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ABSTRACT

Since the introduction of computers, scientists and engineers have attempted to har-

ness their power to simulate complex physical phenomena. Today, the computer is an

almost universal tool used in a wide range of scientific and engineering domains.

Currently, organizing, running and visualizing a new large-scale simulation still re-

quires hours or days of a researcher’s time. Time and effort required for data input, output

and conversion further slows and complicates process.

We present the design and application of SCIRun, a Problem Solving Environment

(PSE), and a computational steering software system. SCIRun allows a scientist or

engineer to interactively steer a computation, changing parameters, recomputing, and

then revisualizing all within the same programming environment. The tightly integrated

modular environment provided by SCIRun allows computational steering to be applied

to a broad range of advanced scientific computations.

This dissertation demonstrates that computational steering can be a useful tool in com-

putational science, engineering, and medicine applications and that this utility is obtained

by providing a flexible and efficient infrastructure whereby disparate computational tools

can be used in a single, focused environment. Furthermore, we demonstrate that using

such an environment, a scientist or engineer can rapidly investigate the solution space for

iterative computational design problems.

Four applications are demonstrated: Torso defibrillator modeling, Monte Carlo global

illumination, a computational fluid dynamics application, and a simulation of atmo-

spheric diffusion. These applications were selected to explore the gamut of a flexible

and extensible problem solving environment.
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CHAPTER 1

INTRODUCTION

Computational steering is the interactive control of scientific computation. This dis-

sertation demonstrates that computational steering can be a useful tool in computational

science, engineering, and medicine applications and that this utility is obtained by pro-

viding a flexible and efficient infrastructure whereby disparate computational tools can

be used in a single, focused environment. Furthermore, we demonstrate that using such

an environment, a scientist or engineer can rapidly investigate the solution space for

iterative computational design problems. Computational steering can bring a degree of

interactivity to these long-running, traditionally batch-oriented, scientific computations.

The system presented will demonstrate the utility of a programming environment

that combines computational steering with an efficient, modular, extensible, visual pro-

gramming system. These issues are investigated in the context of an implementation of

such an environment, called SCIRun.1 The primary goal of SCIRun is to provide an

efficient environment that enables scientists to create new simulations and scenarios, to

develop new algorithms, and to couple existing algorithms with powerful visualization

tools. SCIRun combines several different computer science concepts to achieve this

flexibility and efficiency. A dataflow [27] visual programming model is combined with

concepts from object-oriented programming to achieve modularity by insulating data

representations from dataflow modules. This combination also provides a mechanism

for implementing demand driven dataflow (lazy evaluation) [120] in a straightforward

manner. Threads [111] are used to provide task parallelism expressed naturally in the

dataflow graph, as well as data parallelism coded explicitly in different components.

1SCIRun is pronounced “ski-run” and derives its name from the Scientific Computing and Imaging
(SCI) research group which is pronounced “ski” as in “Ski Utah.”
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Finally, we extend the concept of dataflow’s internal communication by allowing more

flexible communication ports. This facilitates a more expressive set of communication

methods for implementing relationships that do not fit naturally in the dataflow model.

These communication ports also provide a mechanism for using fine-grained dataflow

mixed with coarse-grained dataflow in a flexible manner. Each of these features is

examined in the context of steerable scientific simulations.

1.1 Motivation

Since the introduction of computers, scientists and engineers have used them to nu-

merically simulate complex physical phenomena [9]. Now the computer is an almost

universal tool used in a wide range of scientific and engineering domains.

Scientific and engineering disciplines are turning to scientific simulation to provide

answers to questions that can not be answered through experimental or theoretical means.

These simulations have three main characteristics:

� Large-scale. Whereas large-scale is a function of the machine availability, to get the

most accurate answers possible, most scientists attempt to use as much resolution as

they have memory and patience for. Large-scale means large memory requirements

and/or large CPU time requirements. Although the definition of large-scale varies

based on technology constraints and budget realities, we include large-scale to mean

data that consume a significant fraction of machine memory, currently multiple

gigabytes on high-end architectures. Similarly, the definition of long-running de-

pendent on the speed of available machines and the patience of the user. For this

work, we have addressed long-running simulations on the order of minutes to hours.

� Iterative . The simulations are typically performed to optimize some set of param-

eters or to evaluate some set of scenarios often characterized by sets of boundary

and initial conditions. In these cases, the scientist often performs a simulation,

makes changes in the geometry, boundary/initial conditions, solution and/or other

parameters, examines the results, and then performs new simulations. Simulations

may be performed using a known method, but often the scientist is developing new
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solutions techniques for a particular problem and wishes to connect the changes

made in the parameter space to the results of the simulation, i.e., conducting a series

“what if” computational experiments.

� Multistep . Simulations typically are composed of a fairly complex set of steps.

These steps can be categorized as modeling, simulation, and visualization steps.

Data from one step are used in later steps. Traditional methods have evolved with

these steps as multiple distinct programs with their own interface, and with their

own unique representations of the data.

In a typical computational field problem scenario, a scientist would use the following

process:

1. Construct a model of the physical problem domain.Modeling includes speci-

fying the shape of the problem domain and can include specifying physical prop-

erties, such as electrical conductivity, density or viscosity. Simple problems may

have relatively simple models, such as cubes, spheres, or other simple geometries.

However current trends typically require the use of models that accurately portray a

related physical problem domain. For example, a computational medicine problem

described in Chapter 8 involves creating a detailed model of the human anatomy

that describes the geometry and material properties for the bones, muscles, and

organs in a human thorax.

2. Apply boundary conditions and/or initial conditions. Boundary conditions are

the forces that drive a particular problem. Typical boundary conditions may include

the velocity of wind at the input of a wind tunnel, the electrical sources for an elec-

trical conduction problem, or boundary temperatures for a heat conduction problem.

Boundary conditions are equations defined on a boundary that couple with the

governing equations to define the behavior of the system at these boundaries. Initial

conditions include the specification of starting data for the simulation – such as the

current weather conditions for a weather simulation. Parameters associated with

these equations may also be specified in conjunction with other model parameters.
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3. Develop a numerical approximation to the governing equations.Governing

equations are often a set of ordinary or partial differential equations that define

the behavior of the problem. Since the computer cannot operate on these equations

directly, the equations are discretized using methods such as finite difference, finite

element, finite volume, or boundary element methods.

4. Compute. Once the data have been specified, the computer is used to solve this

numerical approximation. This typically involves solving a linear or nonlinear

system of algebraic equations. For realistic models, these systems of equations

can be extremely large – with thousands to billions of unknowns and thus can

necessitate the use of parallel computing techniques.

5. Validate the results. Once the solution has been found, the scientist must de-

termine if the results are correct. Validation methods include computing known

problem invariants (a form of “checksum”), comparing with experimental data,

comparing with simple problems that have an analytical solution, demonstrating

observed physical phenomena from “first principles,” or determining that the an-

swer is plausible according to the scientists’ expertise on the problem.

6. Understand the results.Early computational scientists printed out stacks of num-

bers on continuous sheet line printers and stared at them for hours. As computers

have grown more powerful, scientists have been able to perform more and more

complex simulations, and quickly outgrew this form of analysis. Fortunately, these

more powerful computers are also able to assist in presenting the information in

a more meaningful way — forming the entire discipline of Scientific Visualiza-

tion [37, 86, 102, 107]. After all, as Richard Hamming wrote, “The purpose of

computing is insight, not numbers” [42, page vi]. Visualization is the science and art

of turning numbers into pictures that assist in the understanding of those numbers.

Figure 1.1 exemplifies the computational process applied to modeling the electrical

currents in the human torso during a normal heartbeat [56, 57, 77, 78, 106]. In this ex-

ample, the modeling, simulation, and visualization process took several months and was



5

Figure 1.1. Example of the results of a computational process. This is a visualization of
the electrical currents in the human torso, at one point in a normal heartbeat [56, 57, 77,
78, 106].

performed by a wide variety of different custom and commercial software packages [76].

Over the years, scientific computing has grown into a widely accepted method of

scientific investigation. Scientists are continuously trying to perform more accurate

simulations, to use more realistic physical models, and to obtain answers in shorter

time with less work. Many scientists are also applying these techniques to new problem

domains and are using them to solve new practical problems.
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1.2 Computational Steering

Currently, organizing, running, and visualizing a new large-scale simulation still re-

quires hours or days of a researcher’s time. Time and effort required for data input,

output and conversion further complicates and slows the process. Even for experienced

scientists who may employ scripts and conversion programs to aid them in the modeling

task, the process is anything but streamlined. As noted at the NSF-sponsored workshop

on Health Care and High Performance Computing,2 scientists and engineers want a

system in which all these computational components are linked – they wish to “close

the loop,” so that all aspects of the modeling and simulation process can be controlled

graphically within the context of a single application program.

In 1987, the Visualization in Scientific Computing (ViSC) workshop reported [32,

page 5]:

Scientists not only want to analyze data that results from super-computations;
they also want to interpret what is happening to the data during super-comput-
ations. Researchers want tosteercalculations in close-to-real-time; they want
to be able to change parameters, resolution or representation, and see the
effects. They want to drive the scientific discovery process; they want to
interactwith their data.

The most common mode of visualization today at national supercomputer
centers is batch.Batch processingdefines a sequential process: compute,
generate images and plots, and then record on paper, videotape or film.

Interactive visual computingis a process whereby scientists communicate with
data by manipulating its visual representation during processing. The more
sophisticated process ofnavigationallows scientists tosteer, or dynamically
modify computations while they are occurring. These processes are invaluable
tools for scientific discovery.

Although these thoughts were expressed 10 years ago, they express a very simple

idea that scientists want more interaction than is currently present in most simulation

codes. Computational steering has been defined as “the capacity to control the execu-

tion of long-running, resource-intensive programs” [40]. We refine this definition to

include interactive control of all aspects of these programs. As such, steering provides

a mechanism to iteratively evaluate parameter changes in a large-scale computational

2Held in Washington, D.C. Dec. 8-9, 1994.
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environment. Furthermore, we restrict the focus of this research to computational science

programs. Other long-running, resource-intensive programs such as database servers,

web servers, and operating systems will not be examined here.

In the field of computational science, we apply this concept to link visualization

with computation and geometric design to interactively explore (steer) a simulation in

time and/or space. As knowledge is gained, a scientist can change the input conditions

and/or other parameters of the simulation. Implementation of a computational steering

framework requires a successful integration of the many aspects of scientific computing,

including geometric modeling, numerical analysis, and scientific visualization, all of

which need to be effectively coordinated within an efficient computing environment

(which, for large-scale problems, means dealing with the subtleties of various high-

performance architectures).

The computational steering approach is readily applicable tocomputational field prob-

lems, which encompass a large subset of science and engineering problems, includ-

ing computational fluid dynamics (CFD), electromagnetic field simulation, and weather

modeling – essentially any problem whose physics can be modeled effectively by ordi-

nary or partial differential equations.

Although this particular project was initially motivated by biomedical design prob-

lems, there are many other engineering design problems that would benefit from such a

system, including traditional mechanical, and CFD aerodynamics design. These engi-

neers desire a tool with which they can easily experiment with new geometric configu-

rations, and can also modify computational models and numerical algorithms to achieve

more accurate results, or to compute the solution more efficiently. With an integrated vi-

sualization environment combined with large-scale computational capabilities, scientists

would wield a powerful tool for engineering design.

1.3 Problem Solving Environments

Although steering was proposed over a decade ago, it is only gradually becoming a

popular paradigm for scientific computing [15, 16, 50, 65, 123]. Computational steering

is difficult because it requires in-depth knowledge in a wide range of disciplines from
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geometric modeling to scientific computing to scientific visualization and graphics. Most

scientists do not have the necessary expertise in visualization, and most visualization

experts do not perform large-scale scientific simulations. To successfully apply com-

putational steering to these iterative design problems, we implement aProblem Solving

Environment (PSE)wherein these various phases of the scientific computing process may

be integrated.

The environment must allow the scientist to focus on the science and the visualization

expert to focus on understanding the data. As a result, a highly modular visual program-

ming environment has been implemented that allows these disparate pieces to exist in an

integrated environment.

1.3.1 Responsibilities of a Problem Solving Environment

A problem solving environment should be an efficient tool for solving all aspects

of a problem. It should provide flexible modeling, visualization and computational

components, but due to the continual development of new approaches, it will probably

never provide a comprehensive set. As a result, it should also provide facilities for

implementing, debugging, and tuning new components. The scientist should be able

to use these same tools throughout the process – during development, debugging, tuning,

production and publication. To provide an efficient environment for developing and

controlling scientific computations, the problem solving environment assumes several

responsibilities.

The first responsibility is to provide a flexible interface for reusing various modeling,

computational and visualization components. The problem solving environment we

have created, SCIRun, accomplishes this through a visual programming interface that

allows a scientist to compose appropriate tools for analyzing and visualizing various

data (including end results, intermediate results, and even debugging data).

A problem solving environment should also be responsible for providing an appro-

priate development environment for PSE components. Development includes initial

program construction, debugging and performance tuning. Traditional debuggers are

typically not efficient at dealing with the amount of data that scientific programs produce,

so SCIRun allows the scientist to use the same visual analysis tools to examine and probe
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intermediate results. SCIRun also provides visualizations of memory usage, module

CPU usage reports, and execution states. The development environment is further en-

hanced through cooperation with a traditional debugger, which allows the user to closely

examine internal data structures when a module fails. SCIRun employs dynamic shared

libraries to allow the user to recompile only a specific module without the expense of a

complete relink. Another SCIRun window contains an interactive prompt that gives the

user access to a shell that can be used to interactively query and change parameters in the

simulation.

Another responsibility of a problem solving environment is to ensure the efficient

use of system resources. In a sophisticated simulation, each of the individual compo-

nents (modeling, mesh generation, nonlinear/linear solvers, visualization, etc.) typically

consume a large amount of memory and CPU resources. When all of these pieces are

connected into a single program, the potential computational load is enormous. To

use the resources effectively, SCIRun adopts a role similar to an operating system in

managing these resources. SCIRun manages scheduling and prioritization of threads,

mapping of threads to processors, interthread communication, thread stack growth, mem-

ory allocation policies, and memory access exception signals.

Steering tools and environments, such as Magellan [126] and Pablo [97], that fo-

cus on performance steering and algorithm refinement, address some of these issues.

They provide mechanisms for performance tuning that can either be controlled by the

user/developer or automated based upon performance statistics. However, they do not

provide a rich set of components for computational steering of an application. By having

an integrated steering environment for both developing and running an application, the

user/developer has the capability to easily migrate from development to production.

Furthermore, steering modifications that affect the performance can be more easily un-

derstood if discovered in an interactive setting.

1.3.2 Requirements of the Application

A problem solving environment provides a framework for constructing and executing

steerable scientific and engineering applications. However, the application programmer

must assume the responsibility of breaking up an application into suitable components.
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In practice, this modularization is already present inside most scientific programs, since

modular programming has been preached by software engineers as a sensible program-

ming style for years [33].

More importantly, it is the responsibility of the application programmer to ensure that

parameter changes make sense with regard to the underlying physics of the problem. In a

CFD simulation, for example, it is not physically possible for a boundary to move within

a single timestep without a dramatic impact on the flow. The application programmer

may be better off allowing the user to apply forces to a boundary that would move the

boundary in a physically coherent manner. Alternatively, the user could be warned that

moving a boundary in a nonphysical manner would induce gross errors in the transient

solution. SCIRun does not enforce these realities.

SCIRun does provide mechanisms to control when particular parameters get changed,

so that these realities may be controlled by the programmer.

1.3.3 Implementing a PSE

As described above, the desire to interact with a running simulation has been ex-

pressed often. However, the methods for implementing the mechanisms for interac-

tion differ tremendously, as we illustrate in the Chapter 2. In many systems, steering

mechanisms limit steering to either modifications during the algorithm development

phase or during the modeling and computational cycle. Problem solving environments

extend capabilities by allowing similar steering mechanisms to be exploited during all

phases of development, application, and performance tuning. They also allow the same

visualization and analysis tools to be used during all phases.

A problem solving environment attempts to integrate a domain-specific library with

a high-level user interface, consisting of a high-level language and a graphical interface,

through the use of software infrastructure. Problem solving in scientific computation

typically involves symbolic computation, numeric computation, and visualization. Thus,

many PSEs, such as MatLab [1] from The Math Works Inc., Mathematica [2] from

Wolfram Research, Maple [3] from Waterloo Maple Inc., and ELLPACK [100] from

Purdue University integrate numerical libraries with visualization postprocessing. An

extensive list of PSEs can be found on-line [95].



11

An integrated problem solving environment provides a complete set of tools for a

scientist to solve a class of problems. In this context, computational steering can be a ver-

satile tool for making changes in models, for developing new algorithms, for visualizing

and analyzing results, and for tuning the performance of an application. Programming

tools may be a necessary evil of the process, but the intent is for the PSE to help

the scientist accurately solve a problem in a minimum amount of time. Nonetheless,

scientists typically expend significant energy on programming, and they want answers

to “what-if?” questions for reasoning about program bugs and for testing and improving

the performance of an application.

1.4 Thesis

Computational steering can successfully unite the modeling, simulation and visualiza-

tion aspects of scientific computation. A general framework can be successfully designed

that allows a scientist to efficiently link these traditionally disparate phases. Through this

combination, a scientist or engineer can rapidly investigate the solution space for iterative

computational design problems.

This dissertation investigates these issues in the context of SCIRun [59, 60, 89, 90,

92], a problem solving environment that applies the concept of computational steering

to a variety of scientific problems. SCIRun has primarily focused on computational field

problems, although other applications are described as well.

Such an environment should address the following issues:

1. Interactivity: Although it is beyond the scope of this thesis to prove, many believe

that interactivity plays an important role in the process of understanding [17, 45].

It is through interactivity that cause and effect relationships are revealed and is the

most natural mechanism for a scientist to test hypotheses. The environment should

be designed for interactivity – even for large-scale problems.

2. Integration: It should address the needs of the modeling, simulation, and visual-

ization aspects of the problem and should allow these components to be used in

chorus.
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3. Extensiblity: It should not be a monolithic solution for a handful of problems but

should allow the composition of various algorithms for solving new problems.

Steering a large scientific application involves much more than connecting a graphical

user interface to a few parameters. Several techniques exist for extracting information

from running programs, for injecting updates back into the program, and for managing

these changes. We argue that these techniques are most effective when used in a highly

integrated environment, where data can be shared among the various computing and

visualization tasks. For this research, this integrated environment is called SCIRun.

SCIRun employs a blend of object-oriented (C++), imperative (C and Fortran), scripted

(Tcl [88]) and visual (the SCIRun Dataflow interface) languages to build this interactive

environment. The basic SCIRun system provides an optimized dataflow programming

environment, a sophisticated C++ data model library, resource management, and devel-

opment features. SCIRun modules implement components for computational, modeling,

and visualization tasks.

Figure 1.2 demonstrates SCIRun, applied to a similar problem as shown in Fig-

ure 1.1. However, in this instance the scientist is free to change various parameters –

mesh discretization, iterative solution method, source placements, and visualization tools

displayed. The computation is steerable in an interactive investigation mode. Chapter 8

describes this application in further detail, along with a description of the application

of SCIRun to a CFD simulation using a legacy Fortran CFD package (CFDLIB), the

application of SCIRun to a time-dependent simulation of atmospheric diffusion from a

power station plume, as well as an application of Monte Carlo based global illumination

computation.

1.5 Evaluation of Thesis

Success is demonstrated in large part by a demonstration of four different appli-

cations that are implemented in SCIRun (Chapter 8). A comparison of the perfor-

mance and flexibility of SCIRun and other dataflow visualization packages shows why

SCIRun is more appropriate for large-scale computations. We also discuss how each of

these applications extend SCIRun and how their utility has improved in a computational
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Figure 1.2. Example of an interactive computational process. Unlike the example in
Figure 1.1, this visualization is steerable - the user can change the placement of the
electrodes, solution methods, and other numerical and geometrical parameters.

steering environment. Each of these applications was selected to demonstrate a spe-

cific feature of SCIRun. 1) A torso defibrillator design problem demonstrates how the

SCIRun components can be used to develop a new large-scale scientific simulation. 2) A

Monte Carlo global illumination example demonstrates the SCIRun imaging pipeline,

specifically how fine-grained dataflow can be combined with coarse-grained dataflow to

restore interactivity in long-running applications. 3) A computational fluid dynamics

example demonstrates how SCIRun can be used with existing code to provide steering in
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a traditionally batch-oriented scientific program (CFDLIB). 4) Finally, an atmospheric

diffusion example illustrates the incorporation of a time-varying adaptive unstructured

grid program in the SCIRun environment. The power of the object-oriented data model

is demonstrated by showing how the CFDLIB data structures can be adapted to SCIRun

without explicitly duplicating and converting them. This can reduce the overall mem-

ory requirements of SCIRun and distinguishes SCIRun from other currently available

dataflow systems.

1.6 Contributions

SCIRun offers a visual programming environment for scientific computing. To achieve

an interactive computational steering environment, SCIRun extends the typical dataflow

system by integrating concepts from object-oriented programming and by generalizing

dataflow communication ports to allow for component relationships that are difficult to

express using the traditional dataflow metaphor.

