Motion Estimation

Srikumar Ramalingar

≺eviev

Epipolar constrain

Fundamenta Matrix

Motion Estimation

Srikumar Ramalingam

School of Computing University of Utah

Presentation Outline

Motion Estimation

Srikumar Ramalinga

Review

Epipolar constrain

Fundamenta Matrix 1 Review

2 Epipolar constraint

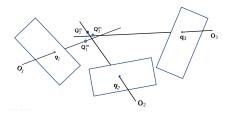
Three view triangulation

Motion Estimation

Srikumai Ramalinga

Review

constrain



$$\mathbf{Q}_1^m = \mathbf{a} + \lambda_1 \mathbf{b}, \quad \mathbf{Q}_2^m = \mathbf{c} + \lambda_2 \mathbf{d}, \quad \mathbf{Q}_3^m = \mathbf{e} + \lambda_3 \mathbf{f}$$

Three view triangulation

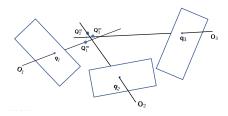
Motion Estimation

Srikuma Ramalinga

Review

Epipolar constrain

Fundamental Matrix



$$\mathbf{Q}_1^m = \mathbf{a} + \lambda_1 \mathbf{b}, \quad \mathbf{Q}_2^m = \mathbf{c} + \lambda_2 \mathbf{d}, \quad \mathbf{Q}_3^m = \mathbf{e} + \lambda_3 \mathbf{f}$$

■ We can compute the required point \mathbf{Q}^m from the intersection of three rays.

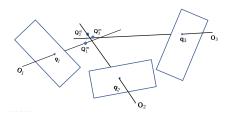
Three view triangulation

Motion Estimation

Srikumar Ramalinga

Review

Epipolar constrain



$$\mathbf{Q}_1^m = \mathbf{a} + \lambda_1 \mathbf{b}, \quad \mathbf{Q}_2^m = \mathbf{c} + \lambda_2 \mathbf{d}, \quad \mathbf{Q}_3^m = \mathbf{e} + \lambda_3 \mathbf{f}$$

- We can compute the required point \mathbf{Q}^m from the intersection of three rays.
- What is the cost function to minimize?

Motion Estimation

Srikumai Ramalinga

Review

Epipolar constrain

Motion Estimation

Srikumar Ramalingan

Review

Epipolar constrain

Fundamenta Matrix ■ Calibration matrices:

$$\mathsf{K}_1 = \mathsf{K}_2 = \mathsf{K}_3 = \left(\begin{array}{ccc} 200 & 0 & 320 \\ 0 & 200 & 240 \\ 0 & 0 & 1 \end{array} \right)$$

Motion Estimation

Srikun Ramalin

Review

Epipolar constrain

Fundamenta Matrix ■ Calibration matrices:

$$K_1 = K_2 = K_3 = \begin{pmatrix} 200 & 0 & 320 \\ 0 & 200 & 240 \\ 0 & 0 & 1 \end{pmatrix}$$

■ Rotation matrices: $R_1 = R_2 = R_3 = I$.

Motion Estimation

Srikumar Ramalingar

Review

constrain

Fundamenta Matrix ■ Calibration matrices:

$$\mathsf{K}_1 = \mathsf{K}_2 = \mathsf{K}_3 = \left(\begin{array}{ccc} 200 & 0 & 320 \\ 0 & 200 & 240 \\ 0 & 0 & 1 \end{array}\right)$$

- Rotation matrices: $R_1 = R_2 = R_3 = I$.
- Translation matrices:

$$\mathbf{t}_1 = \mathbf{0}, \mathbf{t}_2 = (100, 0, 0)^T, \mathbf{t}_3 = (200, 0, 0)^T.$$

Motion Estimation

Srikumar Ramalingam

Review

Epipolar constrain

Fundamenta Matrix Calibration matrices:

$$K_1 = K_2 = K_3 = \begin{pmatrix} 200 & 0 & 320 \\ 0 & 200 & 240 \\ 0 & 0 & 1 \end{pmatrix}$$

- Rotation matrices: $R_1 = R_2 = R_3 = I$.
- Translation matrices: $\mathbf{t}_1 = \mathbf{0}, \mathbf{t}_2 = (100, 0, 0)^T, \mathbf{t}_3 = (200, 0, 0)^T.$
- Correspondence:

$$\mathbf{q}_1 = \left(\begin{array}{c} 520 \\ 440 \\ 1 \end{array} \right) \mathbf{q}_2 = \left(\begin{array}{c} 500 \\ 440 \\ 1 \end{array} \right) \mathbf{q}_3 = \left(\begin{array}{c} 480 \\ 440 \\ 1 \end{array} \right)$$

Motion Estimation

Srikumar Ramalingam

Review

Epipolar constrain

Fundamenta Matrix Calibration matrices:

$$\mathsf{K}_1 = \mathsf{K}_2 = \mathsf{K}_3 = \left(\begin{array}{ccc} 200 & 0 & 320 \\ 0 & 200 & 240 \\ 0 & 0 & 1 \end{array}\right)$$

- Rotation matrices: $R_1 = R_2 = R_3 = I$.
- Translation matrices: $\mathbf{t}_1 = \mathbf{0}, \mathbf{t}_2 = (100, 0, 0)^T, \mathbf{t}_3 = (200, 0, 0)^T.$
- Correspondence:

$$\mathbf{q}_1 = \left(\begin{array}{c} 520 \\ 440 \\ 1 \end{array} \right) \mathbf{q}_2 = \left(\begin{array}{c} 500 \\ 440 \\ 1 \end{array} \right) \mathbf{q}_3 = \left(\begin{array}{c} 480 \\ 440 \\ 1 \end{array} \right)$$

■ Compute the 3D point \mathbf{Q}^m .

