HW1

Srikumar Ramalingam
CS 6320-3D Computer Vision
Due: 11:59 PM on $01 / 29 / 2017$

Please submit a zip file containing a PDF document (solutions to the problems) and a PLY file (3D model).

1. Let us consider a car moving on a highway with four lanes. Show that the three parallel lane marking lines on the road intersect at a single point on the image captured by a car mounted camera. Let the origin of the camera be given by $\mathrm{O}(0,0,0)$. The image resolution is 640×480 and the principal point is given by $(320,240)$. We assume the following parameters for the camera:

$$
\left(\begin{array}{l}
u \tag{1}\\
v \\
1
\end{array}\right) \sim\left(\begin{array}{cccc}
200 & 0 & 320 & 0 \\
0 & 200 & 240 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & \mathbf{0} \\
\mathbf{0}^{T} & 1
\end{array}\right)\left(\begin{array}{c}
X^{m} \\
Y^{m} \\
Z^{m} \\
1
\end{array}\right)
$$

where (u, v) correspond to pixel coordinates and I denotes the 3×3 identity matrix. We use two 3D points (in some units, say meters) to represent a 3D line. The three parallel 3D lines $\mathcal{L}_{1}, \mathcal{L}_{2}$, and \mathcal{L}_{3} are shown below:

$$
\mathcal{L}_{1}\left\{\left(\begin{array}{c}
-10 \tag{2}\\
-10 \\
10
\end{array}\right),\left(\begin{array}{c}
-10 \\
-10 \\
20
\end{array}\right)\right\}, \mathcal{L}_{2}\left\{\left(\begin{array}{c}
0 \\
-10 \\
10
\end{array}\right),\left(\begin{array}{c}
0 \\
-10 \\
20
\end{array}\right)\right\}, \mathcal{L}_{3}\left\{\left(\begin{array}{c}
10 \\
-10 \\
10
\end{array}\right),\left(\begin{array}{c}
10 \\
-10 \\
20
\end{array}\right)\right\}
$$

[25 points]
2. Let us consider the same camera model used in Question 1. Find the coordinates of two 3D points $A\left(X_{1}, Y_{1}, Z_{1}\right)$ and $B\left(X_{2}, Y_{2}, Z_{2}\right)$ that satisfy the following conditions:

- The projections of A and B on the image are given by $\mathbf{a}(120,240)$ and $\mathbf{b}(520,240)$, respectively.
- $O A=100$ and $A B=100 \sqrt{2}$ [25 points].

3. Download the visual SFM software (http://ccwu.me/vsfm/). Create a 3D model using at least 25 images. The images can be obtained from the following sources:

- The images can be captured using your phone or any digital camera.
- The images can also be downloaded from the web (Flickr, Google images).

Submit the 3D model in PLY format, which can be visualized using meshlab (http://www.meshlab.net/) [50 points].