This work differs from traditional dataflow-oriented visual programming systems in

that it focuses on efficiency for large-scale computational problems. This theme runs

through many of the solutions proposed, because achieving high performance requires

more than just a streamlined implementation. We demonstrate that this efficiency can be

achieved while maintaining the simple composability typically associated with dataflow

toolkits. Furthermore, an integrated environment can sometimes provide opportunities to

gain efficiency in a manner difficult to do in the traditional environment. With a cohesive

integrated environment, SCIRun components can exploit spatial and temporal coherence

(explained in Chapter 3) to reduce the computational cost for iterative analysis. The first

computation is performed at a fixed cost, but subsequent iterations can be faster.

Finally, we demonstrate the ability to control parameters in a running program, includ-

ing legacy applications. These mechanisms provide support for controlling modelling,

computational and visualization components.

1.7 Thesis Organization

In the remainder of the dissertation, we discuss related systems (Chapter 2) and then

describe the SCIRun architecture (Chapter 3). We describe the dataflow implementation



15

and the semantics of steering in a dataflow environment (Chapter 4). A description of

the SCIRun object-oriented data models (Chapter 5), the computational support libraries

(Chapter 6), and the SCIRun module system (Chapter 7) shows how SCIRun modules are

implemented, and the ways in which SCIRun can be extended. Chapter 7 also contains a

description of several of the important modules that have been implemented in SCIRun

to date. Results and success evaluation are be discussed in Chapter 8. Conclusions are

discussed in Chapter 9, and future work is discussed in Chapter 10. Finally, the Appendix

describes some of the design decisions made in the construction of SCIRun and opinions

of how those turned out.

1.8 Publications

Parts of the research results contained in this dissertation have been published in

the following journals, conference proceedings, and book chapters. This dissertation

supersedes the descriptions of SCIRun in these publications, but many of them contain

greater focus on particular applications and tools.

� JOHNSON, C., BERZINS, M., ZHUKOV, L., AND COFFEY, R. SCIRun: Applica-

tion to atmospheric dispersion problems using unstructured meshes. InNumerical

Methods for Fluid Dynamics VI.(1998), M. Baines, Ed.

� MILLER, M., HANSEN, C., PARKER, S., AND JOHNSON, C. Simulation steering

with scirun in a distributed memory environment. InSeventh IEEE International

Symposium on High Performance Distributed Computing (HPDC-7)(July 1998).

� PARKER, S., MILLER, M., HANSEN, C., AND JOHNSON, C. An integrated prob-
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Hawaii International Conference on System Sciences (HICSS-31)(1998).
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CHAPTER 2

RELATED WORK

Several tools and environments for computational steering have been developed. These

range from tools that modify performance characteristics of running applications, either

by automated means or by user interaction, to tools that modify the underlying compu-

tational application, thereby allowing application steering of the computational process.

The roles of a problem solving environment should encompass all of these character-

istics, from algorithm development through performance tuning to application steering,

for scientific exploration and visualization. It should also provide a rich environment for

accomplishing computational science.

Implementation of a computational steering environment requires a successful in-

tegration of the many aspects of scientific computing, including performance analysis,

geometric modeling, numerical analysis, and scientific visualization. These requirements

need to be effectively coordinated within an efficient computing environment (which,

for large-scale problems, means dealing with the subtleties of various high-performance

architectures).

An excellent coverage of computational steering research can be found in [40] and a

more recent survey of narrowed scope can be found in [123].

2.1 Taxonomy of Steering Systems

The area of computational steering is fairly young, but there are many systems and

tools that exist to assist programmers and scientific researchers in tuning and running

scientific codes. It is helpful to think of these computational tools and systems within

a conceptual framework to compare and contrast them [91]. In the following section

we review the work of others who previously sought to classify computational steering
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systems. Afterwards, we present a cohesive taxonomy for describing computational

steering systems and toolsets.

2.1.1 Previous Classifications

Burnett et al. [19] propose a taxonomy for computational steering using visual

languages. Visualization systems studied vary on a continuum from postprocessing

through tracking to interactive visualization to steering. Interfaces presented ranged

from a textual interface to a graphical user interface to a visual programming language

interface. The authors argue for a merging of the interactive experimentation allowed

by steering capabilities and the ease of use of a visual programming language for a

researcher not trained in programming.

Vetter and Schwan [125] delineate two types of steering in existing systems: human-

interactive steering and algorithmic steering. In human-interactive steering, a person

monitors the computation and manipulates parameters of the computation while it is

executing. In algorithmic steering, the computer makes decisions by monitoring runtime

statistics and other information sources such as history files. Vetter and Schwan describe

a simple feedback model for computational steering wherein output is monitored by a

steering agent, either human or algorithmic. The steering agent performs steering actions

(which can be changes to the parameters of the computation) based on monitored in-

puts. They provide examples demonstrating the steering of an application’s performance

(load-balancing), which automatically adapts the distributed load based upon run-time

statistics.

As noted by Burnett et al. for human-interactive steering, the mechanism of interac-

tion affects the ease of use of the system to a scientist. Systems range from providing

a textual interface from which to steer to providing a graphical interface. A visual

programming language could foster the creation of a steering environment that allows

the user to view the program, the simulation, and the steering mechanism potentially all

at the same time. On the other hand, algorithmic steering would be programmed entirely

behind the scenes, but would require more programming expertise and knowledge of the

computational techniques used to solve the problem.

Although both of these classifications provide insight into differing tools and applica-
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tions for simulation steering, they provide orthogonal views. Burnett’s work focuses on

the level of steering and the visual interface whereas Vetter’s classification is based upon

whether the steering process can be automated.

Next, we review existing tools for simulation steering and present a different taxon-

omy which attempts to highlight the richness of a simulation steering environment or

toolset.

2.1.2 Existing Tools for Steering

Since the idea of computational steering was first proposed, there have been several

efforts at integrating steering in the computational science process. Most of these are

targeted towards instrumenting existing scientific applications for use in a steering mode.

2.1.2.1 Lightweight Steering: Scripting Languages and
Wrappers

Beazley and Lomdahl [15] demonstrate the use of a lightweight method of steering

a large-scale molecular dynamics simulation. Using a Simplified Wrapper Interface

Generator (SWIG) to wrap existing simulation codes, a scientific researcher can easily

build a scripting language interface, such as Tcl/Tk [88] or Python [75], for steering a

computation. Their work highlights the ease of converting existing scientific codes into

a form in which they can be glued together by a control language. Then, the researcher

monitors and manipulates the computation or simulation using scripting commands.

Clearly, this method requires knowledge of how to program with scripting languages

and does not explicitly constitute a steering toolkit. Nonetheless, steerable applications

have been created using SWIG [14].

2.1.2.2 CUMULVS

The CUMULVS library [36, 66], developed at Oak Ridge National Laboratory, acts

as a middle layer between Parallel Virtual Machine (PVM) applications and existing

visualization packages such as AVS 5.0. After initializing a viewer, the application

programmer can provide a list of parameters to be adjusted on-the-fly in a CUMULVS

steering initialization procedure call. Separate procedure calls are used for altering scalar

or vector parameters from within the application. CUMULVS supports multiple views
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of the same running application to assist collaborations. An interesting check-pointing

capability for rolling back and restarting a failed program run has the potential to allow

cross-platform migration and heterogeneous restart of an application.

2.1.2.3 Progress and Magellan

The Progress Toolkit [124], developed at the Georgia Institute of Technology (GIT),

assists application programmers in developing steerable applications. Programmers in-

strument their applications with library calls, using “steerable objects,” which can be

altered at runtime through the use of the Progress runtime system. Steerable objects

include sensors, actuators, probes, function hooks, complex actions, and synchronization

points. Progress uses a client/server program model.

Developed by the same group, the Magellan Steering System [126] is derived from

the Progress system and extends the steering clients and steering servers model used in

the initial system. This system uses a specialized specification language, ACSL, which

provides commands for monitoring and steering using probes, sensors, and actuators.

However, application codes still must be instrumented with these commands to utilize

the steering capabilities of this system. These systems have been used for Molecular

Dynamics simulations.

Both systems are layered on top of the Falcon system [39], also developed at GIT,

which monitors a running program, capturing information ranging from a single pro-

gram variable, much as a debugger would, to complex expressions. It also permits the

monitoring of performance data, with interfaces to visualization systems, such as Iris

Explorer [48]. Decisions about which steering actions to take are based on previously

encoded routines stored in a steering event database located on a steering server.

2.1.2.4 VASE

The Visualization and Application Steering Environment (VASE) [49], from the Cen-

ter for Supercomputing Research and Development at the University of Illinois at Urbana-

Champaign (UIUC), provides a toolset for interactive visualization and steering in a dis-

tributed environment. The VASE user model identifies three distinct roles: an application

developer who writes the scientific codes, a configurer who sets up the distributed envi-



21

ronment (including interprocess communication), and an end user (or researcher) who

uses and steers the application. Steering is accomplished through the use ofsteerable

locations(programmer-defined breakpoints), altering the values of variables and parame-

ters, and adding programming statements and scripts as the computation proceeds. VASE

uses a control-flow programming model, which is displayed to the end user to guide

steering. VASE allows algorithm refinement through the use of script modification at

run-time. Thus, the steering process can modify not only the computational parameters

and performance characteristics but also the actual code.

2.1.2.5 Pablo

The Pablo performance environment [97], also designed at UIUC, provides library

routines for instrumenting source code to extract performance data as the code executes.

This system follows the Falcon model of utilizing sensors to collect information from

the executing code, and altering system characteristics or parameters through the use of

actuators. It seeks to tune the performance of running applications as they execute. Two

different models for performance-directed adaptive control (or performance steering) are

discussed: closed-loop adaptive control and interactive adaptive control. First, a neural

network classifies file access patterns qualitatively to change the file policy on-the-fly,

varying cache size and cache block replacement policy as needed by the executing code.

Second, to enable human-interactive steering, Pablo developers argue for the use of an

immersive environment, specifically the Avatar virtual environment prototype [98] built

at the UIUC and the National Center for Supercomputing Applications.

2.1.2.6 CSE

The Computational Steering Environment (CSE) [121] provides a centralized data

manager, around which computational and visualization components (called sattelites)

can be implemented. The data manager provides a subscribe/notify interface to inform

satellites of changes made in the data. Any satellite is capable of effecting changes to

the data. An interactive graphics editing tool allows users to sketch an interface and bind

variables to user interface components.
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2.1.3 A Taxonomy for Steering

After examining the tools presented above, we identified three distinct types of steer-

ing in current systems: application steering, algorithm refinement, and performance

steering. Application steering refers to the capability to modify the computational pro-

cess through parameter changes, mesh modifications, or other changes that affect the

computational aspects of the simulation. Steering by algorithm refinement allows the

underlying code to be modified or refined at runtime. Performance steering focuses on

changing computational resources that affect the simulation performance such as load

balancing, I/O, cache strategies or other performance related parameters.

Similarly, there is a continuum of interaction strategies from textual to visual pro-

gramming that provide means for a user to interactively steer the computation. It should

be noted that any steering modification can also be accomplished through automated

means (i.e., requiring no end user interaction), as described in some of the systems above.

Figure 2.1 places these systems within this steering taxonomy. Arrows extend from each

system to show a range of interaction possibilities.

SCIRun is designed to allow many forms of interaction for scientists within a stand-

alone system. It provides application steering and algorithm refinement but currently

provides little true performance steering. Scripting, although mostly limited to text-

only manipulation, spans the gamut of steering functionality, permitting performance

steering, algorithm refinement, and application steering. Other systems fill a steering

niche, such as Pablo’s focus on performance steering. Finally, some systems, such as

Progress, Magellan, Falcon, and CUMULVS, provide a range of steering functionality

and many forms of interaction when coupled with a visualization system such as AVS or

IRIS Explorer.

2.2 Visualization Systems

In addition to the computational steering systems described above, SCIRun can be

compared to several commercial visualization packages, such as AVS 5.0 [13] (from

Advanced Visualization Systems), Iris Explorer [48] (from the Numerical Algorithms

Group), Data Explorer [31] (from IBM), and the Visualization Toolkit [107] from Kit-
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Figure 2.1. Taxonomy of steering systems and tools. The horizontal axis represents three
different types of steering, and the vertical axis represents the method of interaction. The
bubbles represent each of the systems’ predominant strength. Arrows indicate portions
of the space that are also covered by the system.

ware, Inc. These systems employ a dataflow-based visual programming environment [131].

Due to their heritage [79], these systems have primarily been used in a visualization

environment where the simulation is a single module or data are read from a file. As

described above, they have also been used as a visualization engine for computational

steering toolkits.

The first three of these systems are compared in detail in [131]. Several important

differences between these systems and SCIRun are discussed in Chapter 8.

2.2.1 AVS

Advanced Visualization Systems (AVS) was the first company to market a dataflow

system for scientific visualization. It uses a multiple process model, in which each

module is implemented as a separate Unix process or groups of modules are a separate

process. The memory and CPU overhead for transferring large datasets from process to

process can be quite large.

AVS uses a “field” datatype, which is significantly less general than the SCIRun
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“Field” object. The AVS version specifies a three-dimensional (3D) structured grid,

with either rectilinear or curvilinear coordinates. A different type, UCD, implements

an unstructured grid.

2.2.2 Iris Explorer

Iris Explorer, originally developed at Silicon Graphics, Inc. and currently licensed

by the Numerical Algorithms Group (NAG), provides a more efficient mechanism for

transporting data between modules. A shared memory “arena” is used to pass data from

module to module. Each module is implemented as separate Unix process.

Like AVS, Iris Explorer also provides explicit datatypes for regular (including recti-

linear and curvilinear) and unstructured grids.

2.2.3 Data Explorer

IBM Data Explorer (DX) provides a single, unified data model for all types of scien-

tific data. The model is very general, although it notably does not provide support for

hierarchical grids or for higher order interpolation.

The Flow Executive in DX manages the execution of all modules. Consequently, it

can become a bottleneck in the handling of data.

2.2.4 vtk

Like SCIRun, vtk uses the Tcl/Tk scripting language and user interface toolkit. How-

ever, vtk makes much more extensive use of it than SCIRun. Unlike the previous systems,

vtk uses a dataflow “pull” model, which is discussed further in Chapter 4.

2.3 Chapter Summary

We have described two sets of tools: computational steering systems and visualization

systems. The computational steering systems were compared in a taxonomy which

describes what they were designed for, as well as the mechanisms used to interact with

the simulations. Note that none of these systems have addressed a holistic solution to

applying interactive computational steering in an integrated, extensible environment.
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SYSTEM OVERVIEW

The work this dissertation describes is embodied in a problem solving environment

called SCIRun. SCIRun is a scientific programming environment that allows the in-

teractive construction and steering of large-scale scientific computations. A scientific

application is constructed by connecting computational elements (modules) to form a

program (network). This program may contain several computational elements, as well

as several visualization elements, all of which work together in orchestrating a solution

to a scientific problem. Geometric inputs and computational parameters may be changed

interactively, and the results of these changes provide interactive feedback to the investi-

gator.

SCIRun employs a blend of object-oriented (C++), imperative (C and Fortran), scripted

(Tcl [88]), and visual (the SCIRun Dataflow interface) languages to build this interactive

environment. The basic SCIRun system provides an optimized dataflow programming

environment, a sophisticated C++ data model library, resource management and develop-

ment features. SCIRun modules implement components for computational, modeling

and visualization tasks.

3.1 Design Goals

The primary goal of SCIRun is to provide an efficient environment that enables sci-

entists to create new simulations and scenarios, to develop new algorithms and to couple

existing algorithms with powerful visualization tools.

The main design principles and goals that guided SCIRun development are as follows:

� Use visual programming and user interfaces that allow a person to utilize particular

components without in-depth expertise on that particular component. This allows
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scientists to use visualization tools while working on computational algorithms and

a programmer to create visualization tools without implementing the simulation as

well.

� Use visualization and numerical feedback throughout the system. This includes

both application level visualization as well as system and algorithm level feedback.

� Rather than provide general purpose tools to solve all problems, provide a general

purpose software architecture in which different scientists can use their special

purpose tools to solve a particular problem.

� Provide generality wherever possible, but provide efficiency everywhere. Typically

we attempt to provide generality but compromise that generality where efficiency

would suffer significantly. In this context, efficiency applies to portions of the

program that take a significant portion of the execution time.

� Provide support for parallelism. For the sake of simplicity, we restrict ourselves to

parallelism in a multithreaded, shared memory environment.

� Provide support for modularity at a binary level. Particular components should be

able to operate on data that were not known at compile time.

� Focus on 3D problems. Many have found it difficult to extend two-dimensional (2D)

solutions to three dimensions. This, combined with the need to accommodate

large-scale computational engineering, science, and medicine problems problems,

motivated us to concentrate on 3D problems.

3.2 Applications
SCIRun was initially motivated by a set of applications in Computational Medicine [53,

54, 51, 57, 56, 58, 76, 106]. However, it is designed to be a general problem solving en-

vironment that can be used to solve a wide range of scientific and engineering problems.

In addition to the original computational medicine applications, other applications

have been selected to further expand and test the generality of the system. These appli-

cations were chosen to exercise SCIRun on important scientific problems. The problems
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chosen utilize a variety of data representations and computational techniques, in order

to ensure that the system is sufficiently general. They are also large-scale problems (in

memory and/or CPU time) that stress the efficiency of the system in general. The driving

applications are as follows:

1. Torso defibrillator modeling: An implantable defibrillator is a small electrical de-

vice that is surgically implanted in the thorax and that discharges electrical shocks

to defibrillate the heart when it undergoes a ventricular fibrillation. There are

many variables in the design of such a device. Optimal operation is achieved only

through the correct combination of voltage, placement, size, shape, and numbers of

electrodes. This large array of possible design and placement combinations cannot

possibly be explored experimentally (through the surgical implantation of devices

in actual human subjects), but computational models can allow an engineer to test

a wide range of design and placement possibilities. To accurately model such a

system, a highly detailed computational model must be used, and these models can

take hours of CPU time to compute the results [106, 83, 11].

2. Monte Carlo global illumination: Monte Carlo methods are used as an effective

method for solving the rendering equation [61, 110]. Although the focus of this dis-

sertation does not include rendering techniques, this application is used to demon-

strate the use of SCIRun for an imaging pipeline, as an example of fine-grained

dataflow, and use of the components for an application outside of computational

field problems.

3. Computational fluid eynamics: CFDLIB [4] is a computational fluid dynamics

package from Los Alamos National Laboratory used to compute a 3D flow. It is

a large Fortran program, which epitomizes many of the qualities of a typical legacy

scientific application. This application is primarily intended to demonstrate the

application of computational steering to a legacy application. Special mechanisms

are demonstrated that allow an application to be incrementally modified to support

computational steering.
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4. Atmospheric diffusion: Another application [52] is taken from a model of atmo-

spheric dispersion from a power station plume – a concentrated source of NOx

emissions. The photo-chemical reaction of this NOx with polluted air leads to the

generation of ozone at large distances downwind from the source. An accurate de-

scription of the distribution of pollutant concentrations is needed over large spatial

regions to compare with field measurement calculations.

These applications are described in further detail in Chapter 8. Many more applica-

tions are possible, with the system, some of which are described in Chapter 10 as future

and current work.

3.3 SCIRun

SCIRun composes computational algorithms with these data elements using a dataflow

style “boxes and wires” approach. An example of a dataflow network is shown in

Figure 3.1.

1. A module, drawn as a box in the network, represents an algorithm or operation.

A set of input ports (top) and a set of output ports (bottom) define its external

parameters.

2. A port provides a connecting point for routing data to different stages of the com-

putation. Ports are strongly typed: each datatype has a different color, and datatypes

cannot be mixed. In SCIRun, ports can be added to and removed from a module

dynamically. Input ports are represented on the top of the module icon, and out-

put ports are on the bottom. Output ports can optionally cache datasets to avoid

recomputation.

3. A datatype represents a concept behind the numbers. Datatypes are quantities such

as scalar fields or matrices, but are not the specific representations, such as regular

grids, unstructured grids, banded matrices, sparse matrices, etc.

4. A connectionconnects two modules together: the output port of one module is

connected to the input port of another module. These connections control where
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Figure 3.1. An example of a fairly complex dataflow network, showing the SCIRun
modules (the boxes), the connections (the wires between them), and the input/output
ports (the points on the modules that the wires connect). Magnified portions show
simulation and modeling components (top left) connected to visualization components
(bottom left) in a cohesive environment.

the data are sent to be computed. Output ports can be connected to multiple input

ports, but input ports accept only a single connection. A module that should accept

an arbitrary number of inputs can use a callback mechanism to create a new empty

port when the other input ports are full.

5. A network consists of a set of modules and the connections between them. This

represents a complete dataflow “program.”