Motion Estimation

Srikumar Ramalinga

Review

Epipolar constraint

Motion Estimation

Srikumar Ramalinga

Review

Epipolar constrain

Fundamenta Matrix ■ We use keypoint and descriptor matching algorithms, e.g., SIFT, BRIEF, etc.

Motion Estimation

Srikumar Ramalinga

Review

Epipolar constrain

- We use keypoint and descriptor matching algorithms, e.g., SIFT, BRIEF, etc.
- What kind of constraints exist on the point correspondences in two images?

Motion Estimation

Srikumar Ramalinga

Review

Epipolar constrain

- We use keypoint and descriptor matching algorithms, e.g., SIFT, BRIEF, etc.
- What kind of constraints exist on the point correspondences in two images?
 - Epipolar constraint

Presentation Outline

Motion Estimation

Srikumar Ramalinga

Review

Epipolar constraint

Fundamenta

1 Review

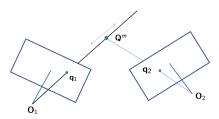
2 Epipolar constraint

Motion Estimation

Srikuma Ramalinga

Review

Epipolar constraint



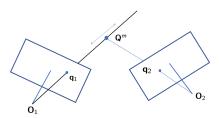
Motion Estimation

Srikuma Ramaling

Review

Epipolar constraint

Fundamenta Matrix



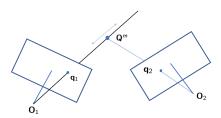
■ Assume that we are given the calibration, rotation, and translation parameters for the two cameras.

Motion Estimation

Srikuma Ramalinga

Review

Epipolar constraint



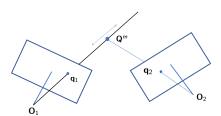
- Assume that we are given the calibration, rotation, and translation parameters for the two cameras.
- We are given a single pixel \mathbf{q}_1 in the left image.

Motion Estimation

Srikuma Ramalinga

Davian

Epipolar constraint



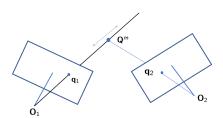
- Assume that we are given the calibration, rotation, and translation parameters for the two cameras.
- We are given a single pixel \mathbf{q}_1 in the left image.
- Let \mathbf{q}_2 be the unknown pixel in the second image corresponding to \mathbf{q}_1 .

Motion Estimation

Srikuma Ramalinga

Review

Epipolar constraint



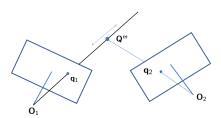
- Assume that we are given the calibration, rotation, and translation parameters for the two cameras.
- We are given a single pixel \mathbf{q}_1 in the left image.
- Let \mathbf{q}_2 be the unknown pixel in the second image corresponding to \mathbf{q}_1 .
- Given \mathbf{q}_1 can we find the location of \mathbf{q}_2 ?

Motion Estimation

Srikuma Ramalinga

Review

Epipolar constraint



- Assume that we are given the calibration, rotation, and translation parameters for the two cameras.
- We are given a single pixel \mathbf{q}_1 in the left image.
- Let \mathbf{q}_2 be the unknown pixel in the second image corresponding to \mathbf{q}_1 .
- Given \mathbf{q}_1 can we find the location of \mathbf{q}_2 ?
 - NO!

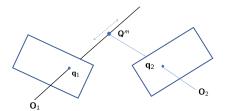
Motion Estimation

Srikumar Ramalingam

Review

Epipolar constraint

Fundamental



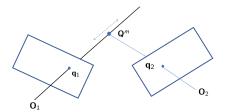
Motion Estimation

Srikumai Ramalinga

Review

Epipolar constraint

Fundamental Matrix



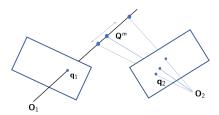
■ For simplicity, we don't show the optical axis.

Motion Estimation

Srikumar Ramalingar

Reviev

Epipolar constraint



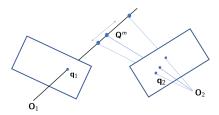
Motion Estimation

Srikuma Ramalinga

Review

Epipolar constraint

Fundamental Matrix



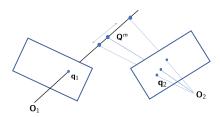
■ We consider different 3D points \mathbf{Q}^m on the backprojection of \mathbf{q}_1 .

Motion Estimation

Srikuma Ramalinga

Ravian

Epipolar constraint



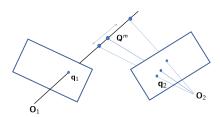
- We consider different 3D points \mathbf{Q}^m on the backprojection of \mathbf{q}_1 .
- We look at the forward projections of these 3D points on the right image.

