (Back
Client PUt(x’ y 60\(‘ > (Backup)

()

S1 (Primary)

1. Primary logs the operation locally

2. Primary sends operation to backup and waits for ack
* Backup performs or just adds it to its

3. Primary performs op and acks to the client
 After backup has applied the operation and ack’ed



. {
View server I

* A view server decides who is primary, who is
backup

 Clients and servers depend on view server
* Don’t decide on their own (might not agree)

e Challenge in designing the view service:
* Only want one primary at a time
 Careful protocol design needed

 FOr now, assume view server never fails



Monitoring server liveness

* Each replica periodically pings view server
* View server declares replica dead if it missed

N pings in a row
* Considers replica alive after single ping
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Monitoring server liveness

* Each replica periodically pings view server
* View server declares replica dead if it missed
N pings in a row
* Considers replica alive after single ping
e Can a replica be alive but declared “dead”
by view server?
* Yes, if network failure or partition

e Common approach: use leases if clock
skew assumption is ok
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The view server decides the current view

* View = (view #, primary server, backup server)

I
ﬁ (1,S,, S,)

Client

Ss (Idle)



The view server decides the current view

* View = (view #, primary server, backup server)

y X
ﬁ 1;3»2

Client (2 82 )

Ss (Idle)



The view server decides the current view

* View = (view #, primary server, backup server)

y X
ﬁ 1;3»2

Client (2 82 )

Ss (Idle)



The view server decides the current view

* View = (view #, primary server, backup server)

y X
ﬁ 1;32

Client (2 82 )
(3’ 82’ 83)

I- Challenge: All parties make their
| . .

I own local decision of the current
L view number
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Agreeing on the current view

* In general, any number of servers can ping view
server

* Okay to have a view with a primary and no backup

* Want everyone to agree on the view number
* Include the view # in RPCs between all parties



Transitioning between views

 How do we ensure new primary has up-to-date state?

* Only promote a previous backup
* j.e., don’t make a previously-idle server primary

» State transfer can take awhile, so may take time for backup
to take up role

* How does view server know whether backup is up to date?

* View server sends message to all
 New primary must ack new view once new backup is up-to-
date

* View server cannot move to (another) new view until ack
* Even if new primary has or appears to have failed



Split Brain?

View Server

§




Split Brain?

View Server




Split Brain?

View Server




Server S, in the old view

View Server




Server S, in the old view
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Server S, in the old view

View Server




Server S, in the old view

View Server
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Server S, in the new view

View Server




Server S, in the new view

View Server
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Server S, in the new view

View Server




Server S, in the new view

View Server

43



State transfer via operation log

* How does a new backup get the current state?
* If S, is backup in view i but was not in view i—1
* S, asks primary to transfer the state

* One alternative: transfer the entire operation log



State transfer via snapshot

* Every op must be either before or after state transfer
* |f op before transfer, transferred state must reflect
op
* |f op after transfer, primary forwards the op to the
backup after the state transfer finishes

 |f each client has only one RPC outstanding at a
time, state = map + result of the last RPC from
each client

* (Had to save this anyway for “at most once” RPC)



Summary of rules

1. View /s primary must have been primary/backup in view
i—1

2. A non-backup must reject forwarded requests

* Backup accepts forwarded requests only if they are in its
idea of the current view

3. A non-primary must reject direct client requests

4. Every operation must be before or after state
transfer



Primary-Backup: Summary

* First step in our goal of making stateful
replicas fault-tolerant

* Allows replicas to provide continuous service
despite persistent net and machine failures

* Finds repeated application in practical
systems (next)
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Questions

* What happens if view service is
down/partitioned?
* View service could use P-B, but then...

e Suppose we want to use P-B to tolerate up to f
simultaneous failures

« How many replicas do we need?



P-B with VMs



VMware vSphere Fault Tolerance (VM-FT)

e Goals:
1. Replication of the whole virtual machine

2. Completely transparent to applications
and clients

3. High availability for any existing software
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Overview

 Two virtual machines
(primary, backup) on
different bare metal

* Logging channel runs over
network

ﬁ Loggln ﬁ
channe

* Fiber channel-attached shared \Shared Disk /

disk E i




Virtual Machine 1/0

* VM inputs

* Incoming network packets

* Disk reads

* Keyboard and mouse events
* Clock timer interrupt events

* VM outputs
* Qutgoing network packets
* Disk writes



Overview

* Primary sends inputs to backup Primary Backup

Loggin
channe

)

« Backup outputs dropped

* Primary-backup heartbeats \Shared Disk /

* If primary fails, backup takes over E i
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VM-FT: Challenges

1. Making the backup an exact replica of primary

2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)



Log-based VM replication

 Step 1: Hypervisor at the primary logs the causes
of non-determinism:

1. Log results of input events
* Including current program counter value for each

2. Log results of non-deterministic instructions
* e.8. log result of timestamp counter read (RDTSC)
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Log-based VM replication

 Step 2: Primary hypervisor sends log entries to
backup hypervisor over the logging channel

* Backup hypervisor replays the log entries

 Stops backup VM at next input event or non-
deterministic instruction

* Delivers same input as primary

e Delivers same non-deterministic instruction
result as primary
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VM-FT Challenges

1. Making the backup an exact replica of primary

2. Making the system behave like a single server
* FT Protocol

3. Avoiding two primaries (Split Brain)
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Primary to backup failover

* When backup takes over, non-determinism
will make it execute differently than primary
would have done

* This is okay!

* Output requirement: When backup VM
takes over, its execution is consistent with
outputs the primary VM has already sent
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The problem of inconsistency

.
Input @ Output
N 7

Primary —3—| I‘Q—>

Backup i

A,
’b@/}
2

S,
%



FT protocol

* Primary logs each output operation
* Delays any output until Backup acknowledges it

D
S ‘\&
Input Q\Q S
* ~ O /lﬂQ{@
Primary — —8>
~/
3
Backup |\ >



VM-FT: Challenges

1. Making the backup an exact replica of primary

2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)
 Logging channel may break
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Detecting and responding to failures

* Primary and backup each run UDP heartbeats,
monitor logging traffic from their peer

* Before “going live” (backup) or finding new backup
(primary), execute an atomlc test-and-set on a
variable in shared storage

* Note the “lease” assumpt|on on successful CAS assume old
primary has “stopped”

* Why is this guaranteed here?

* If the replica finds variable already set, it aborts



VM-FT: Conclusion

 Challenging application of primary-backup
replication

* Design for correctness and consistency of
replicated VM outputs despite failures

* Performance results show generally high
performance, low logging bandwidth overhead
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