3.4 Steering Optimizations

To accommodate the large datasets required by high resolution computational models,

we have optimized and streamlined the dataflow implementation. These optimizations

are made necessary by the limitations many scientists have experienced with currently

available dataflow visualization systems [99].
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3.4.1 Data Structure Management

Many implementations of the dataflow paradigm use the port/connection structure

to make copies of the data. Consider the example in Figure 3.2. If the vector field

is copied to both the Hedgehog and Streamline modules, then twice as much memory is

consumed as necessary. In addition, a significant amount of CPU time is required to copy

large, complex data structures. To avoid these overheads, we employ a simple reference

counting scheme withsmart pointers[116] in C++. This scheme helps reduce complexity

by allowing different modules to share common data structures with copy-on-write se-

mantics. When the Gradient module creates the VectorField, it sets a reference count in

the vector field to zero. As Gradient hands a copy of the vector field data structure to each

of the downstream modules, the receiving module increments the reference count. When

each module is finished with the data structure, it decrements the reference count. When

the reference count reaches zero, the object is destroyed. These reference counts are

maintained automatically by C++ classes (the smart pointers) to reduce programmer error.

Figure 3.2. A closeup view of a dataflow network. A vector field, produced by the
Gradient module, is consumed by both the Streamline and Hedgehog modules. In
SCIRun, the data are shared between the modules so that the data do not need to be
duplicated.
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Copying the object is necessary only when a module needs to change a data structure and

the reference count is greater than one (i.e., another module is also using it).

3.4.2 Progressive Refinement

Due to memory and speed limitations of current computing technologies, it will not

always be possible to complete these large-scale computations at an interactive rate.

To maintain some degree of dynamic interactivity, the system displays intermediate

results as soon as they are available. Such results include partially converged iterative

matrix solutions, partially adapted finite element grids, and incomplete streamlines or

isosurfaces. In the defibrillator design example shown above, the user moves an electrode

and sees some feedback almost immediately. The solution continues to converge to the

final solution. In this way, an engineer or scientist can watch a solution converge and,

based on the results observed, may either decide to make changes and start over or allow

the simulation to continue to full convergence.

3.4.3 Exploiting Interaction Coherence

A common interactive change consists of moving and orienting portions of the geom-

etry. Because of the nature of this interaction, surface movement is apt to be restricted to

a small region of the domain. Using information available from both how the geometry

has moved and its position prior to the move, the system can anticipate results and “jump

start” many of the iterative methods [59]. For example, iterative matrix solvers can be

jump-started by interpolating the solution from the old geometry onto the new mesh.

When changes to the model geometry are small, the resulting initial guess is close to the

desired solution so the solver converges rapidly. This concept is similar to exploiting

temporal coherence in a time-dependent system by using the previous time-step as the

initial guess to the next time step. An even more compelling example is seen in the

mesh generation process for the torso defibrillator modeling problem. Typically, mesh

generation for the entire torso model would take tens of minutes to hours. Since we

know that the user only wants to move the defibrillator electrodes, we generate the mesh

without the electrodes beforehand. Then, when the user selects an electrode placement,

nodes for the defibrillator electrodes are placed into the mesh in only a few seconds.
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For most boundary value and initial value problems, the final answers will be the

same for the incremental and brute-force approaches (subject to numerical tolerances).

However, for nonlinear problems where there may be multiple solutions or for unsteady

(parabolic) problems, results may be completely different. In these instances, the inter-

action coherence should not be exploited or results will not be scientifically repeatable.

Through coupling each of these techniques, we are able to introduce some degree of

interactivity into a process that formerly took hours, days or even weeks. Although some

of these techniques (such as displaying intermediate results) add to the computation time

of the process, we attempt to compensate by providing optimizations (such as exploiting

interaction coherence) that are not available with the old “data file” paradigm.

3.5 Chapter Summary

We presented an overview of the SCIRun system, including the design goals that

were used to guide development. Four applications were introduced: Torso defibrillator

modeling, Monte Carlo global illumination, a CFD application using CFDLIB, and a

simulation of atmospheric diffusion. These applications were selected to explore the

gamut of SCIRun’s possibilities. We presented three optimizations that are used in

SCIRun to gain efficiency when performing large-scale simulations. Data structure

management helps SCIRun operate on large-scale datasets without the memory over-

head typically associated with these tools. Progressive refinement facilitates a degree

of interactivity on long-running simulations that are not interactive. Finally, interaction

coherence can actually provide an improvement in the speed of repetitive simulations

through exploiting spatial and temporal coherence. These are issues that have not been

addressed in current computational steering or visualization systems.
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DATAFLOW IMPLEMENTATION

In this chapter we present an overview of the SCIRun software architecture. SCIRun

composes computational algorithms (Modules) with data elements (Datatypes) using

a “boxes and wires,” dataflow style approach [64]. An example of a simple dataflow

network is shown in Figure 4.1, and the output of this network is shown in Figure 4.2.

This chapter will explain how demand-driven and data-driven dataflow mechanisms

can be mixed to provide flexibility in creating modules. We also demonstrate how the

communication mechanisms between modules can work to provide components that are

both steerable and efficient. Finally, we will demonstrate how computational steering

Figure 4.1. An example of a simple dataflow network, used to compute streamlines on
the gradient of a scalar field, displayed simultaneously with an isosurface of the scalar
field.
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Figure 4.2. The output of a simple dataflow network, showing streamlines on the
gradient of a scalar field, displayed simultaneously with an isosurface of the scalar field.

can be used in a dataflow system.

The dataflow library is responsible for deciding which modules need to be executed

and when. For this discussion, “execution” consists of a single module running from be-

ginning to end. The module typically reads data from the inputs ports (if any), performs

some operation, and sends the results through one or more output ports. A module is

executed again when the user changes a module parameter, when new data is available

at an input port, or when data is required at its output port.

When the user moves a user interface component, such as a 2D slider or a 3D wid-

get [96], the module sends a message to the scheduler requesting execution. The sched-

uler analyzes the dataflow graph to determine what other modules also need to be exe-

cuted. The dataflow scheduler uses the following algorithm to determine which modules

need to be executed:

execute_list = modules that requested execution;
resend_list = empty;
foreach module in the execute_list {
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foreach module connected to an output {
if the connected module is not in the execute list,

add it
}
foreach module connected to an input {

if the connected output port has a cached dataset,
add it to the resend list

else add it to the execute_list
}

}
cull all ports from the resend_list whose modules appear

in the execute list
send resend messages to the ports in the resend list
send execute messages to the modules in the execute list

The algorithm traverses the dataflow graph, beginning at the modules that request

execution. It traverses upstream (from input to output ports) until it finds a module that

has cached data on the output port. Those output ports are added to a list of data that

must simply be resent. Modules that do not have cached data are added to the list of

modules that must be executed, and the algorithm continues upstream until a cached

dataset is found or a module without input ports is found. All modules downstream of

executed modules are also added to the execute list. Finally, messages are sent to the

modules that must either execute or resend data. The modules receive this message from

a First-in/First-out (FIFO) queue and perform the requested action.

Note that execute messages are sent to all of the modules in the execute list at the

same time. The modules subsequently communicate directly with each other using a

thread-safe FIFO for the dataset hand-offs. Each thread waits for data to appear on the

input ports. A module is not required to gather data from the inputs in order, and it

may interleave computation with receiving data. However, to satisfy the requirements

for determinacy in a dataflow program, the module is not able to request datasets in a

first-come, first-served or any other nondeterministic order [27, 63]. It is important to

note that modules do not send actual data, but rather a handle to the data (see 6.3.2 for a

discussion of handles).

Sending a dataset to thematrix out port is just a few lines of code, similar to:

MatrixHandle matrix = new DenseMatrix(nrows, ncols);
.. build the matrix ..
matrix_out->send(matrix);
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and receiving a dataset from thematrix in port is similarly minimal:

MatrixHandle matrix;
if(!matrix_in->receive(matrix))

return; // returns false if the dataset is not
// available - this is usually due to
// an error upstream

.. use the matrix ..

During the course of a single execution, the module must perform exactly one receive

for each input port, and for each output port, the module must perform exactly one send.

If the module wishes to send multiple datasets (as intermediate results or for feedback

loops), it can use a special method calledsend multi , which also arranges for the

modules downstream to be executed again.

We use a centralized scheduler to avoid redundant module reexecution in a branching

situation. Since we leave the central scheduler out of the loop for individual dataset

handoffs, it does not become a bottleneck in the execution of the program.

The Dataflow library also contains a base class,Module from which all modules

are derived. This class contains the data structures that are required to implement the

dataflow structures; it also contains various utility functions, such asupdate prog-

ress , a function that the module writer can call periodically to update the graph on

the module icon that indicates the approximate percentage of work the module has

completed.

4.1 Demand-Driven Dataflow

The dataflow scheduling algorithm implements a “data-driven” dataflow approach.

Another approach is to use a “demand-driven” or lazy-evaluation scheme. According to

Treleaven et al. [120, page 93];

Basically, in data-driven (e.g., data-flow) computers the availability of oper-
ands triggers the execution of the operation to be performed on them, whereas
in demand-driven (e.g., reduction) computers the requirement for a result trig-
gers the operation that will generate it.

Although this statement was made in connection with computer hardware architectures,

they are equally applicable to software dataflow implementations.
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Most dataflow systems, including AVS 5.0 [13] (from Advanced Visualization Sys-

tems), Iris Explorer [48] (from the Numerical Algorithms Group) and Data Explorer [31]

(from IBM), implement an entirely data-driven approach. The Visualization Toolkit [107]

from Kitware, Inc. implements an entirely demand-driven approach.

It is difficult to know which of these approaches is best. Consider a scalar field dataset

that undergoes a series of computationally intensive processing steps. The processed

dataset is then visualized by a variety of visualization algorithms. In a data-driven sys-

tem, the processing steps will all occur on the entire dataset before the visualization tools

execute. In a demand-driven system, only the portions of the dataset that are actually

examined by the visualization tools will be computed as demanded by the visualization

tools. However, unless complicated caching schemes are implemented, many portions of

the dataset may be recomputed multiple times as the downstream visualization modules

use the data. For example, a volume rendering application may examine each cell

multiple times while rendering the final image. In this case, a data-driven approach would

likely be more efficient since the system would perform all computation up front, and the

computation would only be performed once. However, if a different visualization tool

is chosen, such as a cutting plane, the opposite would be true. A data-driven approach

would spend time computing portions of the dataset that will never be seen. When using

a combination of visualization tools, the choice becomes especially unclear.

To achieve the benefits of both worlds, SCIRun uses a data-driven approach in the

dataflow graph, but allows a demand-driven method to be implemented using the object-

oriented data model. In the example above, the processing modules can simply pass a

functor [116], or an object that will perform the requested computation on demand. The

downstream modules would then access the functor as a dataset, which would compute

the data on demand. The object-oriented data model will be described in further detail in

Chapter 5.

This approach affords a simple, efficient data-driven dataflow implementation that

can also be used where a demand-driven approach would be more efficient. However, it

is difficult to know a priori when one approach would be more efficient than the other.

Therefore, we leave the choice to algorithm implementor and recommend that if a clear
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choice is not possible that the choice be controlled by the user, with a reasonable default.

One weakness to this approach is that the modules that require both a demand-driven

and data-driven implementation will need to implement the same algorithm in two differ-

ent ways. Although it is extra work, it is beneficial in many cases; the algorithm would be

implemented differently for operating on a dataset in bulk than for operating on a point

by point basis.

4.2 Flexible Dataflow Ports

The dataflow programming paradigm naturally captures the concept of a producer-

consumer relationship. In many modern simulations, other relationships are often used

which more naturally fit with the design of the system. In SCIRun, the Ports that are used

to connect one module to another have been relaxed from the traditional dataflow model.

The most common implementation of a Port was shown above in the Matrix exam-

ple. However, each type of data may have its own definition of a port that has other

communication protocols than the simple send/receive methods shown in that example.

4.2.1 Non-dataflow Ports

The Salmon module is a 3D graphical viewer application. It is described in further

detail in Chapter 7. Salmon collects geometrical objects from a variety of visualization

modules and displays them in a common window. The clients of Salmon (visualization

modules) need to be able to send objects to Salmon. However, we would like to relax the

constraints of the dataflow system to allow Salmon to display objects as soon as the first

arrive in Salmon. We would also like a module to be able to place objects in the scene

that do not need to be recreated each time the module executes.

Due to these usage requirements, it is more natural to cast Salmon as a server in

a client-server relationship than in the producer-consumer relationship provided by the

dataflow system. Therefore the ports that are used to connect to Salmon have methods

such asaddObject andremoveObject in a client-server database style. The objects

added to the scene persist until they are removed by the client module, or until the client

module is disconnected from Salmon. The Salmon module ignores the execute messages
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sent from the scheduler, since the Salmon module is continually blocking for input from

the client modules.

4.2.2 Fine-grained Dataflow

The send/receive pairs shown above are a simple atomic protocol where the

entire dataset is transferred at once. However, it often makes more sense to use “fine-

grained” dataflow where appropriate [114]. Fine-grained protocols are tuned to the

specific layout of the data, such as for receiving slabs of a regular grid for isosurfacing

or scanlines for image processing. In such cases the module receives scanlines and sends

scanlines for each scanline in the image, but it semantically sends or receives the full

dataset exactly once. The port structures in SCIRun are also used for this purpose. The

port simply defines alternate protocols for sending and receiving the dataset. An example

of this is described in Chapter 8.

4.3 Steering in a Dataflow System

The dataflow mechanism and the modules have been designed to support steering of

large-scale scientific simulations. SCIRun uses three different methods to implement

steering in this dataflow-oriented system:

1. Direct lightweight parameter changes:A variable is connected to a user interface

widget, and that variable is changed directly (by another thread) in the module. The

iterative matrix solver module allows the user to change the target error even while

the module is executing. This parameter change does not pass a new token through

the dataflow network but simply changes the internal state of the SolveMatrix mod-

ule, effectively changing the definition of the operator rather than triggering a new

dataflow event. The interface for SolveMatrix is shown in Figure 4.3.

2. Cancellation: When parameters are changed, the module can choose to cancel the

current operation. For example, if boundary conditions are changed, it may make

sense to cancel the computation to focus on the new solution. This makes the most

sense when solving elliptic problems, since the solution does not depend on any

previous solution.
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Figure 4.3. A portion user interface for the SolveMatrix module. The user can change
the target residual by moving the small diamond on the graph. This is an example of a
direct lightweight parameter change.

3. Feedback loops in the dataflow program:For a time varying problem, the pro-

gram usually goes through a time stepping loop with several major operations

inside. The boundary conditions are integrated in one or more of these operations.

If this loop is implemented in the dataflow system, then the user can make changes

in those operators that are integrated on the next trip through the loop. An example

of this is shown in Figure 4.4, where the user has created an adaptive finite element

solution method. The results of one solution are used to estimate the solution error,

and then the mesh is refined in areas of high error. Another solution is computed,

and the process is repeated until a target error level has been reached. The user can

change the mesh adaptation criteria shown on the left, but the new values are not

used until the next iteration of the loop.

4.4 Chapter Summary

We presented the implementation of the dataflow system, including the scheduler.

Demand-driven dataflow was presented as an alternate method for implementing a soft-

ware dataflow system. We have described many of the unique features of the SCIRun sys-
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Figure 4.4. Demonstration of steering through a feedback loop in the dataflow network.
Data flows beginning with an initial Mesh (generated in InsertDelaunay), performs a
computation (BuildFEMatrix and SolveMatrix), refines the mesh according to an error
estimate (MeshRefiner), and continues back to MeshIterator. The MeshIterator module
will continue iterating the loop until the MeshRefiner module declares that no more
adaptation is necessary. The final mesh is rendered using the MeshRender module.
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tem. The object-oriented dataflow model in SCIRun facilitates the mixture of demand-

driven and data-driven dataflow concepts, which has not been possible in previous soft-

ware dataflow implementations. A modification of the dataflow ports allow fine-grained

dataflow to be intermingled with coarse-grained dataflow in the same simulation. These

efficiency features of SCIRun are expressive, allowing a wide range of simulation com-

ponents to be implemented efficiently. Finally, we describe the methods used to steer

simulations in a dataflow environment.



CHAPTER 5

DATA MODELS

In conjunction with the dataflow mechanisms just described, SCIRun derives addi-

tional flexibility from object-oriented [35, 68] data representations that are passed from

one module to another. Thesedatatypes, as they are called within SCIRun, are the basic

building blocks for scientific computation. In this chapter, we discuss the different data

models and datatypes that SCIRun uses in a wide range of scientific applications. The

object-oriented data model is a key component of the computational steering system

provided by SCIRun. It provides mechanisms for extending the system in ways not

possible with traditional dataflow systems. Specific portions of this data model will be

presented to indicate the ways in which they can be used to extend the system.

SCIRun makes use of some features of object-oriented programming to achieve a high

level of code flexibility and thus reusability. In an object-oriented data model, pieces

of data are thought of as objects upon which computations are executed. A powerful

property of objects is that they can be specialized, orderived, from a more general

object into variants with differing functionality. In SCIRun, a user can easily introduce

a new, specialized type of object, without having to alter any other part of the system

that uses the same general type. We elucidate this point with the matrix example shown

in Figure 5.1. In this example, SCIRun already contains an iterative solver that only

requires that the input matrix provides its own matrix-vector product operation. Note

that objects contain not only the data values, in this case the contents of the matrix, but

also the operations that can be performed on that data. Thus, a matrix object might

contain the algorithm required to perform basic matrix operations such as matrix-vector

multiplication. If we now create a new derived matrix object, such as one for sparse

matrices, then as long as the matrix-vector operation is supported in this new object,
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Matrices

Dense Symmetric

Banded
Sparse

UI Iterative Solver

Matrix  Vector

Vector

Figure 5.1. Example of flexibility achieved from the SCIRun object-oriented data model.
The module shown in the figure uses an iterative method to solve a matrix/vector system
(Ax = b). Because all matrix types (dense, sparse, etc.) are derived from the same basic
type supported by the iterative solver, only one such solver is required.

any other module written for the basis matrix object type accepts the sparse matrix and

continue to function. Thus, within SCIRun a single solver accepts input from any matrix,

as long as it is either of the general type, or any type derived from that general type. This

level of flexibility ensures maximum reuse of essential elements and allows development

efforts to focus on these critical components instead of having multiple versions to create

and maintain.

The design of these general types is a very critical component of SCIRun. If the

general type requires that a multitude of operations must be supported, then the interface

becomes too cumbersome to extend. Similarly, if the operations are complex, then

extension is difficult. On the other hand, the operations must be able to efficiently support

a gamut of algorithms and data structures. Since these operations require a C++ virtual

function call, the program suffers in efficiency if they are called frequently.

5.1 Common Datatypes
A few of the common datatypes used in SCIRun are described here. This is not a

fixed set – datatypes may be added by new modules, and the existing set of datatypes

may be extended by new modules. In each of the following subsections, we describe

the operations that a particular datatype must support, and describe some of the specific

types and show how some of these operations would be implemented.
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5.1.1 Matrix

The Matrix Datatype is intended to represent a matrix for linear algebra purposes.

The Matrix class provides the following interfaces:

� nrows - returns the number of rows in the matrix.

� ncols - returns the number of columns in the matrix.

� isSymmetric - returns true if the matrix is symmetric, false otherwise. Note that

some matrix types always return false, even if their contents are actually symmetric.

� minValue - returns the smallest value in the matrix.

� maxValue - returns the largest value in the matrix.

� mult - multiplies a matrix by a vector, and stores the result in a second vector.

� multTranspose - multiplies the transpose of the matrix by a vector, and stores

the result in a second vector.

� getRowNonZeros - returns the nonzero elements for a particular row.

� zero - zeros out the entire matrix

TheminValue , maxValue andgetRowNonZeros operations are primarily in-

tended for matrix visualization, while the rest are oriented towards iterative solution

methods. The use of this datatype is described in further detail in Section 7.2.

SCIRun currently implements four different types of matrices. TheDenseMatrix

class stores a single block containing all rows and columns of the matrix. TheTri-

DiagonalMatrix class stores three elements per row. TheSparseRowMatrix

and SymSparseRowMatrix classes both use the popular compressed row storage

format to store sparse matrices.SymSparseRowMatrix is the symmetric version of

SparseRowMatrix . Both store the complete matrix, butSymSparseRowMatrix

can use the same algorithm formult and multTranspose , eliminating the more

expensive multiplication that is required formultTranspose . Instances of matrix
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classes have also be implemented withSparseLib++ [30], and could also use other

matrix packages.

The mult andmultTranspose operations both take an optional beginning and

end row argument. This allows the matrix multiplication to be divided among processors

in a parallel implementation.

The discussion of the SolveMatrix module displays how these abstract interfaces are

used to implement the conjugate gradient algorithm without regard for the actual layout

of the matrix. Other operations, such as matrix-matrix multiply, are better implemented

with code that checks the actual type of the matrices and uses the most efficient multipli-

cation algorithm and resultant matrix format.

5.1.2 The Mesh Class

The Mesh class is not an abstract interface but is meant to be a powerful class for

operating on tetrahedral unstructured grids. A Mesh consists of a set ofNodes and a

set ofElements . A Node class contains its point in 3D space, and anElement class

contains a pointer to four differentNodes . These data completely specify the mesh,

but we also maintain other information for making mesh operations efficient. The full

version of theNode data structure also contains a list of theElements to which it is

connected. TheElement data structure contains the face neighbors – theelements

which neighbor its four faces. In addition, theElement data structure can optionally

contain the element basis function and element volume. The element basis function is a

large amount of data, increasing the size of theElement data structure from 40 bytes to

176 bytes. This can cause memory limitations for large problems, but it avoids repeated

recalculation of these basis functions and so increases the speed of finite element matrix

assembly, element interpolation, and many other operations. The user may select at

compile time whether or not to maintain the element basis functions.