Motion Estimation

Srikuma Ramalinga

Review

Epipolar constraint



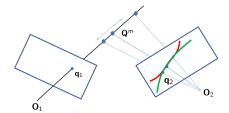
- We consider different 3D points \mathbf{Q}^m on the backprojection of \mathbf{q}_1 .
- We look at the forward projections of these 3D points on the right image.
- The different projections are the different possibilities for \mathbf{q}_2 given the position of \mathbf{q}_1 .

Motion Estimation

Srikumar Ramalingam

Review

Epipolar constraint



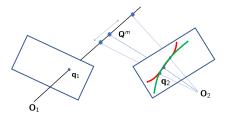
Motion Estimation

Srikumar Ramalinga

Review

Epipolar constraint

Fundamental Matrix



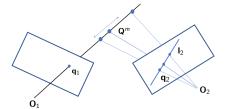
■ What is the parametric curve that passes through different possible locations of \mathbf{q}_2 ?

Motion Estimation

Srikumar Ramalingan

Reviev

Epipolar constraint



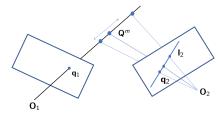
Motion Estimation

Srikumai Ramalinga

Reviev

Epipolar constraint

Fundamental Matrix



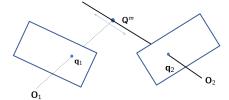
■ It is a straight line.

Motion Estimation

Srikumar Ramalingam

Review

Epipolar constraint



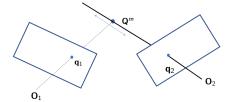
Motion Estimation

Srikumar Ramalinga

Review

Epipolar constraint

Fundamental Matrix



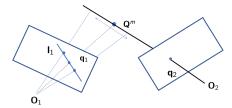
■ What can you say if \mathbf{q}_2 is given and we are interested in finding the location of \mathbf{q}_1 .

Motion Estimation

Srikumar Ramalingam

Review

Epipolar constraint



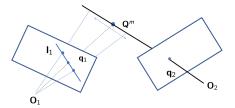
Motion Estimation

Srikuma Ramalinga

2aviaw

Epipolar constraint

Fundamental Matrix



■ Yes, it is also a straight line.

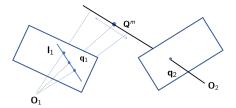
What can you say about matching pixels?

Motion Estimation

Srikumar Ramalinga

Review

Epipolar constraint



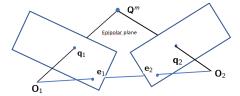
- Yes, it is also a straight line.
- Given a pixel in one image, the corresponding pixel in the other image is constrained to lie on a straight line.

Motion Estimation

Srikumai Ramalinga

Review

Epipolar constraint



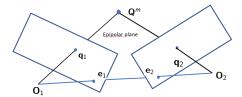
Motion Estimation

Srikuma Ramalinga

Review

Epipolar constraint

Fundamental Matrix



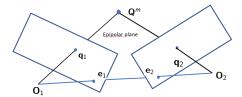
■ **Epipolar plane** is the plane formed by the two camera centers $(\mathbf{O}_1, \mathbf{O}_2)$ and a 3D point \mathbf{Q}^m .

Motion Estimation

Srikuma Ramalinga

Review

Epipolar constraint



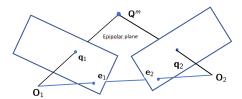
- **Epipolar plane** is the plane formed by the two camera centers $(\mathbf{O}_1, \mathbf{O}_2)$ and a 3D point \mathbf{Q}^m .
- The line joining the two camera centers intersect the image planes at points that we refer to as **epipoles**.

Motion Estimation

Srikuma Ramalinga

20viou

Epipolar constraint



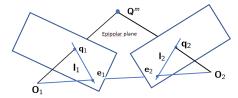
- **Epipolar plane** is the plane formed by the two camera centers $(\mathbf{O}_1, \mathbf{O}_2)$ and a 3D point \mathbf{Q}^m .
- The line joining the two camera centers intersect the image planes at points that we refer to as **epipoles**.
- The epipole in the first image is denoted by e_1 . The epipole in the second image is denoted by e_2 .

Motion Estimation

Srikumai Ramalinga

Review

Epipolar constraint



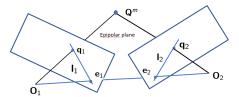
Motion Estimation

Srikuma Ramaling

Review

Epipolar constraint

Fundamenta Matrix



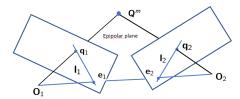
■ Given a pixel \mathbf{q}_1 , the corresponding pixel \mathbf{q}_2 lies on a line in the right image that we refer to as epipolar line \mathbf{l}_2 . Note that this line passes through the epipole \mathbf{e}_2 .

Motion Estimation

Srikuma Ramaling

Review

Epipolar constraint



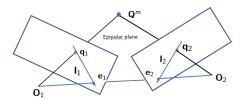
- Given a pixel \mathbf{q}_1 , the corresponding pixel \mathbf{q}_2 lies on a line in the right image that we refer to as epipolar line \mathbf{l}_2 . Note that this line passes through the epipole \mathbf{e}_2 .
- The epipolar line in the first image is denoted by \mathbf{I}_1 and it joins \mathbf{q}_1 and \mathbf{e}_1 .

Motion Estimation

Srikuma Ramalinga

Review

Epipolar constraint



- Given a pixel \mathbf{q}_1 , the corresponding pixel \mathbf{q}_2 lies on a line in the right image that we refer to as epipolar line \mathbf{l}_2 . Note that this line passes through the epipole \mathbf{e}_2 .
- The epipolar line in the first image is denoted by \mathbf{I}_1 and it joins \mathbf{q}_1 and \mathbf{e}_1 .
- Note that the epipoles depend only on rotation, translation, and calibration parameters of the two cameras.

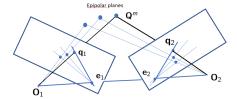
Family of epipolar planes

Motion Estimation

Srikumar Ramalinga

Review

Epipolar constraint



Family of epipolar planes

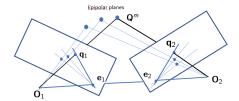
Motion Estimation

Srikuma Ramalinga

Review

Epipolar constraint

Fundamenta Matrix



■ For every pair of matching pixels, we can think of an epipolar plane formed by the optical centers and the 3D point.

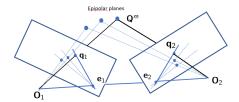
Family of epipolar planes

Motion Estimation

Srikuma Ramalinga

Review

Epipolar constraint



- For every pair of matching pixels, we can think of an epipolar plane formed by the optical centers and the 3D point.
- All the epipolar planes pass through the epipoles. Thus the epipolar lines can be seen as family of lines passing through a single point.

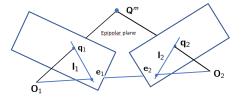
Motion Estimation

Srikumai Ramalinga

Review

Epipolar constraint

Fundamental



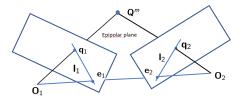
Motion Estimation

Srikuma Ramalinga

Review

Epipolar constraint

Fundamental Matrix



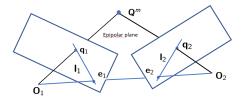
■ Given a pixel \mathbf{q}_1 , the corresponding pixel \mathbf{q}_2 lies on epipolar line \mathbf{l}_2 .

Motion Estimation

Srikuma Ramaling

Davian

Epipolar constraint



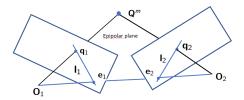
- Given a pixel \mathbf{q}_1 , the corresponding pixel \mathbf{q}_2 lies on epipolar line \mathbf{l}_2 .
- The epipolar line \mathbf{l}_2 in the right image is the line joining the \mathbf{e}_2 and \mathbf{q}_2 on the right image.

Motion Estimation

Srikuma Ramalinga

Review

Epipolar constraint



- Given a pixel \mathbf{q}_1 , the corresponding pixel \mathbf{q}_2 lies on epipolar line \mathbf{l}_2 .
- The epipolar line \mathbf{l}_2 in the right image is the line joining the \mathbf{e}_2 and \mathbf{q}_2 on the right image.
- Let the forward projections be given by: $\mathbf{q}_1 \sim \mathsf{K}_1 \mathsf{R}_1 (\mathsf{I} \mathbf{t}_1) \mathbf{Q}^m$. $\mathbf{q}_2 \sim \mathsf{K}_2 \mathsf{R}_2 (\mathsf{I} \mathbf{t}_2) \mathbf{Q}^m$.

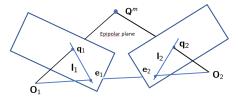
Motion Estimation

Srikumar Ramalingar

Review

Epipolar constraint

Fundamental



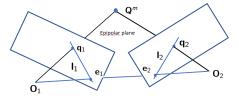
Motion Estimation

Srikuma Ramalinga

Review

Epipolar constraint

Fundamental Matrix



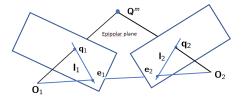
■ The epipole \mathbf{e}_2 is the projection of the left camera center on the right image. The left camera center is given by \mathbf{t}_1 .

Motion Estimation

Srikuma Ramalinga

2aviaw

Epipolar constraint



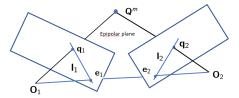
- The epipole \mathbf{e}_2 is the projection of the left camera center on the right image. The left camera center is given by \mathbf{t}_1 .
- A 3D point on the back-projected ray of \mathbf{q}_1 is given by $R_1^T K_1^{-1} \mathbf{q}_1 + \mathbf{t}_1$. We obtain \mathbf{q}_2 by projecting this point on the right image.