We could have chosen to make meshes of arbitrary dimension, but we opted for the

simplicity and efficiency afforded by hard coding the dimensionality to three. Similarly,

we have focused on tetrahedral unstructured meshes. A hexahedral element unstructured

mesh has also been implemented. Mixed-element meshes and other dimensionalities will

be implemented in the future as applications demand them.
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5.1.3 Fields

A field is a scalar- or vector-valued function defined over some region of space. In

scientific computing the fields represent some physical quantity, such as voltage, pres-

sure, temperature, flow velocity, etc. The fields data structures provide two base classes:

ScalarField andVectorField . We chose to separate these two types to clarify

which operations make sense on which type. These fields are usually approximated with

a discrete set of elements. The values are interpolated over the elements in piecewise

constant, piecewise linear or possibly higher-order fashion. Tensor fields have been

implemented in a similar fashion, but they are not described here.

There are currently several different implementations of theScalarField , in-

cluding: ScalarFieldRG , which defines a scalar field using a regularly sampled

grid, andScalarFieldUG , which contains aMesh, and values for eachNode or

Element . Figure 5.2 shows the class structure for theVectorField classes. The

ScalarField classes are structured similarly.

The field datatype supports the following operations:

� getBounds - returns the bounding box of the defined region.

� getMinMax - returns the smallest and largest value in a scalar field (not available

for a vector field).

� interpolate - returns the value at a specific point. A context allows that query

to be efficiently performed on nearby points (such as in streamline advection).

VectorField
(Base Class)

VectorField
Regular Grid

VectorField
Unstructured Grid Mesh

Figure 5.2. VectorField class hierarchy showing the how the unstructured grid and
regular grid versions are derived from a common base class. The dotted line to the Mesh
shows that the Unstructured Grid version contains a 3D tetrahedral mesh. In addition,
the field contains a Vector value for each node or element in the mesh.
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There are times when the interpolate query is ineffective or cost-prohibitive. For

example, this occurs in the isosurfacing module; the isosurfacing algorithm would be

more efficient if the algorithm can take advantage of the underlying data representa-

tion [73]. We use general, extensible interfaces wherever they can be used without

incurring significant performance or complexity penalties. However, when a general

interface is not suitable, we use the run-time typing information (RTTI) facilities in C++

to query the exact type of a particular data object. A module can implement the fast

algorithm for the specific types that it knows about and then fall back on a more general

algorithm or print an error for types that were not programmed in advance. In practice,

this type extraction is seldom needed.

5.1.4 Surfaces Data Structures

There is another class hierarchy that describes a surface in 3D space. For our work,

the most important surface is a triangulated surface defined as a collection of 3D points

and the corresponding triangles that connect them. These surfaces can be tagged with

boundary condition information for later integration with finite element problems. A few

other surfaces are provided such as cylinders, spheres, and points (a degenerate surface).

5.1.5 Other Datatypes

There are several more datatypes currently implemented in SCIRun. Some of them

are more mature than others, and some of them are more general than others. Some of

these are as follows:

1. Boolean - provides a simple true/false value for use with feedback loops (iterator

modules).

2. ColorMap - provides a mapping of data values to colors, used by many of the

visualization modules.

3. ColumnMatrix - provides a simple column vector for use by the matrix solver.

4. ContourSet - represents a set of planar contours, currently used by the LaceCon-

tours module.
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5. Geometry - represents renderable objects. This is described in further detail in

Section 7.5.

6. MultiMesh - represents a set of multiresolution meshes and is currently experi-

mental.

7. Sound - represents a stream of sound, which was used to develop some of the

fine-grained dataflow algorithms.

8. Image - represents a 2D image.

The datatypes library is a powerful set of data structures for scientific computing, but

it also provides a powerful method of extending SCIRun. A typical dataflow-oriented

program can be extended by adding new modules to implement new algorithms. How-

ever, SCIRun can be extended by extending the abstract interfaces in the datatypes library

to operate on other data formats. For example, one can make a newField datatype

that implements theScalarField interface for some type of spectral method. Most

downstream modules would be able to operate on the data without modifying those

modules and without converting and duplicating the data. Note that we are careful to

say “most of the time.” As mentioned above, there are times when we violate these

abstract interfaces for efficiency purposes.

5.2 Persistent Data Storage

SCIRun, like other modern scientific computing codes, uses modern data structures

that are generally more complex than a large array of numbers. We needed a facility to

save these complex data structures on disk. To solve this problem, we employed the idea

of “persistent objects,” where complex data structures can be flattened into a data file and

then reconstructed into their original form. Since C++ does not support persistent objects

automatically, we designed a set of utilities to make these input and output routines in a

simple manner.

There are three different levels on which the persistent I/O routines operate:

1. Primitive: There is an overloaded global (free) function,Pio , for each of the basic
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types (float, double, int, etc.), which can both read and write these primitive types.

2. Simple structure: For basic structures without class derivations, the user can over-

load a global (free)Pio function to serialize these objects. Usually, this function

just callsPio on each of the individual data elements.

3. Complex structure: For a complicated class hierarchy, the user writes a virtualio

function that emits a class name and version number, then theio method for the

superclass, and then calls otherPio functions on the individual components.

The basic stream I/O routines support both binary files and somewhat humanly read-

able text files. Binary input and output uses the Sun Microsystem’s XDR library [47]

for portable binary I/O, which allows us to move files between different architectures

without the need to convert to ASCII text. Binary files are sometimes smaller and are

always a factor of 3-5 faster in reading and writing.

In addition, we support versioning of objects so that we can change the data structures

in the code without requiring the conversion of all old data files. The system always

knows how to convert from old files, and always writes the current version of the file.

The programmer that maintains theio method in each class should add code to convert

data from older versions, and should provide reasonable default values for data members

that have been added in a later version.

To illustrate the simplicity of reading and writing objects in this manner, consider an

example of a 3D tetrahedral mesh:

class Mesh {
Array1<Node*> nodes;
Array1<Element*> elems;
virtual void io(Piostream& stream);
...;

};

#define MESH_VERSION 1

void Mesh::io(Piostream& stream)
{

stream.begin_class("Mesh",
MESH_VERSION); // identify type & version

Pio(stream, nodes); // read/write the nodes
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Pio(stream, elems); // read/write the elements
stream.end_class();

}

TheArray1 classes know how to read and write themselves:

template<class T>
void Pio(Piostream& stream, Array1<T>& array)
{

stream.begin_class("Array1",
ARRAY1_VERSION); // id the type &version

int size=array.size; // grab the size of the array...
Pio(stream, size); // ...and write or read it
if(stream.reading()) // if we’re reading...

array.resize(size); // ...allocate space for objects
for(int i=0;i<size;i++)

Pio(stream, array.objs[i]); // read/write all of the objects
stream.end_class();

}

and theNode/Element classes know how to read and write themselves:

void Pio(Piostream& stream, Node*& node)
{

stream.begin_cheap_delim(); // A delimiter for making text
// files easier to read

if(stream.reading()) // if we’re reading...
node=new Node(); // ...allocate a new node

Pio(stream, node.pt); // read/write the node’s location
stream.end_cheap_delim();

}

void Pio(Piostream& stream, Element* elem)
{

if(stream.reading()) // if we’re reading...
elem=new Element(); // ...allocate a new element

stream.begin_cheap_delim();
Pio(stream, elem->n[0]); // read/write all of the
Pio(stream, elem->n[1]); // indices for the four
Pio(stream, elem->n[2]); // nodes composing the
Pio(stream, elem->n[3]); // tetrahedral element
stream.end_cheap_delim();

}

It is important to remember that these small functions are used to both read and write

the mesh for both binary files and text files. This feature virtually eliminates the potential

for incompatibilities between the reading code and the writing code. However, the real

power comes when we emit a scalar field based on these meshes:

class ScalarFieldUG : public ScalarField {



52

MeshHandle mesh;
Array1<double> data;
...;

};

void ScalarFieldUG::io(Piostream& stream)
{

stream.begin_class("ScalarFieldUG", SCALARFIELDUG_VERSION);
ScalarField::io(stream); // This serializes the base class
Pio(stream, mesh); // read/write the mesh
Pio(stream, data); // read/write the scalar data

}

Then, we can even emit multiple scalar fields:

Pio(stream, field1); // read/write field1
Pio(stream, field2); // read/write field2
...

In this example, the fields might share a commonMesh. In this case, theMesh object

would be written into the file only once. We have omitted many of the details of how this

is implemented internally, but thePio routines do not need to be concerned with this

mechanism – it is handled internally by thePiostream .

We have found that this mechanism is a powerful way to implement I/O for complex

data structures. The versioning system allows us to use datafiles that were written years

ago without converting them – as long as the programmers maintain theio methods

when data structures are updated. Using the same code for reading and writing drastically

reduces the number of errors in the input/output routines. In addition, this mechanism has

increased the utility of binary files by avoiding the need to write a separate I/O function.

5.3 Chapter Summary

We describe the data models used in SCIRun. The use of object-oriented data struc-

tures facilitates a new level of extensibility that is not available in previous implementa-

tions of dataflow systems. The details of the Matrix, Mesh, and Field abstract classes

were described. Finally, we presented a mechanism for storing these complex data

structures on disk.
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SUPPORT LIBRARIES

This chapter discusses some of the tools that were used to build SCIRun. These

tools provide powerful operations with simple interfaces so that they are easy to use

when programming. Many of these tools address concerns that are unique to large-

scale scientific computing. These libraries are key to achieving high performance with

SCIRun, but they do not constitute the original thesis research. This chapter gives a

flavor of the issues addressed in implementing a high performance environment.

To implement SCIRun, we have broken down SCIRun into a layered set of libraries.

These libraries are organized as shown in Figure 6.1. SCIRun uses an object-oriented

design; however, it should be stressed that we have paid careful attention to avoid over-

using the object-oriented paradigm to a point that efficiency suffers.

In implementing the SCIRun kernel and modules, we leverage off of a toolbox of C++

classes that have been tuned for scientific computing and operation in a multithreaded

environment. We discuss these classes below, starting with the lowest level library and

proceeding to more complex libraries.

Modules

Dataflow
Library

Datatypes
Library

General Libraries:
Classlib, Geometry, Malloc, Math, etc.

Figure 6.1. SCIRun library organization.
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6.1 Malloc, operator new: libMalloc

We have encountered several problems with the implementations ofmalloc/free

and new/delete that are available on current Unix systems. Difficulties with the

current Unix implementations ofmalloc andnew include:

1. They are not robust against erroneous behavior. This is particularly confusing

when the user’s program crashes inmalloc , even though the actual error resulted

from freeing a bad pointer in a previous call. A multithreaded environment further

exacerbates this problem, allowing errors in one thread to cause another thread to

crash.

2. They are not thread-safe (reentrant) on many systems. This is typically the case on

systems without a native implementation of threads. Accessingmalloc andfree

in such an environment can cause frequent nondeterministic crashes.

3. They do not reveal statistics about their operation.

4. They do not return memory to the operating system when it is no longer being used.

5. They are slow when allocating and deallocating large numbers of small objects.

6. They have a large percentage of memory overhead for small objects.

Of course, the goal would be to resolve all of these problems, but we find that many

of the requirements conflict. For example, it is difficult to have bullet-proof behavior

against errors without incurring additional overhead, even for small objects.

The implementation of libMalloc centers around thePool class. Pool defines a con-

structor and destructor, as well as the methodsalloc , free , realloc , get stats

andaudit as shown below.

class Pool {
Mutex lock;
...;

public:
Pool();
˜Pool();
void* alloc(size_t size, char* ctag, int itag);
void free(void* p);
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void* realloc(void* p, size_t size);
void audit();
void get_stats(size_t statbuf[18]);
int nbins();
void get_bin_stats(int bin, size_t statbuf[6]);
...

};

Pool represents a pool of memory. At startup, there is a single pool,default pool ,

from which requests frommalloc and new are granted. The implementations of

malloc and thenew operator simply call thealloc method of the default pool.

Subsequently, thefree and operatordelete methods call thefree method of the

default pool. The defaultmalloc and operatornew provide generic information as the

two tags for the allocation, but there are alternate interfaces that automatically provide

the file and line number for these tags.

The alloc method uses three slightly different memory allocation algorithms for

small, medium and large objects. Based on heuristics from current applications, small

objects are those less than 512 bytes, medium objects range from 513 bytes-64k bytes,

and large objects are those over 64k bytes. These ranges are configurable at compile

time.

Small and medium objects both use an algorithm based on bins. A bin contains a list

of free objects. When free space is requested,alloc figures out which bin contains

objects of the appropriate size, and the first one from the list is removed. Sentinels

are placed at the beginning and at the end of the actual allocation. Small and medium

bins differ in how the bins are refilled when they become empty. Small bins use an

aggressive fill scheme, where 64k worth of objects are placed in the bin’s free list to

minimize the number of refills. Medium objects, on the other hand, use a less aggressive

scheme – objects are allocated from a larger pool one at a time. Large objects are

allocated with independentmmapcalls to the operating system. This allows the large

objects to be returned to the operating system when they are no longer needed. To

avoid releasing and rerequesting memory, these large chunks are returned to the operating

system (unmapped) in a lazy fashion. It is possible for this policy to fragment the address

space of the program, but in practice this has not been a problem and will not be a
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problem for 64-bit programs for the foreseeable future.

The algorithms for the three different allocation ranges are based on the philosophy

that bigger objects can afford to use more CPU cycles in trying to be efficient, since large

objects are allocated less frequently and used for a longer period of time. It is also more

valuable to minimize waste for large objects than for small allocations.

To make the pool thread safe, each of the methods acquires the mutex before accessing

or modifying any data in the Pool and releases the mutex when these operations are

complete. Thealloc and release methods attempt to minimize the time that the

pool is locked by performing most operations (tag/header manipulation, verification, etc.)

without holding the lock.

This implementation resolves several of the problems described above. Robustness

(item 1) has been improved in practice, as the system catches many common errors.

Nonetheless, a more specialized memory analysis tool (such as Purify [5]) is better

suited to catching severe memory usage patterns. The memory overhead (item 6) is

approximately the same as current implementations, and the time overhead for small

objects (item 5) is considerably smaller, but still too large. In the Section 6.3, we see a

mechanism that may be layered on top of libMalloc to resolve these problems. The other

three problems have been resolved.

This memory allocator can also reveal statistics about its operation. Figure 6.2 shows

these statistics displayed by a running program.

6.2 The Multitask Library: libMultitask
SCIRun derives much of its flexibility from its internal use of threads [111]. Threads

allow multiple concurrent execution paths in a single program. SCIRun uses threads to

facilitate parallel execution, to allow user interaction while computation is in progress,

and to allow the system to change variables without interrupting a simulation. However,

standards for implementing threads are only starting to appear, and the standards that are

appearing are, thus far, cumbersome.

Fortunately, the facilities provided by various thread libraries are similar. Synchro-

nization primitives which do not exist in one library can be constructed from the syn-

chronization primitives that are available. libMultitask is a layer that provides a simple,
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Figure 6.2. A portion of the statistics of the custom allocator, showing bytes allocated
and freed, high water marks, and spinlock statistics. Some of these statistics are also
displayed for each bin. To the right of each bin a small graph shows the objects in the
freelist and the objects in use for each range of sizes.
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clean C++ interface to threads and provides abstraction from the actual standard used to

implement them.

6.2.1 Tasks

The Multitask library provides a classTask , which encapsulates a thread. The user

creates a subclass, derived from Task. The Task constructor requires a name for the

Task and a priority. A new thread is created when the creator calls theactivate

method of the Task class, which causes the (overloaded)body method to be started

in a separate thread.Activate returns immediately and will not wait forbody to

complete - thus triggering concurrent execution in the program, similar to afork()

operation. However, all of the threads (Tasks) share access to a common heap – unlike the

traditionalfork() function. Task is an abstract base class because it does not actually

provide abody function. Other classes inherit from Task, providing abody function to

do the actual work of the thread. The thread continues until thebody function returns,

or until Task::exit is called.

Task also provides static functions to return the number of processors available on the

system, to start-up multiple threads for a function, and to cause all threads to exit.

6.2.2 Intertask Communication

The Multitask library also provides a number of convenient synchronization primi-

tives for these tasks to communicate with each other – Inter-Task Communication (ITC).

ITC primitives are as follows:

� Mutex provideslock , try lock andunlock methods.

� Semaphore is a counting semaphore, providingdown, try down andup meth-

ods.

� Barrier provides a singlewait(int nwait) method to allow a group of

threads to stop executing at the barrier until allnwait threads arrive.

� ConditionVariable provideswait(Mutex& lock), cond signal and

cond broadcast methods.
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� CrowdMonitor, a multiple-reader, single-writer access control primitive, pro-

videsread lock, read trylock, read unlock, write lock,

write trylock andwrite unlock methods .

� Mailbox, a fixed-length, thread-safe FIFO (First-In, First-Out communication

pipe), allows multiple senders and multiple receivers. This is a template class

that providessend, try send, receive andtry receive methods. The

mailbox allows multiple threads to send tokens to the mailbox and an arbitrary

number of threads to receive tokens from the mailbox. These tokens are typically

pointers to a message structure. Using this primitive, one can implement threads

that behave like a small server, with other threads acting as clients. The dataflow

mechanism described in Chapter 4 uses this mechanism to communicate between

the scheduler and modules, and the modules use it to send data through the ports.

� Other structures areAsyncReply , which provides a single pigeon hole rendezvous

point and classes to perform reduction operations.

The Task and ITC methods have been implemented in four different environments:

SGI IRIX (usingsproc andus primitives) [113], with Posix threads [20] (aka pthreads),

with Solaris threads [71], and withsetjmp/longjmp [7]. They all provide similar

mechanisms. The setjmp/longjmp implementation is not preemptive but could be made

so if necessary. The sproc version provides heavyweight threads, since each thread is

a different share-group process. This allows the threads to be debugged easily using

a traditional debugger, but one must be careful to limit the number of threads used.

Since the pthread standard has now been approved, it will probably be the preferred

implementation for the future. However, libMultitask or a derivative of it (see Appendix)

will likely remain as a convenient interface to Posix threads.

6.3 Generic Tools: libClasslib

This is a collection of various tools that are valuable in constructing SCIRun’s kernel

and computational modules. Some of these data structures overlap those available in the

Standard Template Library (STL) [84], but our implementation predates common accep-
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tance of STL. In implementing these, we have not tried to make extravagant general-use

interfaces. Rather, we have designed our tools to be simple, easy to use, and efficient. We

have also designed these interfaces to perform the operations that we require, avoiding

the temptation to over-engineer them. Data structures that we have implemented include

an unbounded queue, a bounded stack, a dynamic hashtable, and a dynamic array class.

These structures use templates to make them usable as containers for any type.

6.3.1 TrivialAllocator

Another useful tool is theTrivialAllocator class. This class is designed to

increase the efficiency of thenew/delete operator for small objects that are allocated

and deleted frequently. The TrivialAllocator simply keeps a list of free objects that

are ready to be used. Using the TrivialAllocator for a particular class simply requires

redefining the operatornew and operatordelete methods to call thealloc and

free methods of the TrivialAllocator. Using the TrivialAllocator class is significantly

more efficient than using the general operatornew, because most of the time it simply

returns the first item off of the free list. Objects are allocated in groups, using the second

parameter to the constructor as the number of objects to be allocated at a time. The

TrivalAllocator free method always just puts the object back on the free list. The free

list is accessed in a last-in/first-out manner to maximize cache locality. Since these are

used in a multithreaded environment,alloc andfree both require the acquisition and

release of a mutex. However, this is a separate mutex from the global allocator, so it is

not be subject to the same contention.

This tool allows us to work around the per-object overhead and allocation time re-

quired for small, high-use objects. However, it does so at the expense of the overrun

detection and consistency checks that our implementation ofnew anddelete provide.

A future implementation will provide a mechanism by which trivial allocators can be

disabled through a debug environment variable – reducing run-time performance, but

allowing the consistency checks to be made.
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6.3.2 Handles and LockingHandles

Handles are a “smart pointer” mechanism for automatically maintaining reference

counts in objects [116]. SCIRun uses these to facilitate the sharing of large data struc-

tures between modules. The last Handle to “let go” is responsible for deleting the

object. Reference counting provides a simple form of garbage collection, without the

high overhead and unpredictability associated with a full garbage collection system.

The largest weakness is that reference counting can fail to destroy objects that contain

circular references (including circular lists, self references, and back pointers). However,

it does provide the advantage that objects are destroyed immediately when the last handle

releases the object. This feature is essential for large scale scientific computing where

the memory resources held by such a handle need to be carefully controlled.

A Handle contains a single data memberrep , which contains a pointer to the actual

representation. It also defines constructors, a destructor and accessor methods that incre-

ment and decrement a reference count in the object. The objects used in a handle must

provide a member calledref cnt , which is initialized to zero at construction time.

In addition, objects that support thedetach operation must support aclone method

which duplicates the object. Since template syntax is sometimes rather clumsy, it is often

convenient to typedef a “smart pointer” type for different object types, such as:

typedef LockingHandle< Object> ObjectHandle;

A LockingHandle is similar to Handle, but with each object also providing a

Mutex member that is locked for all of theref cnt operations.