Motion Estimation

Srikumar Ramalinga

Review

Epipolar constraint

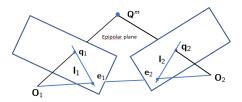


Motion Estimation

Srikumar Ramalingai

Review

Epipolar constraint



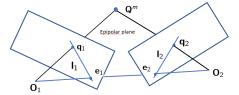
$$\begin{split} \mathbf{e}_2 &\sim \mathsf{K}_2 \mathsf{R}_2 (\mathsf{I} - \mathbf{t}_2) \left(\begin{array}{c} \mathbf{t}_1 \\ 1 \end{array} \right) \\ \mathbf{q}_2 &\sim \mathsf{K}_2 \mathsf{R}_2 (\mathsf{I} - \mathbf{t}_2) \left(\begin{array}{c} \mathsf{R}_1^{\mathcal{T}} \mathsf{K}_1^{-1} \mathbf{q}_1 + \mathbf{t}_1 \\ 1 \end{array} \right) \end{split}$$

Motion Estimation

Srikumar Ramalingai

Review

Epipolar constraint



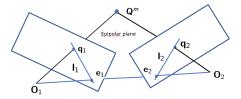
Motion Estimation

Srikumar Ramalingar

Davian

Epipolar constraint

Fundamental



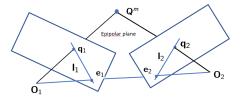
$$\begin{split} \mathbf{e}_2 &\sim \mathsf{K}_2 \mathsf{R}_2 (\mathbf{t}_1 - \mathbf{t}_2) \\ \mathbf{q}_2 &\sim \mathsf{K}_2 \mathsf{R}_2 (\mathsf{R}_1^\mathsf{T} \mathsf{K}_1^{-1} \mathbf{q}_1 + (\mathbf{t}_1 - \mathbf{t}_2)) \end{split}$$

Motion Estimation

Srikuma Ramalinga

Review

Epipolar constraint



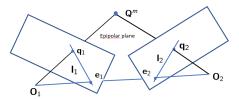
Motion Estimation

Srikuma Ramalinga

Review

Epipolar constraint

Fundamenta Matrix



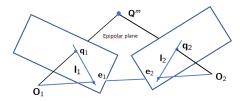
■ The epipolar line \mathbf{l}_2 can by obtained from the cross-product of \mathbf{e}_2 and \mathbf{q}_2 .

Motion Estimation

Srikuma Ramalinga

Review

Epipolar constraint



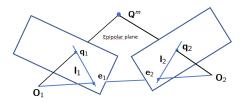
- The epipolar line \mathbf{l}_2 can by obtained from the cross-product of \mathbf{e}_2 and \mathbf{q}_2 .
- Note that $M\mathbf{x} \times M\mathbf{y} \sim M^{-T}(\mathbf{x} \times \mathbf{y})$.

Motion Estimation

Srikuma Ramalinga

Davian

Epipolar constraint



- The epipolar line \mathbf{l}_2 can by obtained from the cross-product of \mathbf{e}_2 and \mathbf{q}_2 .
- Note that $M\mathbf{x} \times M\mathbf{y} \sim M^{-T}(\mathbf{x} \times \mathbf{y})$.
- Thus we have:

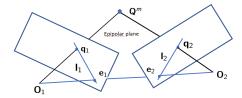
$$\begin{aligned} \mathbf{I}_2 &\sim & \mathbf{e}_2 \times \mathbf{q}_2 \\ &\sim & \mathsf{K}_2 \mathsf{R}_2 (\mathbf{t}_1 - \mathbf{t}_2) \times \mathsf{K}_2 \mathsf{R}_2 (\mathsf{R}_1^\mathsf{T} \mathsf{K}_1^{-1} \mathbf{q}_1 + (\mathbf{t}_1 - \mathbf{t}_2)) \end{aligned}$$

Motion Estimation

Srikumai Ramalinga

Review

Epipolar constraint

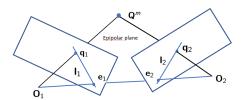


Motion Estimation

Srikuma Ramalinga

Review

Epipolar constraint



$$\begin{split} \textbf{e}_2 \times \textbf{q}_2 \\ \sim & (\mathsf{K}_2 \mathsf{R}_2)^{-\textit{T}} ((\textbf{t}_1 - \textbf{t}_2) \times (\mathsf{R}_1^{\textit{T}} \mathsf{K}_1^{-1} \textbf{q}_1 + (\textbf{t}_1 - \textbf{t}_2)) \end{split}$$

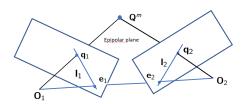
Motion Estimation

Srikumar Ramalinga

Review

Epipolar constraint

Fundamental Matrix



$$\begin{split} \textbf{e}_2 \times \textbf{q}_2 \\ \sim & (\mathsf{K}_2 \mathsf{R}_2)^{-\textit{T}} ((\textbf{t}_1 - \textbf{t}_2) \times (\mathsf{R}_1^{\textit{T}} \mathsf{K}_1^{-1} \textbf{q}_1 + (\textbf{t}_1 - \textbf{t}_2)) \end{split}$$

■ Since $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$ and $\mathbf{a} \times \mathbf{a} = \mathbf{0}$, we have:

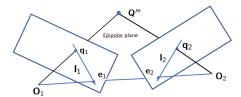
$$\textbf{I}_2 \sim (\mathsf{K}_2 \mathsf{R}_2)^{-T} ((\textbf{t}_1 - \textbf{t}_2) \times \mathsf{R}_1^T \mathsf{K}_1^{-1} \textbf{q}_1)$$

Motion Estimation

Srikumai Ramalinga

Review

Epipolar constraint

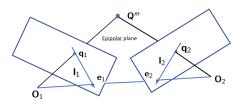


Motion Estimation

Srikumar Ramalinga

Review

Epipolar constraint



$$\textbf{I}_2 \sim (\mathsf{K}_2 \mathsf{R}_2)^{-\intercal} ((\textbf{t}_1 - \textbf{t}_2) \times \mathsf{R}_1^\intercal \mathsf{K}_1^{-1} \textbf{q}_1)$$

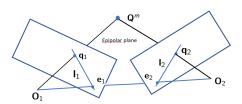
Motion Estimation

Srikumai Ramalinga

Review

Epipolar constraint

Fundamenta Matrix



$$\textbf{I}_2 \sim (\mathsf{K}_2 \mathsf{R}_2)^{-\textit{T}} ((\textbf{t}_1 - \textbf{t}_2) \times \mathsf{R}_1^{\textit{T}} \mathsf{K}_1^{-1} \textbf{q}_1)$$

Skew-symmetrix matrix of any 3×1 vector **a** is given below:

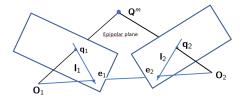
$$[\mathbf{a}]_{\times} = \left(\begin{array}{ccc} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array} \right)$$

Motion Estimation

Srikumar Ramalinga

Review

Epipolar constraint

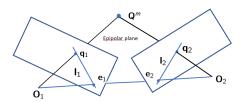


Motion Estimation

Srikumar Ramalinga

Review

Epipolar constraint



$$\textbf{I}_2 \sim (\mathsf{K}_2 \mathsf{R}_2)^{-\textit{T}} ((\textbf{t}_1 - \textbf{t}_2) \times \mathsf{R}_1^{\textit{T}} \mathsf{K}_1^{-1} \textbf{q}_1)$$

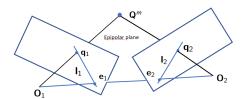
Motion Estimation

Srikumai Ramalinga

Review

Epipolar constraint

Fundamenta Matrix



$$\textbf{I}_2 \sim (\mathsf{K}_2 \mathsf{R}_2)^{-\textit{T}} ((\textbf{t}_1 - \textbf{t}_2) \times \mathsf{R}_1^{\textit{T}} \mathsf{K}_1^{-1} \textbf{q}_1)$$

■ We know that the cross-product of two 3×1 vectors **a** and **b** can be written as follows:

$$\mathbf{a}\times\mathbf{b}=[\mathbf{a}]_{\times}\mathbf{b}$$

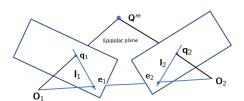
Motion Estimation

Srikumai Ramalinga

D

Epipolar constraint

Fundamental



$$\textbf{I}_2 \sim (\mathsf{K}_2 \mathsf{R}_2)^{-\textit{T}} ((\textbf{t}_1 - \textbf{t}_2) \times \mathsf{R}_1^{\textit{T}} \mathsf{K}_1^{-1} \textbf{q}_1)$$

■ We know that the cross-product of two 3×1 vectors **a** and **b** can be written as follows:

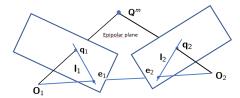
$$\mathbf{a} \times \mathbf{b} = [\mathbf{a}]_{\times} \mathbf{b}$$

Motion Estimation

Srikuma Ramalinga

Review

Epipolar constraint

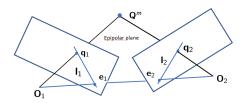


Motion Estimation

Srikuma Ramalinga

Review

Epipolar constraint



$$\begin{split} &\textbf{I}_2 \sim (\textbf{K}_2 \textbf{R}_2)^{-\textit{T}} ([\textbf{t}_1 - \textbf{t}_2]_{\times} \textbf{R}_1^{\textit{T}} \textbf{K}_1^{-1} \textbf{q}_1) \\ &\textbf{I}_2 \sim (\textbf{K}_2 \textbf{R}_2)^{-\textit{T}} [\textbf{t}_1 - \textbf{t}_2]_{\times} (\textbf{R}_1^{\textit{T}} \textbf{K}_1^{-1}) \textbf{q}_1 \end{split}$$

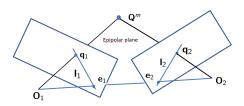
Motion Estimation

Srikumai Ramalinga

Review

Epipolar constraint

Fundamenta Matrix



$$\begin{split} &\textbf{I}_2 \sim (\textbf{K}_2 \textbf{R}_2)^{-\textit{T}} ([\textbf{t}_1 - \textbf{t}_2]_{\times} \textbf{R}_1^{\textit{T}} \textbf{K}_1^{-1} \textbf{q}_1) \\ &\textbf{I}_2 \sim (\textbf{K}_2 \textbf{R}_2)^{-\textit{T}} [\textbf{t}_1 - \textbf{t}_2]_{\times} (\textbf{R}_1^{\textit{T}} \textbf{K}_1^{-1}) \textbf{q}_1 \end{split}$$

■ Here we can see the transformation of a point \mathbf{q}_1 in the left image to a line \mathbf{I}_2 in the right image using a 3×3 matrix $(K_2R_2)^{-T}[\mathbf{t}_1 - \mathbf{t}_2]_\times (R_1^T K_1^{-1})$.