6.3.3 Timers

Two convenient classes are theCPUTimer and theWallClockTimer . These

provide a stopwatch interface to acquire time information. Methods includestart,

stop, clear , and time . The time method simply returns the total accumulated

time betweenstart andstop pairs. Typically, these timers access the Unix timer

functions appropriate for the operating system, but they can also utilize a high resolution

user-space mappable timer on systems that support it.
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6.4 Geometry Library
libGeometry providesPoint , Vector , Plane , Ray, Transform , andBoun-

dingBox classes for convenient computation of 3D geometry. The addition, subtrac-

tion, and multiplication operators have all been implemented to allow these components

to be used in a convenient fashion. Since SCIRun has been designed primarily for 3D

computational field problems, the geometry library implements only 3D points, instead

of allowing arbitrary dimensional geometry. This was a sacrifice of generality for sim-

plicity and efficiency.

We have chosen to separate the concept of aPoint from the concept of aVector [28,

29]. For the sake of efficiency, these are both specialized for three dimensions, with an

x , y , andz component. APoint differs from aVector only in the operations that can

be performed on it. APoint indicates location in 3D space, and aVector indicates

offset. APoint subtracted from anotherPoint produces aVector , aVector added

to anotherVector produces aVector , and so forth. A cross product is defined only

for Vectors , since they do not make geometric sense forPoints . This has proven to

be a useful way to help the programmer reason about geometric transformations and to

write correct code for geometric manipulations.

6.5 The Math Library
libMath provides a somewhat eclectic collection of various core numerical functions,

such asMin , Max, andAbs, which have all been overloaded for various numerical types.

libMath also contains several core linear algebra loops, such as dot products, vector-

vector multiply, etc. Several of these kernels have been highly tuned to take maximum

advantage of various architectures.

Some of the functions include the following:

� Thread-safe random number generators.

� A templated spline class to create splines of arbitrary types.

� A complex number class.

� A tuned Fast Fourier Transform.
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� A tuned matrix-vector multiply for sparse matrices.

� A highly tuned vector-vector dot product.

� Utility functions for computing min and max of two or three variables.

� A tuned tri-diagonal matrix solver.

� Other tuned matrix and vector operations.

Other numerical libraries have also been used with SCIRun, including LAPACK [12],

SparseLib++ [30], and portions of Diffpack [69].

6.6 Chapter Summary

We presented an overview of the low-level libraries used in SCIRun. A replace-

ment for malloc is used to overcome difficulties with the previous implementations in

a complex multithreaded environment. A multitasking library is used to simplify the

use of threads and synchronization constructs, and also provides an insulating layer

above different thread implementations. Two general toolbox classes provide generic

data structures and computational algorithms used throughout the SCIRun system and

SCIRun modules. Handles were described as a “fool-resistant” mechanism for managing

the destruction of data in SCIRun.



CHAPTER 7

MODULES

In Chapters 4 - 6 we have described a set of computational tools and a dataflow system

for imposing control structure. However, the real value in SCIRun comes from how

these components are leveraged in applications implemented via SCIRun modules. This

section covers how a module is constructed and then describes a few of the key modules

in SCIRun, showing how they use the features that we have described above.

7.1 Writing a Module

The process of writing a new module involves writing a new C++ class. The constructor

for this class creates the input and output ports for the module and defines parameters

that the user interface may control. A single virtual function,execute , is overloaded

to perform the actual work of the module. Theexecute function typically receives

data on the input ports, performs some computation and then sends data on the output

ports. Other callback functions can provide input from user interface components and

3D widgets. Adding a user interface to a module involves writing a small Tcl [88] script

that sets up the components of the interface.

Some modules may not have input ports, and others may not have output ports. A

module with only output ports is called a source, a module with only input ports is called

a sink, and a module with both is called a filter.

Existing code may be integrated into SCIRun by writing a small wrapper module that

passes data into and out of an existing C, C++ or Fortran program. The wrapper module

may be required to translate data structures before passing them to the existing code and

before sending them down the pipe. To avoid this translation, existing code can also be

incorporated by extending the class hierarchy that flows through the dataflow network.

For example, instead of translating to a specific ScalarField class the module can send a
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new subclass of the ScalarField that would provideinterpolate and other methods

for use by downstream modules.

SCIRun was originally designed as an environment for developing new simulations

and computational components. We are currently working on ways to more automatically

incorporating existing packages into the SCIRun visual programming environment. Cur-

rently, one can integrate existing code into SCIRun in two different ways. One way is to

implement a module that uses existing code to perform operations on SCIRun datatypes.

The second is to implement an Adapter [35] object that allows other SCIRun modules to

operate on data generated by the third party modules.

7.2 FEM and Matrix Modules
The BuildFEMatrix module takes a tetrahedral mesh and builds a stiffness matrix for

a finite element approximation. The current version of this module approximates the

generalized 3D Poisson equation (or its homogeneous counterpart, Laplace’s equation)

in the discretized physical domain
:

r � �ru = f in 
 ; (7.1)

wheref is a vector of sources and� is 3�3 tensor corresponding to the materials within

the domain. The scalar fieldu is subject to the boundary conditions:

u = u0 on �1 and �ru � n = 0 on �2 ; (7.2)

where�1 and�2 represent boundaries within the volume domain,
.

The mesh elements have been tagged with a corresponding tensor property (�) and

boundaries have been tagged with the appropriate boundary condition. The module

makes two passes – first to build the sparse structure of the matrix using a compressed

row storage scheme, and second to fill in the resulting sparse matrix. Building the matrix

is performed in parallel to take full advantage of multiple processors. The module also

builds the right hand side (load) vector. Users who wish to use other governing equations

can extend this module to build the stiffness and load matrices appropriately.

Usually, these matrices are passed into the SolveMatrix module, which uses direct or

iterative schemes to find the solution,x to the matrix equation:
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Ax = b: (7.3)

The SolveMatrix module graphs the convergence of the residual as the algorithm

iterates. The algorithm stops when the residual is less than some target level (i.e., the

solution has converged). The user may move the target residual up or down while the

solution is still in progress, thus steering the computation in a simple manner. Figure 7.1

shows the interface for this module in operation.

SolveMatrix uses themult andmult transpose virtual methods in the Matrix

base class to perform each iteration. As a result, the user can implement a new matrix

type that SolveMatrix can be used without even recompiling the module. This new matrix

type does not even need to explicitly store the matrix – it can build the matrix dynamically

or implicitly.

SolveMatrix also has an option to use the previous solution as the initial guess for the

iterative solver. When small changes are made in the boundary conditions (a common

case in an engineering design scenario), the system converges rapidly. This is one

instance where an integrated system can actually be more efficient than implementing

separate programs for each of the phases.

After each iteration, the module updates various parameters, such as the maximum

allowed residual, preconditioning method, and even the choice of solution method. The

maximum allowed residual can be updated without affecting the progress of the solver.

However, if the preconditioning or solution methods are changed during the course

of a solution, the solution is restarted using the partially converged solution as a new

starting point. Switching solution methods during the course of a matrix solve will not

introduce errors into the final solution. The least significant digits of the solution may

differ, but only within the tolerance allowed by the maximum residual. Changing the

solution methods during the course of a matrix solution allows the user to experiment

with different methods, or to intervene if a particular is converging slowly, or is diverging.

The VisualizeMatrix module draws a figure representing the nonzeros in a matrix.

Non-zero entries are drawn with small red dots, and zero entries are left black. This

gives the user a quick representation of the sparse structure of the matrix, as shown in
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Figure 7.1. The user interface for the SolveMatrix module, showing the iterative
methods available, the graph of the convergence and the target residual, which may be
changed while the computation is in progress.
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Figure 7.2. A magnifying glass can reveal the actual numbers in a portion of the matrix

by clicking the mouse in the desired region. VisualizeMatrix uses two additional virtual

functions in the Matrix base class:getRowNonZeros , which returns the nonzeros in

a particular row, andget , which returns the number in a specific row and column of the

matrix.

7.3 Readers and Writers

The Reader and Writer modules are straightforward. They simply call the Persistent

object io routines that were described above in Section 5.2. The readers read in a text

Figure 7.2. Visualization of the sparse structure of a matrix. The black dots represent
the nonzeros in a symmetric matrix with approximately 10,000 rows and columns.
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or binary persistent object file and send the resulting object downstream, and the writers

receive an object and then write it out to disk. Since the support for these modules has

been provided by the lower layers, these modules do nothing more than provide user

interfaces for the filenames. These modules are automatically generated, but provide

hooks for adding user-defined reader/writer functions.

7.4 Visualization Modules

While implementing SCIRun’s datatypes, we considered what type of operations

SCIRun modules would require. One example of such a consideration is the imple-

mentation of the vector and scalar field datatypes. Each of these fields comes in a

variety of flavors, corresponding to the internal representation of the data – implicit,

explicit, parametric – and the topology of the field – structured (implicit) or unstructured

(explicit). The field datatype uses several generic operators to allow module writers to

access information from the field without needing to know how the field is internally

represented. As discussed above (see section 5.1.3), these operators can query the field

for minimum and maximum scalar values or geometric bounds, or for the field’s value

at an arbitrary point in space. This last operation, retrieving the value of the field at

any location, is implemented by an interface calledinterpolate . In the following

subsection, we discuss how we have exploited this generic operator in several of our

modules, and we provide an example of when we chose to side-step this abstraction to

write a more efficient algorithm based on the specific internal representation of the field.

Many of SCIRun’s modules exploit the field interfaceinterpolate described in

Section 5.1.3. Theinterpolate method takes a point as an argument and calculates

the value of the field at that specific location. It accomplishes this by determining

which element of the field contains the point and linearly interpolating the values at

the element’s vertices.

One example of a module that calls theinterpolate method is the Streamline

module. The Streamline module is used for vector field visualization: by tracing particles

advecting through the vector field, the user can examine local flow phenomena around

critical points (such as vortices and turbulence) while also gaining a global sense of
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the field’s flow. Figure 7.3 shows an example of the electrical current flow near the

heart as computed by the Streamline module. We compute the paths of particles through

the vector field as discrete line integrals, each corresponding to a streamline. We have

several implementations of this integration; one of these is a fourth-order Runge-Kutta

method [18]. Given a pointp, we integrate along the path to find the next point along the

streamline,pNew. The following piece of code accomplishes this:

Vector f1, f2, f3, f4;}
Point p1, p2, p3, pNew;

vfield->interpolate(p, f1);
p1 = p + (f1 * 0.5);
vfield->interpolate(p1, f2);
p2 = p + (f2 * 0.5);
vfield->interpolate(p2, f3);

Figure 7.3. Visualization of a defibrillator design simulation, showing an electrode,
the surface of the heart (epicardium), a 3D widget (rake), and electrical current lines
(streamlines). The other electrode in the simulation is obscured by the heart. Much
of the current leaving the visible electrode travels away from the heart, due to the high
conductivity of blood in a nearby vessel.
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p3 = p + f3;
vfield->interpolate(p3, f4);
pNew = p + (f1 + f2 * 2.0 + f3 * 2.0 + f4) / 6.0;

The principal idea of this algorithm is that we find the vectors corresponding to

particular points nearp and take a weighted average of these vectors to determine our

next location along the streamline. Note that this algorithm works for any type of vector

field that implements theinterpolate interface. By designing a generic interface to

theinterpolate method, we have abstracted away the details of how interpolation is

implemented for different field types, and consequently the module writer needs not be

concerned with whattypeof vector field is generating the streamlines.

Another module that uses theinterpolate interface is SurfToGeom. This module

takes a surface, a scalar field, and a colormap as input, and outputs colored geometric

primitives that can be passed to a renderer. The module computes these primitives in the

following way: it queries the field for scalar values corresponding to points on the input

surface; these points are assigned material properties by indexing the resultant scalar

values in the color table; and finally, these colored points are grouped into geometric

primitives (such as triangles or tri-strips). Here again the SurfToGeom module utilizes

the interpolate interface to find the scalar values of the points on the surface.

The person programming the SurfToGeom module does not ever have to worry about

the type of the incoming scalar field - structured, unstructured, or any other type. As long

as theinterpolate interface is provided, the SurfToGeom module works. Further-

more, as new scalar field types are implemented in the future, they automatically work

with the SurfToGeom module as long as theinterpolate method is implemented,

without requiring code to be rewritten or even recompiled.

In contrast to the Streamline and SurfToGeom modules, the IsoSurface extraction

module does not use theinterpolate method to find values at points within the field.

Although the isosurfacing algorithm could have been implemented this way, we were

able to dramatically improve the speed of our algorithm by taking into account (and

exploiting) the underlying structure of the data. For example, we have implemented

the Marching Cubes algorithm [73] as one option for isosurface extraction. For the
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case of both structured and unstructured grids, it is much faster to solve the “forward

problem” - finding the intersection of the field with each element than it is to solve

the “inverse problem” - using various calls tointerpolate to locate the isovalue

points within the field. In this case, it would have been highly inefficient to use the

genericinterpolate operator, so we wrote data-structure dependent code to solve the

problem. The IsoSurface module lacks the abstraction (and as a result, the cleanliness)

of the Streamline and SurfToGeom modules. As other field types are implemented,

we have to write new isosurfacing code to handle each field type. In this case, there

is considerably more to be gained by using data-structure specific information in our

implementation than there is to be gained by using the generic accesses permitted by

abstracting this information away.

7.5 Salmon Module

One of SCIRun’s key modules is the graphical viewer called Salmon. Salmon is

named for its ability to spawn multiple views (Roe), and its ability to send messages

upstream in the dataflow network. Salmon collects the geometric primitives from any

number of modules and presents them in a single 3D view. The user can rotate, scale,

and translate the objects, as well as manipulate lighting, camera parameters and rendering

method, to obtain the desired view. Other views can be spawned to separate windows to

simultaneously display the objects from other viewpoints or with different subsets of the

objects.

Geometric primitives are passed from the modules to Salmon as a subset of a scene-

graph. These scenegraphs are a tree-based display list that define geometric primitives,

colors, and other rendering parameters. Drawing the scene involves traversing the graph

and emitting OpenGL commands at each node. Scenegraphs can be composed, stored to

disk via the persistent object mechanism, and then read back for later display. Parameters

in the scenegraph can be changed dynamically by the module using the CrowdMonitor

(multiple reader, single writer) lock described above in Section 6.2.

In addition to using the Salmon module for visual output, we can also use it for 3D

input by allowing the user to interact with specific objects in the scene. These objects,
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called Widgets [96], allow the user to intuitively augment parameters directly in the 3D

scene. For example, to provide the starting point for a streamline advection, the user

simply drags a SphereWidget around in the scene. This interaction is generally more

intuitive to a user then typing in numbers or manipulating 2D sliders. The user can also

use other 3D widgets to specify streamline starting points, such as a rake [26, 44].

7.6 Other Modules

There are many other modules in SCIRun, including the following:

� FEMError - computes the upper and lower error bounds of a finite element simu-

lation [132, 133]. This module can be used in a feedback loop, similar to Figure 4.4

to implement an adaptive finite element simulation.

� MeshRefiner - uses the Error fields described above to decide where to add new

nodes and remove old nodes in order to refine and derefine the mesh.

� Gradient - computes a vector field that is the gradient of the given scalar field. The

Gradient module is often used in conjunction with various vector field visualization

tools, such as Streamline and Hedgehog in order to reveal the underlying processes

that produce the scalar field.

� Magnitude - computes a scalar field that is the magnitude of the given vector field.

This allows scalar field visualization tools to be used to view a vector field, perhaps

in conjunction with vector field visualization tools as well.

� FFTImage / IFFTImage - takes the Fast Fourier Transform (FFT) and inverse FFT

of an image, producing another image which is the frequency space representation

of the data.

� FilterImage - multiplies two images together to perform a filter operation in fre-

quency space.

� MeshView,an interactive tool for manipulating and visualizing 3D tetrahedral un-

structured meshes.
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� Modules corresponding to various pieces of the Diffpack [69] system.

� Wrapper modules for various software libraries, such as LAPACK [12] and Vol-

pack [8, 67].

� Wrapper modules for various applications, such as Tetrad, described in Chapter 8.

Even this is not an exhaustive list. Chapter 10 mentions components and applications

that are currently in progress. Despite the number of modules available, a user often

needs something different than what is supplied. In such cases, the user can simply

create a new module (by writing a small C++ program). User modules are dynamically

linked with SCIRun, which avoids the need to relink the SCIRun executable.

7.7 Performance

Throughout this dissertation, we have advocated the use of object-oriented program-

ming techniques for implementing scientific applications. However, one must be careful

to make judicious use of object-oriented abstractions to avoid reducing the performance

of the application. In a similar vein, one must be mindful of the performance impacts of

extracting and visualizing data from a running computation.

In a representative application, the torso defibrillator model described later in Chap-

ter 8, the time spent by the visualization tools was small compared to the time spent

performing the computation. In a simulation consisting of 200,000 nodes and 1.2 million

elements, generating the mesh consumed 15 seconds (1.3% of the total), building the

finite element matrix consumed 204 seconds (18.2%), solving the matrix consumed 817

seconds (72.8%), and all of the visualization tools combined consumed only 86 seconds

(7.7%). These times were reported on a 14 processor SGI Power Onyx, with 195 Mhz

R10000 processors. These time are CPU seconds, and due to parallelism the wall clock

time was significantly less – about 21
2

minutes. Disabling the visualization tools reduced

this time by only a few seconds. Using fewer visualization tools can also reduce the

time, and likewise using a large number of them can potentially slow the simulation more

severely. In this case, there were five visualization tools: a cutting plane, a streamline tool

emitting 20 streamlines, two color mapped surfaces, and an isosurface. The IsoSurface
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module was the most expensive visualization tool, consuming 50 seconds (4.5% of the

total) of CPU time. This represents 58% of the total CPU time spent in the visualization

tools. Since the isosurface is being recomputed several times during the course of the

computation, it is not practical to employ faster isosurfacing algorithms [72] that require

a costly preprocessing stage.

Measuring the abstraction penalty imposed by the object-oriented paradigm is a more

difficult problem. Short of reimplementing the entire simulation without these abstrac-

tions, one can only measure the CPU time required by those functions. C++ features

such as function inlining and templates can help to reduce these overheads. In the

same application, these functions represent less than 1% of the CPU time spent on

the application. There are cases where the abstraction penalty would be significantly

more severe. In Chapter 5, we described a scenario where SCIRun uses the run-time

typing information (RTTI) facilities in C++ to avoid the severe penalties of the abstraction.

Future research may discover new abstractions or new methods of implementing these

abstractions which can be more efficiently used in these scenarios.

7.8 Chapter Summary

We described the process used to write new SCIRun modules, and presented the de-

sign of several such modules. Modules used for the finite element method demonstrated

how the object-oriented Matrix classes described in Chapter 5 are used. An overview of

the visualization tools describe how the Field classes described in Chapter 5 are leveraged

to allow the visualization of arbitrary . We also describe how the C++ type system is used

to provide efficient implementations of algorithms that cannot be efficiently implemented

using the abstract interfaces of the SCIRun object-oriented data model. The key module

for many SCIRun applications is the Salmon graphical viewer module. It provides an

interactive 3D view of a collection of visualization tools and steering inputs. It facilitates

interaction with the simulation through 3D widgets. Finally, we discuss the performance

of the object-oriented techniques described in the last three chapters. When managed

properly, the performance impacts can be minimal.



CHAPTER 8

RESULTS AND DISCUSSION

The bulk of the “results” from this dissertation are evidenced by the applications

that are made possible in SCIRun. The next sections outline four such applications, but

many more are possible. The applications presented here represent a broad range of the

potential uses of SCIRun. Large scale, iterative, multistep scientific design applications

are most suited to the large-grain data-flow multithreaded SCIRun environment.

The first application, a model of the electrical activity in the human torso is mod-

elled with an elliptic partial differential equation, using unstructured grids for complex

geometry and material properties. The second involves approximating the rendering

equation using Monte Carlo methods, exhibiting a very long-running program. The third

application demonstrates CFDLIB, a legacy Fortran program that can simulate a variety

of computational fluid dynamics problems. Finally, an atmospheric diffusion example

illustrates the incorporation of a time-varying adaptive unstructured grid program in the

SCIRun environment.

8.1 Application: Torso defibrillator modeling

As described in Chapter 1, The traditional method for solving bioelectric field prob-

lems uses multiple, nonintegrated computer programs. For example, a scientist using

a computer simulation to examine the effect of electrode patch placement on transcar-

diac current density [106] would require geometric modeling, numerical simulation,

and scientific visualization tools to complete the task. One program might be used to

define the thoracic surfaces from medical images, another to create a discrete mesh of

the volume contained within the surfaces [104]. Another application might be used to

run a finite element simulation of the electric current distribution from the defibrillation

electrodes through the thoracic volume [106]. Another approach might be to write a
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Fortran program to create the finite element matrices, and then solve the system of

equations using a public domain numerical library such as LAPACK [12].

To see the output would require a scientific visualization package (such as AVS, vtk,

and others described in [11]). Between each of these steps, it would be necessary to save

the output of one program in a format that the next in the sequence can read—this might

necessitate separate file format conversion utilities. To find the optimal location, shape,

and size parameters for the defibrillator electrode, the scientist would have to go back

to the geometric modeling package, change the necessary parameters, manually rerun

all of the subsequent steps to see how the new electrode configuration affects the current

density distribution, and then manually iterate. The manual intervention required to drive

this process is both tedious and time-consuming.

Far more efficient is a scenario in which the user can define an appropriate set of

parameters for a given simulation, and then set up a sequence of runs to examine each of

them and save the results for subsequent examinations. The complete execution of the

sequence might require hours or even days, but the user would be free during that time

to perform other tasks. This process is similar to the “what if?” analysis that modern

spreadsheet programs offer for much simpler problems.

In our example of the defibrillation simulation, the scientist can select various lo-

cations and orientations for the defibrillation electrodes, choose values for the other

parameters of the simulation (e.g., the number of nodes in the finite element model, the

boundary conditions, the error tolerance for convergence, and the evaluation criteria), and

leave the simulations to run as long as necessary. Viewing the results might be as simple

as watching the animation produced by the simulation or scanning other defibrillation

quality indices such as maximum and minimum current density magnitude or current

density histograms from the heart. This automated execution process, whereby the user

selects all of the parameters in advance and does not control the intra- or interpackage

execution, is termedbatch processing. A primary benefit of batch processing it that

it allows the scientist to utilize computational resources without the need to continu-

ously guide the process. However, with some computer programs execution cannot

be automated. That is, the package cannot be run without regular user intervention
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during execution. This constraint makes it impossible to run multiple computational

jobs automatically leaving the user with the task of manually initiating and controlling

each step of the process.

Here we address the application of our computational steering model to two problems

in electrocardiography, the forward (or direct) ECG problem and simulation of cardiac

defibrillation. Mathematically, these problems are governed by the generalized Laplace’s

equation for electrical conduction in the physical domain
 [94]:

r � �r� = 0; (8.1)

where� is an electrical conductivity tensor. The electrostatic potential� is subject to the

boundary conditions:

� = �0 on �1 and; �r� � n = 0 on �2; (8.2)

where�1 is the surface of the heart or internal defibrillator electrodes, and�2 is the

surface of the torso.�0 specifies a Dirichlet boundary condition on this surface. With

n as the unit surface normal vector,�r� � n represents the current flow normal to the

surface of the torso, which is zero for the insulated boundary.

Once the electrostatic potentials are known, one can calculate the current densityJ

according to:

J = ��r�: (8.3)

The forward ECG problem is characterized by solving equations (8.1-8.3) with�0 equal

to voltages measured on the heart’s surface and yields information regarding the voltages

and current flow within the thorax as a function of the endogenous fields of the heart.

For the defibrillation problem, electrodes are either implanted internally or applied di-

rectly to the chest to deliver sufficient electric energy to stop the irregular heart rhythms

that signify a fibrillating heart [70, 83]. Mathematically, this can be posed as solving

equations (1-3) with the voltage boundary condition applied on a portion of the torso

boundary,� � �2 for external defibrillation or from the surface of the defibrillation

electrode(s) within the volume of the thorax for internal defibrillation.

Past (and much current) practice regarding the placement of the electrodes for either

type of defibrillator has been determined by clinical trial and error. One of our goals is
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to allow engineers to use our computational steering model to assist in determining the

optimum electrode placement, size, shape, and strength of shock to terminate fibrillation

by solving equations (8.1-8.3) within a detailed model of the human thorax.

SCIRun uses computational steering to allow the user to interactively place the elec-

trode(s) directly into the computer model of the thorax using a graphical input device

and automatically change input parameters and boundary conditions as well as the mesh

discretization level needed for an accurate finite element solution. The user then runs

the simulation. As quickly as the machine allows, the user is presented a graphical

representation of the effectiveness of the solution (via calculated current density in the

visually represented heart, for example). The user then decides whether to continue the

calculation on more refined meshes for higher accuracy, interactively change the position

and/or design of the electrode, or both; or the user may allow the calculation to continue

while designing another configuration. Although the example given above is targeted to

a specific application in computational medicine, the tools created for such a problem

have wide application in many engineering field problems and can be modified to other

specific governing equations and geometries.

8.1.1 Geometric Modeling

In most computational engineering and science applications, a significant amount of

geometric modeling must take place prior to simulation and visualization, as is the case in

this application. Modeling efforts usually involve geometrical construction of a physical

domain, in which a continuous structure must be discretized and adequately rendered

into discrete spatial elements.

To solve the bioelectric field problems associated with equations (8.1-8.3), we have

constructed torso models from MRI (magnetic resonance imaging) scans. A semiau-

tomatic segmentation algorithm is used to classify the relevant tissues [109]. We then

utilize 2D and 3D Delaunay triangulation algorithms to construct 3D surfaces and/or

volumetric meshes [105, 127, 128]. Geometric postprocessing consists of assigning each

tetrahedron an electrical conductivity tensor. The range of conductivity represented in the

model is approximately50 to 1 with blood the most conductive and bone the least. The

largely parallel orientation of the skeletal muscle results in a higher conductivity along
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the fibers than across the fiber direction, a fact that necessitated the use of conductivity

tensors.

Construction of the geometric model is often one of the most time consuming aspects

of the modeling and simulation process. For each new configuration, a new model must

be assembled. Once a model has been constructed and simulations are running, a re-

searcher must wait through an entire simulation before making changes to the geometry,

or before learning if the changes already enacted have been effective. Since making such

changes and recomputing the effects of those changes is time consuming, researchers are

often restricted in the number of options they can effectively test.

In a computational steering framework, the goal is to change geometric features of

the model or the spatial discretization of the solution domain in an interactive manner.

Ideally, the user receives some degree of feedback on the calculation almost immediately

and is allowed to change such input boundary conditions as, for example, spatial location

and magnitude of a source, or the time step with which the calculation proceeds. These

changes automatically trigger the computational and visualization phases of the problem.

Such a framework allows more immediate access to simulation results and significantly

reduces the time spent in making simulation and modeling design changes.

8.1.2 Numerical Analysis

Because of the geometric complexity of the solution domain (i.e., body) and aniso-

tropic nature of some of the inhomogeneities (i.e., muscle) in our problem, the finite

element (FE) method is the preferred choice to numerically approximate the solutions to

equations (1-3). Application of the FE method yields a linear system,A� = b, whereA

is sparse, symmetric, and positive definite and on the order of hundreds of thousands to

millions of degrees of freedom, depending on the level of mesh refinement, on the level

of interactivity required by the user, and on the specific goals of the study [56, 58].

Due to the quasi-static nature of the bioelectric field problems we are solving [94],

we are primarily interested in spatial steering for this application. Spatial steering, for

example, involves controlling the discretization level of the geometry, typically in terms

of the accuracy of the finite element model. We have implemented an adaptive method to

automatically refine and de-refine a finite element mesh based upon a posteriori error es-
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timates of the finite element approximation [132]. Briefly, suppose we want the accuracy

of the finite element approximation to be within a given tolerance,� of the true solution,

k�� �hk � �: (8.4)

We can use an error estimator [23, 105, 55] to refine the mesh so that the resulting error

in the finite element approximation of the governing equations decreases to within the

limits imposed by equation (8.4). Such error estimators take the form, for example,

X
k2Th

(hkk�kH2(k))
2 �

�2

c2
; (8.5)

wherek�kH2(k) measures theL2-norm of the partial derivatives of�, c is a positive

constant, andhk is a measure of the size of an element. The simulation starts with a

coarse discretization level that conforms to the topology of the problem and a given set

of boundary conditions. The error estimator is applied to allk elements that make up

the finite element mesh,Th. If the value of the error estimate in a given element exceeds

the prescribed tolerance, then the element is refined according to the degree of the error.

Obviously, with each iteration of the refinement algorithm, the number of degrees of

freedom increases, as does the time necessary to compute subsequent iterations.

8.1.3 Scientific Visualization

Certainly, effective interpretation of computer simulations depends upon the visual-

ization of the data. Traditionally, the visualization phase has been an entirely separate

process from the computational phase. Computations are usually stored off to disk and/or

piped into a separate visualization software package once all computations are com-

pleted. Furthermore, many scientists have relied on current “off the shelf” visualization

packages that are not well suited for use with large engineering datasets (at least not

in an interactive fashion). Within the computational steering modality, visualization is

an integral part of the computational and geometrical modeling phases and is used to

navigate the user through the data and/or to help the user interact with the data to modify

the input parameters or geometric design. The user is able to visualize and explore

intermediate results while the calculations continue to progress. Refined datasets are

automatically substituted for the less accurate ones as they are completed.
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8.1.4 SCIRun Implementation

A network that can be used to model cardiac defibrillation is shown in Figure 8.1. The

network consists of the following modules:

� SurfaceReaderreads a triangulated surface definition from a file. One of these

modules reads the torso boundary (body surface) geometry, and the other reads the

epicardium (heart surface) geometry.

� GenSurfacegenerates two cylindrical electrodes for the defibrillation study. Pa-

rameters in the interface allow the scientist to control the shape, applied voltages,

and discretization of the electrodes. GenSurface also tags the surface with appropri-

ate boundary condition flags for the problem. The torso and scalp have a zero-flux

Neumann boundary. In the defibrillation problem, the two electrode cylinders have

Dirichlet boundary conditions corresponding to their respective voltage. The volt-

age sources may be changed interactively.

� VisualizeMatrix draws a figure representing the nonzeros in a matrix. Non-zero

entries are draw with small red dots, and zero entries are left black. This gives

the user a quick representation of the sparse structure of the matrix. A magnifying

glass can reveal the actual numbers in a portion of the matrix by clicking the mouse

in the desired region. Although this is not a necessary part of the simulation, it

is a handy tool for learning about or debugging the finite element matrix. Using

it simply requires attaching the VisualizeMatrix module to the appropriate matrix

output.

� SurfToGeom converts the surface definitions into displayable geometry. A toggle

button in the user interface controls whether or not the geometry is movable. The

epicardium and torso boundary should not be moved, since they correspond to

physical geometry. The electrode cylinders, on the other hand, must be moved so

that various placements can be tested. The SurfToGeom module provides 3D widget

handles that allow the user to manipulate these surfaces directly. An optional input

parameter selection maps scalar field values onto the surface. This input is attached
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Figure 8.1. An example of a fairly complex dataflow network, showing the modules (the
boxes), the connections (the wires between them), and the input/output ports (the points
on the modules that the wires connect). On a color monitor, the colors of the ports and
connections indicate the type of data that flows through them.
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to the epicardium and shows the voltages on the surface of the heart.

� MeshReaderreads a mesh from a file that contains the discretized torso geome-

try. The user can read different meshes that contain different anatomical features,

different discretization levels, etc.

� InsertDelaunay inserts the nodes creates by the defibrillator sources into the mesh

read by MeshReader. It uses a Watson [127] algorithm for inserting nodes into a

Delaunay tetrahedral mesh.

� BuildFEMatrix applies the finite element method to the governing equations, using

the mesh structure and the boundary conditions to construct a matrix that describes

the user-specified configuration. Utilizing controls on the user interface, the user

may instruct the module to create a dense matrix, a band diagonal matrix or a

compressed sparse-row matrix.

� SolveMatrix uses direct or iterative algorithms to find the solution to the matrix

equation. For this problem, we use a preconditioned conjugate gradient algorithm

for iterative solutions. The scientist controls convergence parameters and algorithm

selection through the graphical user interface.

� MakeScalarFieldcombines the solution of the finite element matrix to the volume

mesh generated by GenerateMesh. This mesh/solution combination provides a

representation of the solution in terms of a scalar field of voltage values.

� IsoSurface allows interactive extraction of Iso-surfaces in the voltage field. A

small sphere controls the starting point of the isosurface algorithm, and an attached

3D arrow shows the direction of the gradient. The sphere and arrow widget may

be moved using the mouse to allow interactive exploration of the voltage field.

Dragging on the body of the arrow moves the widget along the line defined by

the gradient; dragging on the sphere allows unconstrained movement of the seed

point. Alternatively, the user can select a voltage directly through a 2D slider.
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� Gradient computes a vector field from the scalar voltage field according to equa-

tion (8.3). This yields another form of the solution in terms of electric current

density.

� Streamline produces vector field lines that reveal the flow of electrical currents

within the torso. These field lines are analogous to massless particle traces in

fluid flow fields. The streamlines are advected using a fourth-order Runge-Kutta

technique. The user may choose between a single streamline or a row of stream-

lines. Time-step adaptation parameters and step sizes are controlled via the 2D

user interface, while the positions of the particle sources are controlled with 3D

widgets [44].

� CuttingPlane interpolates a planar slice through the unstructured data and maps

data values to colors on a semitransparent surface. The plane can be manipulated

with a 3D widget to allow the user to look at different cross sections of the electric

potential.

� GenColorMap generates a colormap which is used to map voltage values to colors.

The output of this module is used by the SurfToGeom, Streamline, IsoSurface, and

CuttingPlane modules. The colormap can be changed interactively.

� Salmonprovides the underlying structure for viewing geometry and 3D user inter-

action for both viewpoint control and control of the 3D widgets described above.

As the Streamline module computes streamlines, or as the Isosurface module com-

putes isosurfaces, it sends geometry (lines, triangles or other primitives) to Salmon.

Salmon displays all of these objects geometry in an interactive rendering window.

Each of these modules is simple enough to be managed easily, but when they are

joined together, they accomplish a complex task. A sample visualization from this type

of network is shown in Figure 8.2.

The user can select a new electrode configuration by a moving a 3D widget in the

salmon window. When the user releases the mouse button, SCIRun reexecutes the

dataflow program. The finite element mesh is regenerated automatically, and a finite
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Figure 8.2. Visualization of a defibrillator design simulation, showing an electrode, the
surface of the heart (epicardium), a 3D widget (circular rake), and electrical current lines
(streamlines). The other electrode in the simulation is obscured by the heart. Much
of the current leaving the visible electrode travels away from the heart, due to the high
conductivity of blood in a nearby vessel.
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element matrix is created that reflects the modifications to the electrode configuration.

The matrix solver and proceeds to iteratively seek a solution to the system of equations.

As the matrix solver computes, partially converged results are sent to the visualization

modules. For a long-running simulation (several minutes to several hours), this can

provide valuable insight to the effectiveness of a solution long before the solver has

fully converged.

8.2 Application: Monte Carlo Global Illumination

The rendering equation [61] is a Fredholm integral equation of the second kind that

describes the transport of light in an environment:

I(x; x0) = g(x; x0)[�(x; x0) +
Z
S
�(x; x0; x00)I(x0; x00)dx00]; (8.6)

whereI(x; x0) is the intensity of light passing fromx0 in the direction ofx, �(x; x0)

is the emitted light intensity fromx0 in the direction ofx, �(x; x0; x00) is the intensity

of light reflected fromx00 to x at the pointx0, S is a collection of all surfaces in the

scene, andg(x; x0) is a binary function with value 0 ifx0 is not visible fromx, and 1

otherwise. Using the rendering equation, one can create a physically realistic model

of the reflection of light in a scene. Monte Carlo methods are a popular method [110]

for solving this equation directly. These simulations are typically long-running, CPU-

intensive computations [38].

The Monte Carlo sampling is typically performed by evaluating the light spectrum

that enters a virtual camera. Since the computation is done in spectral units, it must

be transformed into RGB colors suitable for display [41]. To complicate matters, the

resulting RGB colors are not always within the range displayable on a computer monitor.

There are a wide variety of methods used to compress the gamut of the image, but they

vary in subjective quality from image to image [93].

Computational steering is used in the example to allow the user to control the spec-

trum to RGB transformation pipeline even as the Monte Carlo sampling is still occurring.

This allows a researcher to examine early results of the rendering using different trans-

formation functions.
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8.2.1 SCIRun Implementation

The SCIRun network used to implement this is shown in Figure 8.3, and an image

output from this is shown in Figure 8.4. The image is a model of the “Cornell Box”,

a benchmark scene that researchers at Cornell have used to compare the results of their

renderings to images of the real model [25]. SCIRun is used to set up the scene and to

tune various parameters. Figure 8.5 shows this simulation as constructed in the SCIRun

environment. These runs take from a few seconds during the initial coarse adjustments

to several hours for near-final tuning. Once the parameters are set, a longer running

simulation is performed to compute a high quality image. The final image is 2048 by

2048 pixels, with 100k(3172) samples at each pixel, and traces up to 25 paths for each

sample. This image took over 2 CPU years to execute on 195 Mhz R10000 processors.

Using checkpointing, it was computed on varying numbers of processors over the course

of about 2 months.

This is an example of the fine-grained dataflow setup described in Chapter 4 [114].

Figure 8.3. The dataflow program for a path tracing program. The imaging pipeline can
be manipulated even while the program executes.
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Figure 8.4. The Cornell Box as generated by the SCIRun PathTracer Module and
imaging pipeline
.

In a coarse-grained dataflow model, the entire dataset (the spectrum image) would be

transferred when the PathTracer module completes. This does not allow the user to

interact with intermediate results. The fine-grained dataflow model here allows pixels

to be sent down the pipe independently. For the sake of efficiency, a shorter running

program might choose to send larger chunks of the image, up to the full image at once.

The following modules are used to implement this application:

� MakeSceneproduces a scene, which includes a camera position, light sources, and

objects in the worlds to be rendered. The objects are represented as a scene graph.
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Figure 8.5. An example of the SCIRun path tracer, showing the interface to steer the
adaptation parameters while the program is still executing.

� PathTracer performs the actual Monte Carlo integration of the rendering equation

for a particular scene. Produces an image that contains a sampling of a spectrum at

each pixel.

� SpectrumToXYZ transforms the spectrum at each pixel to the XYZ color space [41].

� XYZtoRGB transforms each pixel from the XYZ color space to RGB colors, ready

for display. The user interface is used to select the gamut compression algorithm

used.

In addition to the controls on the color space transformation modules, the user can

directly manipulate the sampling density and adaptation criteria as the program is run-

ning. This allows the user to trade off image quality and execution time based on their



91

examination of the partial images.

8.3 Application: CFD Applications Using CFDLIB

CFDLIB [4] is a library of computer codes written at Los Alamos National Labora-

tory. It solves a variety of Computational Fluid Dynamics (CFD) problems in 2D and

3D. CFDLIB is written entirely in Fortran 77. It offers only the simulation component

of the problem; scientists typically use third party visualization and modeling packages

or sometimes perform modeling manually. It is the epitome of the batch-oriented, non-

interactive scientific simulation program described in Chapter 1.

CFDLIB differs from other applications discussed above, in several major points:

� It produces a time-varying field, as opposed to a static field. This is accommodated

in the dataflow model, but a more specific treatment of time-based data is left for

future work.

� It is an existing program that must be “shoe-horned” into the SCIRun environment.

This process includes instrumenting the code to extract data at appropriate points.

It also includes modifying the code to enable steering of specific parameters during

program execution.

� It is written in Fortran instead of C++. Although not a research issue, this posed a sig-

nificant challenge when integrating it within the object-oriented SCIRun environ-

ment. Wrapper functions were written in C that allow C++ objects to be manipulated

with Fortran subroutine calls.

� The internal data structures differ from SCIRun’s native field formats.

In this example, SCIRun is used to extract the pressure, temperature and velocity

fields from the running simulation as well as the particle sets resulting from a particle-

based simulation.
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8.3.1 SCIRun Implementation

In this example, the entire CFDLIB package is imported as a single module within

SCIRun. Several changes were made to the CFDLIB program:

1. The main program of the Fortran code is changed into a subroutine.

2. A C++ module is created as a wrapper to the legacy program.

3. A subroutine that wrote out data files is changed to make calls to the SCIRun Fortran

wrappers. Instead of writing data to disk, it sends data through the SCIRun dataflow

graph.

An example of this network is shown in Figure 8.6 and the resulting visualization

is shown in Figure 8.7. The CFDLIB module creates a thread that runs the Fortran

Figure 8.6. The dataflow program for an example Fortran program (CFDLIB). The
CFDLIB module contains the entire Fortran simulation, and various visualization and
postprocess modules are connected to it.
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Figure 8.7. The dataflow program and resulting visualization for an example Fortran
program (CFDLIB). The simulation consists of three fluids of different density that
interact inside of a box.

code. Callbacks inserted into the CFDLIB code update the time-varying datasets in the

CFDLIB module. A slider in the module interface allows the user to view datasets from

previous time steps.

The following modules were used in this simulation:

� cfdlib is he adapter module which calls the CFDLIB fortran program.

� PartToGeomconverts particle sets produced by the simulation to renderable geom-

etry. The particles can be displayed as points or as small spheres. There are several

of these modules - one for the particles associated with each fluid.

� GenColorMap produces a colormap that maps a fluid parameter to a color in the

visualization. This colormap is

� Hedgehogproduces arrows at sample points in a vector field. The length of the

arrow indicates the magnitude of the field at that point, and the orientation indicates

the direction of the field. In addition, the shaft of the arrow is mapped to a scalar
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field value using a colormap produced by GenColormap.

� IsoSurfaceallows interactive extraction of Iso-surfaces in a scalar field.

� Salmon provides an interactive view of the simulation results. The geometric

objects produced by PartToGeom, Hedgehog, and IsoSurface are displayed inter-

actively. The user can turn particular objects on and off, and can interact with 3D

widgets produced by the Hedgehog module.