Presentation Outline

Motion Estimation

Srikumar Ramalinga

Review

Epipolar constrain

Fundamental Matrix 1 Review

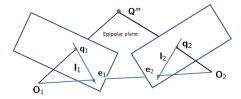
2 Epipolar constraint

Motion Estimation

Srikumar Ramalinga

Review

Epipolar constrair



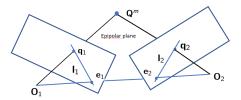
Motion Estimation

Srikuma Ramalinga

Review

Epipolar constrair

Fundamental Matrix



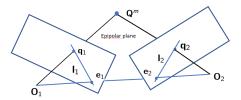
■ The 3×3 matrix is the celebrated fundamental matrix: $F_{12} = (K_2R_2)^{-T}[\mathbf{t}_1 - \mathbf{t}_2]_{\times}(R_1^TK_1^{-1})$

Motion Estimation

Srikuma Ramalinga

Reviev

Epipolar constrair



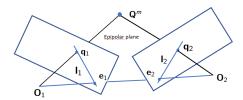
- The 3×3 matrix is the celebrated fundamental matrix: $F_{12} = (K_2R_2)^{-T}[\mathbf{t}_1 \mathbf{t}_2]_{\times}(R_1^TK_1^{-1})$
- This matrix encodes the epipolar geometry.

Motion Estimation

Srikuma Ramaling

Reviev

Epipolar constrain



- The 3 × 3 matrix is the celebrated fundamental matrix: $F_{12} = (K_2R_2)^{-T}[\mathbf{t}_1 - \mathbf{t}_2]_{\times}(R_1^TK_1^{-1})$
- This matrix encodes the epipolar geometry.
- We know that $\mathbf{q}_2^T \mathbf{I}_2 = 0$. Thus we have the following:

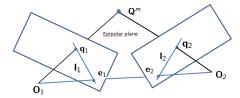
$$\boldsymbol{\mathsf{q}}_2^{\mathcal{T}}\mathsf{F}_{12}\boldsymbol{\mathsf{q}}_1=0$$

Motion Estimation

Srikumai Ramalinga

Review

Epipolar constrair



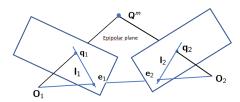
Motion Estimation

Srikuma Ramalinga

Review

Epipolar constrain

Fundamental Matrix



lacktriangle We can have the following equation based on the epipolar line lacktriangle1

$$\mathbf{q}_1^T \mathsf{F}_{21} \mathbf{q}_2 = 0$$

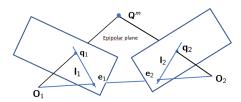
Motion Estimation

Srikuma Ramalinga

Reviev

Epipolar constrair

Fundamental Matrix



lacktriangle We can have the following equation based on the epipolar line lacktriangle1

$$\mathbf{q}_1^T \mathsf{F}_{21} \mathbf{q}_2 = 0$$

■ For simplicity we will only consider the following equation:

$$\mathbf{q}_2^T \mathsf{F} \mathbf{q}_1 = 0$$

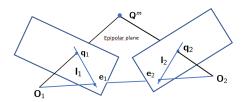
Motion Estimation

Srikuma Ramaling

Review

Epipolar constrair

Fundamental Matrix



lacktriangle We can have the following equation based on the epipolar line lacktriangle1

$$\mathbf{q}_1^T \mathsf{F}_{21} \mathbf{q}_2 = 0$$

■ For simplicity we will only consider the following equation:

$$\mathbf{q}_2^T \mathbf{F} \mathbf{q}_1 = 0$$

■ This constraint is the so-called **epipolar constraint**.

Motion Estimation

Srikumar Ramalingam

Reviev

Epipolar constrain

Motion Estimation

Srikumar Ramalingai

Review

Epipolar constrair

Fundamental Matrix

$$\mathsf{K}_1 = \mathsf{K}_2 = \left(\begin{array}{ccc} 200 & 0 & 320 \\ 0 & 200 & 240 \\ 0 & 0 & 1 \end{array}\right)$$

Motion Estimation

Srikumar Ramalingar

Review

Epipolar constrair

Fundamental Matrix ■ Calibration matrices:

$$\mathsf{K}_1 = \mathsf{K}_2 = \left(\begin{array}{ccc} 200 & 0 & 320 \\ 0 & 200 & 240 \\ 0 & 0 & 1 \end{array}\right)$$

■ Rotation matrices: $R_1 = R_2 = I$.

Motion Estimation

Srikumar Ramalingar

Reviev

constrair

Fundamental Matrix

$$\mathsf{K}_1 = \mathsf{K}_2 = \left(\begin{array}{ccc} 200 & 0 & 320 \\ 0 & 200 & 240 \\ 0 & 0 & 1 \end{array} \right)$$

- Rotation matrices: $R_1 = R_2 = I$.
- Translation matrices: $\mathbf{t}_1 = \mathbf{0}, \mathbf{t}_2 = (100, 0, 0)^T$.

Motion Estimation

Srikumar Ramalinga

Reviev

Epipolar constrair

Fundamental Matrix

$$\mathsf{K}_1 = \mathsf{K}_2 = \left(\begin{array}{ccc} 200 & 0 & 320 \\ 0 & 200 & 240 \\ 0 & 0 & 1 \end{array} \right)$$

- Rotation matrices: $R_1 = R_2 = I$.
- Translation matrices: $\mathbf{t}_1 = \mathbf{0}, \mathbf{t}_2 = (100, 0, 0)^T$.
- Correspondences: $\mathbf{q_1} = (520, 440, 1)^T, \mathbf{q_2} = (500, 440, 1)^T$

Motion Estimation

Srikumar Ramalingai

Review

Epipolar constrair

Fundamental Matrix

$$\mathsf{K}_1 = \mathsf{K}_2 = \left(\begin{array}{ccc} 200 & 0 & 320 \\ 0 & 200 & 240 \\ 0 & 0 & 1 \end{array} \right)$$

- Rotation matrices: $R_1 = R_2 = I$.
- Translation matrices: $\mathbf{t}_1 = \mathbf{0}, \mathbf{t}_2 = (100, 0, 0)^T$.
- Correspondences: $\mathbf{q_1} = (520, 440, 1)^T, \mathbf{q_2} = (500, 440, 1)^T$
- Compute the fundamental matrix F and show that $\mathbf{q}_2^T \mathbf{F} \mathbf{q}_1 = 0$.

Motion Estimation

Srikumar Ramalingai

Reviev

Epipolar constrair

Fundamental Matrix

$$\mathsf{K}_1 = \mathsf{K}_2 = \left(\begin{array}{ccc} 200 & 0 & 320 \\ 0 & 200 & 240 \\ 0 & 0 & 1 \end{array} \right)$$

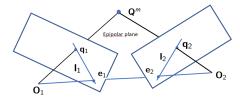
- Rotation matrices: $R_1 = R_2 = I$.
- Translation matrices: $\mathbf{t}_1 = \mathbf{0}, \mathbf{t}_2 = (100, 0, 0)^T$.
- Correspondences: $\mathbf{q_1} = (520, 440, 1)^T, \mathbf{q_2} = (500, 440, 1)^T$
- Compute the fundamental matrix F and show that $\mathbf{q}_2^T \mathbf{F} \mathbf{q}_1 = 0$.
- Find the two epipoles and epipolar lines.

Motion Estimation

Srikuma Ramalinga

Review

Epipolar constrair



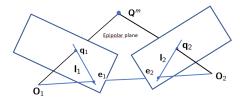
Motion Estimation

Srikuma Ramalinga

Review

Epipolar constrain

Fundamental Matrix



■ Epipolar constraint: $\mathbf{q}_2^T \mathbf{F} \mathbf{q}_1 = 0$

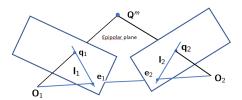
Motion Estimation

Srikuma Ramalinga

Review

Epipolar constrair

Fundamental Matrix



- Epipolar constraint: $\mathbf{q}_2^T \mathbf{F} \mathbf{q}_1 = 0$
- Using *n* point correspondences we can rewrite the above equation of the following form:

$$Af = 0$$

Here **A** is a $n \times 9$ matrix consisting of only the coordinates of the point correspondences that are known. The 9×1 vector f consists of 9 unknowns from the 3×3 fundamental matrix F.

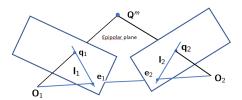
Motion Estimation

Srikuma Ramalinga

Review

Epipolar constrair

Fundamental Matrix



- Epipolar constraint: $\mathbf{q}_2^T \mathbf{F} \mathbf{q}_1 = 0$
- Using *n* point correspondences we can rewrite the above equation of the following form:

$$Af = 0$$

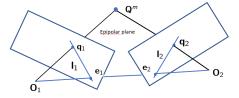
Here **A** is a $n \times 9$ matrix consisting of only the coordinates of the point correspondences that are known. The 9×1 vector f consists of 9 unknowns from the 3×3 fundamental matrix F.

Motion Estimation

Srikuma Ramalinga

Review

Epipolar constrair



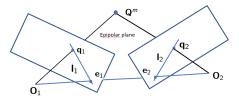
Motion Estimation

Srikuma Ramaling

Review

Epipolar constrain

Fundamental Matrix



■ Using *n* point correspondences, we can have the following equation:

$$Af = 0$$

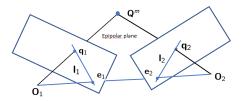
Motion Estimation

Srikuma Ramaling

Review

Epipolar constrair

Fundamental Matrix



■ Using *n* point correspondences, we can have the following equation:

$$Af = 0$$

■ Show the $n \times 9$ matrix using the point correspondences $\{(u_{1i}, v_{1i}), (u_{2i}, v_{2i})\}, i = \{1 \cdots n\}.$

Motion Estimation

Srikumar Ramalinga

Review

Epipolar constrain

Fundamental Matrix

Source: Peter Sturm

Motion Estimation

Srikumar Ramalinga

Review

Epipolar constrain

- To find the solution of the equation Af = 0, we first compute SVD of A, i.e., [U, S, V] = SVD(A) and then the solution of f is given by the last column of V.
- The rank of A should be 8 if we use 8 point correspondences.

Acknowledgments

Motion Estimation

Srikumar Ramalinga

Reviev

Epipolar constrair

Fundamental Matrix Some presentation slides are adapted from the following materials:

■ Peter Sturm, Some lecture notes on geometric computer vision (available online).