In this simulation, scalar fields of density, temperature, and volume fraction are pro-

duced for each type of fluid. In addition, a single field of pressure is produced for all

fluids. A vector field of velocity is also generated.

The GenColorMap, IsoSurface, and Salmon Modules were identical to those used in

the torso defribrillator application described in Section 8.1.

8.3.2 Fortran Code

Several difficulties were encountered when trying to integrate Fortran programs in

SCIRun. These were as follows:

1. Problem: Fortran I/O.

Consequence:Fortran modules that perform I/O append all of their output from

multiple runs in a single file. This can be worked around by explicitly closing the

Fortran files at the end of execution.

2. Problem: Common blocks.

Consequence:Only one instance of a Fortran module can be executing at any time.

It can also have a potential conflict between different Fortran modules, especially

if unnamed common blocks are used. This problem could be overcome through

mangling of symbol names, but SCIRun does not presently attemp this.

3. Problem: Locally declared arrays.

Consequence:Locally declared arrays in Fortran can cause the stack to grow by

large amounts. This can easily overflow the small stacks that the SCIRun thread
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library provides by default. The module must request a large stack, or the stack will

overflow.

4. Problem: Save statements and other global data.

Consequence:Simulations may not function correctly if executed more than once

in a single SCIRun session. Even though global data in any language can cause

the same problem, it seems to be more pervasive in many Fortran programs. The

solution is to provide functions which can reset the data at the beginning of a

simulation.

8.3.3 Results

In this example, the simulation and modeling components consist of only a single

module. However, this module can be connected to a wide variety of visualization

and analysis tools. In other examples where legacy code is integrated, a simulation

module might be adapted to employ the SCIRun matrix solvers, mesh generators, or

other algorithms.

The utility of the CFDLIB/SCIRun combination can be extended beyond visualiza-

tion. By adding a few lines of code to CFDLIB, one can turn different simulation

variables into user steerable parameters. An example of this is the time step parameter.

It is simple to add this statement:

call cfdlib_get_timestep(module, dt)

at the beginning of the time integration loop. This will call the cfdlib object to retrieve

the new timestep and store it in the dt variable. This allows the time step parameter to be

controlled through a user interface slider. By contrast, the traditional way to change this

parameter is to stop the simulation, modify the “in3d” input deck, and start the simulation

again from the beginning. Although it may not be wise to change the timestep radically

on a whim, it is a natural parameter to experiment with when developing new simulations.

These modifications allow any of the CFDLIB simulations to be executed within

SCIRun. The simulations run within a few percent of the original speed of the standalone

Fortran program. We have found the greatest utility executing simulations that take tens
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of minutes to a few hours. In Figure 8.7, the simulation consisted of 20,000 particles

and executed 200 time steps (adaptive time stepping) in just under 6 minutes an an SGI

Octane with a 225 Mhz R10000 processor.

8.4 Application: Atmospheric Dispersion

This application is the product of a collaboration between the Scientific Computing

and Imaging research group and the Martin Berzins at the University of Leeds. We

worked to incorporate his model of atmosopheric dispersion as a SCIRun module, and

were then able to combine it with the visualization and unstructured mesh generation

components in SCIRun.

Following the discussion as reported in [52], the application we consider here is taken

from a model of atmospheric dispersion from a power station plume – a concentrated

source of NOx emissions [10, 43]. The photo-chemical reaction of this NOx with polluted

air leads to the generation of ozone at large distances downwind from the source. An

accurate description of the distribution of pollutant concentrations is needed over large

spatial regions to compare with field measurement calculations. The present trend is to

use models incorporating an ever larger number of reactions and chemical species in the

atmospheric chemistry model. The complex chemical kinetics in the atmospheric model

gives rise to abrupt and sudden changes in both space and time in the concentration of

the chemical species in both space and time. These changes must be matched by changes

in the spatial mesh and the timesteps if high resolution is required [119]. The difference

in time-scale between the reaction of these species leads to stiff systems of equations

that require implicit numerical solvers and special linear equations solvers [10]. The

requirements of such a problem are that it is necessary to combine:

� Unstructured tetrahedral mesh generation and adaptation.

� Physically realistic spatial discretization methods.

� Stiff ODE integrators tailored to the application.

� Fast interactive visualization for multispecies flows
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� Computational steering facilities for transient problems.

These requirements were met by combining SCIRun with the spatial discretization,

mesh adaptation and time integration codes CSPRINT and TETRAD [10, 115] and by

wrapping these codes in SCIRun modules, with converters to map to the SCIRun data

structures.

Following the development of the model as reported in [52], the power plant plume

application is modeled by the atmospheric diffusion equation in three space dimensions

given by:

@cs

@t
= �

@ucs

@x
�

@vcs

@y
�

@wcs

@z
+D(

@cs

@x
;
@cs

@y
;
@cs

@z
)

+Rs(c1; c2; :::; cq) + Es � (�1s + �2s)cs; (8.7)

where cs is the concentration of the s’th compound, u,v and w are wind velocities, Kx

and Ky are diffusivity coefficients, and k1s and k2s are dry and wet deposition velocities

respectively. Es describes the distribution of emission sources for thesth compound

and Rs is the chemical reaction term that may contain nonlinear terms in cs. D() is the

diffusion term, which is set to zero here. For n chemical species an n-dimensional set

of partial differential equations (PDE’s) is formed where each is coupled through the

nonlinear chemical reaction terms.

The test case model covers a region of 300 x 500 km and is a 3D form of that

used by [43], and although far from as detailed, it does represent the main features that

would commonly be found in an atmospheric model including slow and fast nonlinear

chemistry, namely, concentrated source terms and advection The chemical mechanism

contains only seven species but still represents the main features of a tropospheric mecha-

nism, namely the competition of the fast inorganic reactions
O2

NO2 ! O3 + NO
and

NO + O3 ! NO2 + O2 with the chemistry of volatile organic compounds (VOCs),

which occurs on a much slower time-scale. This separation in time-scales generates

stiffness in the resulting equations. The reaction rate constants have been chosen as in

Tomlin et al. [119], and the photolysis rates were parametrized as a function of the

solar zenith angle(see [119]). The background concentrations listed by [43] form the

initial conditions for the model. These concentrations will then change diurnally as the
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chemical transformations take place. The power station is taken to be the only source

of NOx and this source is treated by setting the concentration in the chimney set as

an internal boundary condition. In terms of the mesh generation this ensures that the

initial grid will contain more elements close to the concentrated emission source. The

concentration in the chimney corresponds to an emission rate of NOx of 400kghr�1 and

only 10% of the NOx to be emitted as NO2. We have assumed a constant wind speed of

5ms�1 in the x-direction with y and z components of one tenth of this value.

8.4.1 Spatial Discretization Method

Spatial discretization of the model atmospheric diffusion equation on unstructured

tetrahedral meshes reduces the set of PDEs in four independent variables to a system of

ordinary differential equations (ODEs) in one independent variable: time. This system

of ODEs can then be solved as an initial value problem, using the software tools that

exist for this purpose [10]. For advection dominated problems it is important to choose

a discretization scheme that preserves the physical range of the solution [115]. The

method used here is a cell-centered, finite volume discretization scheme of [115] that

enables accurate solutions to be determined for both smooth and discontinuous flows by

making use of the upwind techniques for the advective parts of the fluxes.

8.4.2 Time Integration

The time integration method used is the theta method module of the CSPRINT soft-

ware, which is designed for the moderate accuracy solution of stiff systems using local

error control in time [10]. Once the PDEs have been discretized in space we are left with

a large system of coupled ODEs of dimension m� n where m is the number of mesh

points and n the number of species. These equations may now be written for a single

species as

_U = FN ( t; U(t) ) ; U(0) given ; (8.8)

whereU(t) = [U(x1; y1; z1; t); :::; U(xN ; yN ; zN ; t) ]
T . The pointxi; yi; zi is the cen-

troid of the i th cell andUi(t) is a numerical approximation to the exact solution to

the PDE evaluated at the centroid, i.e.,u(xi; yi; zi; t). The time integrator computes an

approximation,V (t), to the vector of exact PDE solution values at the mesh points. This
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numerical solution attn+1 = tn+k, wherek is the time step size, as denoted byV (tn+1),

is computed from

V (tn+1) = V (tn) + (1� �)k _V (tn) + � k FN(tn+1; V (tn+1)); (8.9)

in which V (tn) and _V (tn) are the numerical solution and its time derivative at the

previous timetn and � = 0:55. The equations to be solved for the correction to the

solution�V for the p + 1 th iteration of the modified Newton iteration used with the

Theta method are:

[I � k�J ] �V = r (tpn+1) (8.10)

whereJ =
@ FN
@U

, �V =
h
V (tp+1

n+1)� V (tpn+1)
i

and

r (tpn+1) = � V (tpn+1) + V (tn) + (1� �)k _V (tn)� �kFN (tn+1; V (tpn+1)): (8.11)

The solution of this system of equations constitutes the major computational task of the

calculation. The CPU times are excessive unless special solution techniques such as

splitting the nonlinear equations [10] into a set of flow terms and a reactive source term

are employed. Consider the ODE functionFN (t; U(t) ) defined by equation (5.2) and

decompose it into two parts:

FN (t; U(t) ) = F
f
N (t; U(t) ) + F s

N (t; U(t) ) (8.12)

where F
f
N (t; U(t) ) represents the discretization of the convective flux termsf and

g in equation (1) andF s
N (t; U(t) ) represents the discretization of the of the source

term h in the same equation. The splitting approach, used in [10], is to employ the

following approximation to the Jacobian matrix used by the Theta method within a

Newton iteration:

I � k�J � [I � k� Jf ] [I � k� Js ] ) + O(k2): (8.13)

whereJf =
@ F

f
N

@U
; Js =

@F sN
@U

. The new iteration may thus be written as

[I � k�Js] �V � = r (tpn+1) (8.14)

where�V � is the operator splitting approximation to�V . The advantage of this is that

each block of equations corresponding to a tetrahedral element may be solved separately
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using the Gauss Seidel method of Verwer [122]. The Jacobian matrix[I � k
Js] is split

into L, the strictly lower triangular, D, the diagonal, and U, the strictly upper triangular

matrices. The equation is rearranged to get

(I � 
kD � 
kL)�V �

m+1 = 
kU�V �

m + r(tpn+1): (8.15)

This approximation introduces a splitting error that fortunately only alters the rate of

convergence of the iteration as the residual being reduced is still that of the full ODE

system. A lack of convergence of this iteration is dealt with by reducing the timestep

k. The matrixI � k�Js is the Jacobian of the discretization of the time derivatives

and the chemistry source terms. This matrix is thus composed of independent diagonal

blocks with as many block as there are tetrahedra. Each block has as many rows and

columns as there are PDEs. and each block’s equations may be solved independently .

The choice of a time step is a difficult issue in reacting flow problems; however in this

case the chemistry reacts quickly compared to wind speed. The approach here is thus to

use a standard local error control, though it is often the case that the convergence of the

iteration that limits the timestep.

8.4.3 Mesh Generation and Adaptation

The initial unstructured meshes used are created from a geometry description using

the SCIRun [92] mesh generator. The initial mesh inside a rectangular bounding box

is generated with approximately 5000 elements. This resulted in a largest element with

a side length 50 km. It is difficult to directly relate the size of unstructured meshes

to regular rectangular ones, but our original mesh is comparable to the size of mesh

generally used in regional scale atmospheric models. The fine scale grids used in present

regional scale models are of the order of 10-20 km. For a power plant plume with a width

of approximately 20 km, it is impossible to resolve the fine structure within the plume

using grids of this size [119], hence our use of adaptive grids. Close to the chimney the

mesh is refined to elements of length 5 km or 500 m depending on the mesh level used.

This ensured that the mesh would be refined to a reasonable resolution in this region of

steep gradients.
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These meshes are then refined and coarsened by the TETRAD [115] mesh adaptation

module that is based on the refinement of tetrahedra into eight tetrahedra with appropriate

adjustments to ensure that the mesh is conforming at the edges. The criterion for the

application of the adaptivity used in this work is based on refining or derefining the mesh

based on the magnitude of solution gradients of the key chemical species NO and NO2

across the faces of the tetrahedron [115]. For applications such as atmospheric modeling

it is important that a maximum level of refinement can be set, to prevent the code from

adapting to too high a level in regions with concentrated emissions. This is especially

important if sources that are close to point sources in nature exist. For the test problem

here the maximum level of refinement is a user-defined parameter that is often limited

to level 2 or 3. At the same time a sufficiently small refinement tolerance must be set in

order to ensure enough refinement to determine the detail of the plume.

8.4.4 Integration with SCIRun

The integration of the above routines with SCIRun required writing a few bridging

functions that can be called both from SCIRun and the program to provide control

parameters for the program and get the feedback during the execution. No other changes

were made to SCIRun. The transient aspect of the problem is dealt with by the integration

module TETRAD/SPRINT sending out a new mesh on every time step (rarely) or more

usually immediately after to each remesh. While the module continues time integration,

the rest of SCIRun network would process and visualize the current mesh.

The major advantage of SCIRun is provided by computational steering, i.e., the pos-

sibility not only to set up initial conditions and parameters but also to have control over

the execution. In the case of TETRAD, the user interface allows the user to set up

initial parameters of the problem: the position of the pollution source, initial velocity

of the flow, and level of refinement. If, in the process of execution, the user decides

that the refinement level or the refinement tolerance is to high or too low, then it can be

changed for the next refinement. Similarly the species used as the basis for refinement

can be altered dynamically, without quitting and losing any part of the data. An important

”What-if?” question is to ask about the effect of the changes in the wind velocity on the
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existing solution. Accordingly we allowed the user to change the wind velocity during

the execution. At the same time the visualization module provided 3D visualization of

the flow, so without stopping computation one can examine the plume from different

directions and angles and explore its cross section as the plume develops.

This example shows that SCIRun not only can be used with its “native” modules but

can also successfully play a role of a framework to support all different kind of scientific

computations.

8.4.5 Atmospheric Diffusion Simulation Results

As reported in [52], each run is carried out over a simulation period of 48 hours so that

the diurnal variations can be observed. We present here only a selection of the results that

illustrate the main features relating to the adaptivity and to the use of SCIRun. The main

area of mesh refinement is along the plume edges close to the chimney, indicating that

there is a high level of structure in the plume. Using the adaptive mesh, we can clearly

see the plume edges and can easily identify areas of high concentrations. The effects

of the plume on ozone concentrations also provide some interesting results. Close to the

plume the concentration of O3 is much lower than that in the background. Due to the high

NOx concentrations the inorganic chemistry is dominant in this region and the ozone is

consumed by the second reaction in Section 8.4. As the plume travels downwind and

the NOx levels decrease, the plume gradually picks up emissions of VOCs, as shown in

Figure 8.8. The OVC chemistry leads to the production of NO2 that pushes the above

reaction in the reverse route. The levels of ozone can therefore rise above the background

levels at quite large distances downwind from the source of NOx [52]. The following

SCIRun modules were used to create this simulation:

� MeshReaderreads a previously generated mesh from a SCIRun persistent object

file.

� GenTransferFunc is similar to the GenColormap module described in the torso

difibrillator application but provides opacities in addition to colors.

� Advect8provides a wrapper to the TETRAD program.
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Figure 8.8. This picture shows one component of the plume in greater detail in three
perpendicular cross sections.

� RescaleColormapfinds the minimum and maximum values in a scalar field and

scales the range of the colormap accordingly.

� GenAxescreates an icon in the scene, which displays arrows for the X, Y, and Z

euclidian directions.

� CuttingPlane interpolates a planar slice through the unstructured data and maps

data values to colors on a surface.

� MeshToGeomcreates a representation of the mesh with lines or cylinders. The

mesh can subsequently be rendered in the same view as the other visualizations of

the simulation.

� Salmonprovides an interactive view of the visualization tools. Multiple views can

be used to display different variables, as in Figure 8.8.
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Figure 8.9 shows the SCIRun network which implements this application.

The RescaleColorMap, CuttingPlane, and Salmon modules were identical to those in

the previous simulations in this chapter.

8.5 Discussion
The four applications that we have just demonstrated show how SCIRun can be

used in a wide variety of applications to steer computational applications. The torso

defibrillator example demonstrated the power of SCIRun’s computational components.

The Monte Carlo global illumination model demonstrated SCIRun’s imaging pipeline

and how SCIRun combines coarse-grained dataflow with fine-grained dataflow. Third,

Figure 8.9. A SCIRun network for an example atmospheric diffusion simulation.
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we demonstrated how a legacy Fortran application can be integrated into SCIRun’s

computational steering environment. Finally, we exhibited a time-varying problems

using adaptive unstructured meshes, applied to a model of pollution dispersion in the

atmosphere. These problems represent only a few the applications which are possible

with SCIRun. In each of these applications, SCIRun is used to provide interactivity that

was previously not available in these long-running applications.

In the torso defibrillator example, a user is free to try various numerical algorithms,

various mesh discretizations, and most importantly, various defibrillator electrode place-

ments. The scientist is able to leverage the computational components that have been

implemented in SCIRun modules. If a scientist were to implement a different simulation,

a large number of these modules would not need to be rewritten. In addition, the scientist

can actually interact with the simulation. In addition, the integrated environment allows

several important optimizations to be made. Instead of regenerating the mesh for each

new electrode configuration, the system simply updates the mesh in the regions were

the electrode is placed. This can reduce the mesh generation process from multiple

hours to a handful of seconds. In addition, some optimization is obtained through using

the previous solution as an initial guess to the new solution. If small modifications are

being made to the design, this can reduce the number of iterations that are required for

convergence. This also displays a visually smooth transition from one solution to another.

For the Monte Carlo global illumination model, interaction is more limited. How-

ever, it demonstrated how a long-running application can use the fine-grained dataflow

aspects of SCIRun to provide incremental updates to a long-running program. While

the path tracer module is computing the image, the user can manipulate parameters in

downstream modules. In addition, the user can modify adaptation criteria and sample

densities while the path tracer module is still running. This is not possible in the typical

stand-alone application. A program can be custom built that would perform the same

tasks. However, this program would be customized for this particular application. The

power of SCIRun is utilized when components created for one application can be reused

in another application.

The CFDLIB example demonstrated how these ideas can be implemented for a legacy
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program. Small modifications were made to the source code of the application that

allowed SCIRun to extract data at appropriate points in the computational process. These

modifications made subroutine calls to build SCIRun data structures and pass them along

down through dataflow network. Whereas this is possible in existing dataflow systems,

SCIRun adds a new degree of flexibility. Typically, the CFDLIB internal data structures

would be translated to the required internal format of the visualization package. Since

CFDLIB uses cell-centered data variables, the data values would have to be interpolated

back to the cell corners for most visualization packages. This translation is typically

expensive, and adds to the perceived cost of visualizing the data during runtime. In

some cases, translating to the required data formats of visualization packages can also

introduce error or reduce the accuracy of the represented data.

Finally, the atmospheric diffusion example demonstrated another legacy program

which also performed a time-varying simulation. An adaptive unstructured mesh used

the unstructured grid aspects of the SCIRun modules. In addition, it demonstrated that

SCIRun can be more than a visualization tool when used with existing applications. In

this example, A SCIRun module (the initial mesh generator) was used as an input to the

TETRAD simulation.

8.6 Comparison with Existing Systems

In addition to the applications, there are important differences in the flexibility and

performance of SCIRun and comparable dataflow systems. These performance differ-

ences become especially important when one tries to perform large-scale simulations in

an interactive setting.

8.6.1 Performance

SCIRun seeks to build on the conceptual successes of currently dataflow systems,

yet expand the scope and performance over available systems. Since this system is

designed to support large-scale problems, efficient means of storing and transferring data

and powerful, robust algorithms have been the focus of development throughout.

The modularity of visual dataflow environments and with the interactivity they sup-

port makes this paradigm attractive for problem solving. However, the visual program-
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ming systems mentioned in Chapter 2 (Iris Explorer, AVS, and DX) have proven inade-

quate for solving many large-scale scientific and engineering field problems [14]. These

systems were designed specifically for visualization and lack integrated tools to support

modeling and simulation. These systems also lack system utilities for monitoring and

controlling system resource utilization, such as memory and processor usage. Moreover,

they tend to duplicate the geometric model and simulation data as they pass between

modules—a reasonable property as long as the datasets are small, but a significant bot-

tleneck in large-scale computation. For example, replication is not reasonable when the

data contains multimillion element meshes or a stiffness matrix with millions of entries.

Finally, these systems, although supporting many general purpose visualization methods,

lack tools for efficiently visualizing large data sets.

Isosurface extraction is an excellent example of a task that can become very computa-

tional intensive for large datasets. Table 8.1 shows memory requirements and execution

times for extracting an isosurface of electric potential from a 420,000-element tetrahedral

volume mesh. These data come from a simulation of the electric field induced by defib-

rillator patch electrodes placed within a geometric model of a thorax near the epicardial

surface, as described in Section 8.1. DX, Iris Explorer, AVS, and SCIRun were all able

to construct the same isosurface. However, as the timings in the table demonstrate, this

is not an interactive process for the first three. Having been designed since inception

Table 8.1. Benchmarks of sample PSEs

Dataflow Memory CPU
System Usage time

AVS 5.x 89 MB 3 sec
NAG Iris Explorer 72 MB 20 sec

IBM Visualization Data Explorer 63 MB 2 sec
SCIRun 63 MB 0.6 sec

This table shows memory consumption and execution times for an

isosurface extraction operation using SCIRun, AVS 5.x, Iris Explorer

and IBM Data Explorer. These benchmarks were performed on a

175Mhz Silicone Graphics Octane R10000.
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to perform efficiently on large-scale problems, SCIRun is able to routinely outperform

these commercial systems.

The most noticeable shortcoming of AVS 5.x over all the other systems is its large

memory usage. This arises from the undesirable property that for each additional mod-

ules appended to the visualization sequence, a further copy of the dataset is made.

To illustrate this effect, we added first a gradient module, which computes the spatial

gradient of the scalar field, and then a streamline module and a “hedgehog” module

to visualize the gradient field. The memory usage of SCIRun went up to a modest 81

MB, whereas the memory usage of AVS rose to over 153 MB. This trend is illustrated in

Table 8.2. A network with a wide array of modeling, simulation and visualization models

would further exacerbate this problem.

Iris Explorer uses shared memory to communicate between modules, and thus its

memory usage is lower than that of AVS. However, since each module within Iris

Explorer is essentially its own process—its own independent program, each allocate

its own private data separate from the shared pool. This separation of memory areas

presents considerable complexity for the developer of new modules because of the need

to manage two separate memory pools. This is especially problematic when attempting

to incorporate existing program source code, which typically assumes a single memory

area, into an Iris Explorer module. For unknown reasons, the isosurface extraction in Iris

Explorer is also considerably slower than the others.

IBM Data Explorer came closest to the performance of SCIRun. Its memory usage is

virtually the same as SCIRun, because of the cache management algorithm it employs.

Table 8.2. PSE memory usage

Modules used AVS 5.x SCIRun

Isosurface 89 MB 63 MB
Isosurface + gradient + streamline 126 MB 80 MB

Isosurface + gradient + streamline + hedgehog153 MB 81 MB

Memory usage of AVS 5.x and SCIRun as a function of the number of visualization

steps in the network of modules.
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Execution time is somewhat higher than that of SCIRun but, at least for this dataset,

within an acceptable range for interactive use.

8.6.2 Flexibility

One of the goals in any modular programming environment is to create elements that

can easily be used for many purposes. A high level of reuse ensures that an element is

well tested, under a wide range of conditions, and thus becomes, over time, a robust and

stable piece of software. One way to increase the degree of reusability of software is to

make each modular element as flexible as possible, so that it can be used under a variety

of conditions without modification to its core functionality.

SCIRun makes use of some features of object-oriented programming to achieve a

high level of code flexibility and thus reusability. In an object-oriented data model,

pieces of data are thought of as objects upon which computations are executed. A

powerful property of objects is that they can be specialized, orderived,from a more

general object into variants with slightly differing functionality. This occurs in a way

that inherits all of the content and functionality of the parent object, hence removing

the need to recreate this functionality each time a new object is derived. In SCIRun, a

user can easily introduce a new, specialized type of object, without having to alter any

other part of the system that uses the same general type. This level of flexibility ensures

maximum reuse of essential elements and allows development efforts to focus on these

critical components instead of having multiple versions to create and maintain.

Few of the commercial PSE programs provide this same level of flexibility and reusa-

bility in their data structures. For example, AVS 5.x has two different data models,

known as “fields” (block structured grids) and “ucd” (unstructured grids). Each data

type requires its own module, resulting in a doubling of the number of modules that

much be developed and maintained. Furthermore, the functionality of the two different

versions of each module typically differs dramatically. For example, the ucd streamline

module provides support for stream ribbons, whereas the normal streamline module does

not. Iris Explorer suffers from this same weakness. Functionality of the modules based

on, for example, unstructured grids tends to lack far behind that of structured grids.

With SCIRun, the same streamline module can be used on any type of vector field.
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This is true even for field representations which were not implemented at the time which

the Streamline module was compiled.

IBM Data Explorer avoids this problem by providing a unifying data model. Although

this does improve flexibility, it goes perhaps too far by forcingall sources of data of

any sort to have the same structure. Since computations of a field has a much different

structure than visualization of the geometric model, the unified structure almost always

requires additional steps to extract and convert data into the appropriate form for internal

use, thus adding more overhead and programming complexity to each module. It also

creates overhead of converting to the common form when integrating codes into the envi-

ronment that do not exactly match this common form. This overhead is acceptable when

the system is used in a visualization mode only, since the data are typically converted

once and stored into a file. However, in a computational steering system, the data would

be converted at each time step, or after each change.

All three of the commercial systems use a general unstructured grid data model. We

suspect that this also contributes considerably to the performance differences exhibited

in Table 8.1. SCIRun attempts to strike a balance between unified and specialized data

modules by supporting a few basic data types, from which others can be derived. SCIRun

is able to work directly on the appropriate data in an appropriate form, reducing the need

for conversion or extra storage between elements.

8.7 Chapter Summary

We described four applications that demonstrate the successful application of the

concepts proposed by this thesis. A computational medicine application (torso defib-

rillator modeling) demonstrates a large-scale finite element design simulation, imple-

mented entirely with the SCIRun components. A computer graphics application (Monte

Carlo global illumination) demonstrates the utility of fine-grained dataflow in a long-

running simulation. A computational fluid dynamics simulation demonstrated the com-

bination of existing code with the SCIRun computational steering tools. The final appli-

cation, TETRAD, demonstrates a time-varying simulation with adaptive finite-element

meshes. Finally, we made a comparison of performance between SCIRun and other cur-
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rent dataflow-oriented visualization tools. Here we demonstrate that SCIRun attains sub-

stantial memory and speed improvements over existing packages. These improvements

become even more important as we use the environment for modeling and computation

components in addition to the visualization tools provides by these systems.



CHAPTER 9

CONCLUSIONS

This dissertation demonstrates that computational steering can be a useful tool in

computational science, engineering, and medicine applications and that this utility is ob-

tained by providing a flexible and efficient infrastructure where disparate computational

tools can be used in a single focused environment. Furthermore, we demonstrate that by

using such an environment, a scientist or engineer can rapidly investigate the solution

space for iterative computational design problems.

The SCIRun system provides a problem solving environment for building scientific

models, simulations, and scientific visualizations across many different application do-

mains. It allows a scientist or engineer to interactively steer a computation, changing

many different parameters, recomputing, and then revisualizing the results all within

the same programming environment. SCIRun supplies application-specific modules,

as well as generalized scientific datatypes and modules. Modules can be created from

the existing code resources of potential users. SCIRun has been utilized for research

within the domains of bioelectric field studies in cardiology and neuroscience, as well as

computational geophysics and in other computational field problems.

The termcomputational steeringrefers to a user’s ability to interact with an appli-

cation’s execution—to change the parameters of an algorithm in midexecution, without

ever having to stop or restart computation. Such interactive capabilities contrast with

the batch processing model, in which applications can be controlled by means of a list

of start-up parameters, but once started, always either run to completion or are aborted

in midstream. Coupled with a visual programming environment, computational steering

is a powerful problem solving tool. Each module of a PSE contains a set of interface

controls that the user can adjust at any time during execution. Each time a parameter
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changes, its value propagates to any other modules that depend on either the parameter

value or the output of any other connected module. By this propagation mechanism, the

user is freed from the need to explicitly deal with implications of the parameter change

but is still able to vary any parameter at any time during execution. Making changes to

the parameters does not stop the computations in progress but guides, or steers, them

through their execution. Through this combination of manual and automatic processing,

a steerable PSE offers a simple, efficient means of operation while still maintaining a

great deal of control and flexibility.

9.1 Contributions

The focus of this dissertation a module-based, dataflow-style visual programming

environment. In addition to extensibility typically associated with this class of tools, it

utilizes extensibility features of object-oriented programming. Modifications to the tradi-

tional dataflow implementation allow large-scale applications to be created and executed

efficiently. In this environment, applications can be controlled through direct lightweight

parameter changes, program cancellation, and feedback loops in the dataflow graph. A

set of data modeling classes provides the basis whereby computational field problems can

be constructed. These data classes and the computational modules are all implemented

using a convenient set of support libraries that help a module writer to create simple yet

robust modules.

The computational steering system presented here combines several different com-

puter science concepts to achieve this flexibility and efficiency. A dataflow [27] visual

programming model is combined with concepts from object-oriented programming to

achieve higher modularity by insulating data representations from dataflow modules.

This combination also provides a mechanism for implementing demand driven dataflow

(lazy evaluation) [120] in a straightforward manner. Threads [111] are used to provide

task parallelism expressed naturally in the dataflow graph, as well as data parallelism

coded explicitly in different components. Finally, we extend the concept of dataflow’s

internal communication by allowing more flexible communication ports. This facilitates

a more expressive set of communication methods for implementing relationships that do
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not fit naturally in the dataflow model. These ports also provides a mechanism for using

fine-grained dataflow mixed with coarse-grained dataflow in a flexible manner.

SCIRun offers a visual programming environment for scientific computing. It differs

from traditional dataflow-oriented visual programming systems in that it focuses on

efficiency for large-scale computational problems. SCIRun extends the typical dataflow

system by combining concepts from object-oriented programming and by generalizing

dataflow communication ports to allow for component relationships which are difficult

to express using the dataflow metaphor. One essential contribution is that this efficiency

can be achieved while maintaining the simple composability typically associated with

dataflow toolkits.

The choices made in the implementation of SCIRun address the following issues:

� Interactivity. Ideally, all computation would be instantaneous. In reality, however,

many large-scale scientific applications take minutes to hours to days to complete.

Where appropriate, SCIRun uses intermediate results to allow the user to examine

a computation in progress. SCIRun also operates efficiently so that in those cases

where a degree of interactivity is attainable the computation will not be impeded by

the system.

� Integration. The modeling, simulation, and visualization aspects of the problem

are integrated within SCIRun. SCIRun does not make special distinction between

these different types of components. In designing the representations of the SCIRun

data models, we have addressed the requirements imposed by these different com-

ponents. Finally, the SCIRun dataflow programming model uses these components

together to provide solutions to a scientific or engineering problem.

� Extensiblity. SCIRun extends the traditional dataflow model of extensibility by

combining it with object-oriented based methods for extensibility. Through the

combination of these features, SCIRun can be used to add new visualization tools

to existing simulations or to add new simulations to existing visualization tools.

SCIRun does not attempt to be a monolithic solution for a handful of problems nor

a completely general solution for all problems. It attempts to strike an efficient
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balance between those two extremes.

SCIRun was one of the first systems to suggest that computational steering was most

appropriate for iterative design problems, namely, for determining answers to “what-

if?” questions in a variety of contexts [59]. With a cohesive integrated environment,

SCIRun components can exploit spatial and temporal coherence (explained in Chapter 3)

to reduce the computational cost for iterative analysis. The first computation is performed

at a fixed cost, but subsequent iterations can be faster.

9.2 Pros and cons of the SCIRun approach

Four applications were demonstrated: Torso defibrillator modeling, Monte Carlo glo-

bal illumination, a CFD application using CFDLIB, and a simulation of atmospheric dif-

fusion. These applications were selected to explore the gamut of SCIRun’s possibilities.

However, many more applications can benefit from the SCIRun environment.

Steering a large scientific application involves much more than attaching a graphical

user interface to a few parameters. Several of the systems mentioned in Chapter 2

have suggested excellent methods for extracting information from running programs,

for injecting updates back into the program, and for managing these changes. We argue

that these techniques are most effective when used in a highly integrated environment,

where data can be shared among the various computing and visualization tasks.

Although computational steering was proposed many years ago, it has not been rapidly

adopted among most scientists and engineerings. The primary reason that we have heard

voiced isComputational steering uses too much memory or CPU time and my code

runs slower. This has been addressed by the efficiency considerations that have been

examined in SCIRun. In some cases, the resulting program can execute faster than the

original stand-alone program, when it can take advantage of the coherence between user

interactions.

In addition, scientists often sayI just want to focus on the scienceor I just want to

focus on the visualization. The modular SCIRun environment allows the scientist to use

visualization modules without knowing much about their implementation. Similarly, the

visualization programmer can write modules that visualize a wide variety of data without
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knowing the specific details of a broad range of scientific data formats. Scientists can use

modules outside of the domain of their expertise yet integrate those pieces with their most

recent research programs.

The tightly integrated modular environment provided by SCIRun allows computa-

tional steering to be applied to a broad range of advanced scientific computations.

The concepts embodied in SCIRun are an attempt to strike a reasonable balance in a

wide range of possibilities. Certainly other options can be considered.

Many of the systems for steering described in Chapter 2 have suggested good mech-

anisms for extracting data from running code, especially in the context of programs

that already exist [15, 36, 49, 66, 124, 125, 126]. Many of these tools or concepts

could be applied to computational steering in the SCIRun environment. Sensors and

actuators [126] would provide a more cohesive set of mechanisms for extracting data

from running code and for triggering changes in program variables. They would be a

useful addition to an environment such as SCIRun.

In particular, SCIRun requires that modules be explicitly written to support steering.

The dataflow structure automatically provides a limited degree of steering (changing

inputs and outputs), but the other mechanisms presented (such as changing user interface

parameters) require explicit support in the module. In a design environment, this allows

the module writer to limit the changes to those that are valid. However, during the

development phases of a module it may be desirable to allow access to any part of the

module. In SCIRun, we have delegated this role to the command line and graphical

debuggers available on the operating system.

There are relationships that are difficult to cast in a dataflow network. Time-dependent

problems, although presented in Chapter 8, still present some difficulty. Feedback loops,

described in Chapter 4, are often difficult to control. Finally, dataflow is good at rep-

resenting “producer-consumer” relationships. We extended the ports in Chapter 4 to

also support “client-server” relationship. However, in object-oriented programming, the

“uses” relationship [68] is also common. In the future, we plan to investigate the possi-

bility of further generalizing the dataflow port concepts to support such relationships.

Many of these issues will be addressed (and possibly new drawbacks introduced) as
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SCIRun continues to evolve.

As we have seen, steering a large scientific application involves much more than

connecting a graphical user interface to a few parameters. SCIRun employs several

techniques exist for extracting information from running programs, for injecting updates

back into the program, and for managing these changes. Each of these techniques is

useful in different contexts for different types of parameters. The highly integrated

environment provided by SCIRun allows these techniques to be used in chorus.



CHAPTER 10

ONGOING AND FUTURE WORK

In a flexible, extensible environment such as SCIRun, there are numerous possibilities

for expansion. Here we describe several applications that are currently using SCIRun.

Modules and data structures are being created to support these applications specifically,

and the current infrastructure will be improved to meet these demands.

One of the largest infrastructure changes will be support for execution in a net-

worked/distributed environment [81, 82]. For simplicity, we focused on shared memory

multiprocessors for the initial implementation of SCIRun. Along with this will come

“detachable user interfaces.” Currently SCIRun applications must be executed within

the SCIRun user interface, but for a long-running simulation, it would be beneficial

to start the program and then come back periodically to check on the progress of the

program. The user can steer the simulation and then return at a later time to see the

effects of the changes. This modification would likely be performed in conjunction with

a modified user interface that reduces the number of popup windows scattered about the

user’s screen.

Many of these projects are being tackled by current Ph.D. and M.S. candidates.

10.1 Common Component Architecture

This is a current and ongoing collaboration between the Center for Scientific Comput-

ing and Imaging (SCI) at the University of Utah and the Department of Energy National

Laboratories (and other university research groups). With representatives from these

facilities, the Common Component Architecture (CCA) Working Group was formed “to

develop a specification for a component architecture for high-performance computing.”

This goal has long been a central theme of the SCIRun problem solving environment.

The proposed project will form a symbiotic relationship between the DOE labs, Utah,
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and other university participants, in which SCIRun will provide applications, tools, and

experience with high-performance component architectures to the CCA community, and

the DOE labs and other university groups part of the CCA effort will help provide

SCIRun with a more flexible and widely accepted component model.

The CCA Working Group was established in the beginning of 1998 by researchers

who develop component architectures for their respective institutions. The mission state-

ment from the CCA working group is [22]:

Our object is to develop a specification for a component architecture for high-
performance computing. The CCA’s intent is to provide a pan-DOE lab frame-
work that would provide a plug and play interface for the DOE’s many high
performance numerical components and tools. The CCA is not restricted to
DOE, however and universities and commercial labs are welcome to partici-
pate. Further, it is our intent that these components can be mixed and matched
to create high-performance applications on the fastest and highest-capacity
machines on the planet. Examples of these components are equation solvers,
explicit stencil solvers, and attendent load-balancers; everything that is needed
to compose a high-performance simulation and make it go.

Since that goal was set, the CCA working group has proceeded to define the compo-

nent architecture and is in the process of solidifying a specification. This specification

will enable us to cast the component model used in SCIRun into a more standard form.

When complete, components from SCIRun can be used in other frameworks, and com-

ponents from these frameworks can be used within the SCIRun framework. SCIRun will

continue to grow and evolve based on this collaboration.

10.2 C-SAFE

The University of Utah has created an alliance with the DOE Accelerated Strate-

gic Computing Initiative (ASCI) to create the Center for the Simulation of Accidental

Fires and Explosions (C-SAFE) [6]. It focuses specifically on providing state-of-the-art,

science-based tools for the numerical simulation of accidental fires and explosions, es-

pecially within the context of handling and storage of highly flammable materials. The

objective of the C-SAFE is to provide a system comprising a problem solving environ-

ment in which fundamental chemistry and engineering physics are fully coupled with

nonlinear solvers, optimization, computational steering, visualization, and experimental
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data verification. The availability of simulations using this system will help to better

evaluate the risks and safety issues associated with fires and explosions. Our team

will integrate and deliver a system that will be validated and documented for practical

application to accidents involving both hydrocarbon and energetic materials. This system

will be based on SCIRun.

Although the ultimate C-SAFE goal is to simulate fires involving a diverse range of

accident scenarios including multiple high-energy devices, complex building/surround-

ings geometries, and many fuel sources, the initial efforts will focus on the computation

of three scenarios:

� rapid heating of a container with conventional explosives in a pool fire (e.g., a

conventional bomb involved in an intense jet-fuel fire after an airplane crash),

� impact and ignition of a container with subsequent explosion and firespread (e.g.,

shelling of a mine storage building by terrorists),

� heterogeneous fire containing a high energy device (e.g., ignition of a containment

building in a missile storage area).

These large-scale problems require consideration of fundamental gas and condensed

phase chemistry, structural mechanics, turbulent reacting flows, convective and radiative

heat transfer, and mass transfer, in a time-accurate, full-physics simulation of accidental

fires. This simulation will be expansive enough to include the physical and chemical

changes in containment vessels and structures, the mechanical stress and rupture of

the container, and the chemistry and physics of organic, metallic, and energetic mate-

rial inside the vessel. The simulation will include deflagration-to-detonation transitions

(DDT) of any energetic material in the fire, but the simulation will end when/if detonation

occurs. C-SAFE will provide coupling of the micro-scale and meso-scale contributions

to the macroscopic application in order to provide full-physics across the breadth of

supporting mechanistic disciplines and to achieve efficient utilization of ASCI program

supercomputers.
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10.3 Parallel CSPRINT/Tetrad

The Tetrad application described in Chapter 3 and Chapter 8 has been parallelized

using MPI. This presents a challenge to SCIRun, since SCIRun has focused on shared-

memory machines. Efforts are underway to extend SCIRun to a distributed memory

machine. The parallel version of Tetrad is a driving application for this effort.

10.4 Neuroscience Inverse Problem

Neuroscience inverse problem: Excitation currents in the brain produce an electrical

field that can be detected as small voltages on the scalp. By measuring changes in the

patterns of the scalp’s electrical activity, physicians can detect some forms of neurolog-

ical disorders. Electroencephalograms (EEGs) measure these voltages; however, they

provide physicians with only a snapshot of brain activity. These glimpses help doctors

spot disorders but are sometimes insufficient for diagnosing them. For the latter, doctors

turn to other techniques, in rare cases to investigative surgery.

Such is the case with some forms of epilepsy. To determine whether a patient who is

not responding to medication has an operable form of the disorder, known as temporal

lobe epilepsy, neurosurgeons use an inverse procedure to identify whether the abnormal

electrical activity is highly localized (thus operable) or diffused over the entire brain.

The epileptic foci are represented as a set of idealized dipole sources situated in the

temporal lobe. Using a model of the human skull and brain, the direct EEG problem is

posed by solving generalized Poisson equations for the voltage and current distribution

within the brain and upon the surface of the scalp.

10.5 Inverse-EEG Pipeline

The inverse-EEG problem [129] can be described as the mathematical mapping of

EEG scalp recordings back onto the cortical surface or within the cortex to approximate

fundamental current sources. This inverse problem lies at the foundation of surgical

planning and prognosis for neurological conditions ranging from epilepsy to schizophre-

nia [34] and to brain tumors. The goal of cortical mapping is to integrate patient anatomic

information and measured voltage potential recordings from the surface of the patient’s
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scalp in order to noninvasively determine the electrical activity on and within the patient’s

cortical surface [74].

10.6 Optical Tomography

In collaboration with Martin Schwieger and Simon Arridge at the University College

London (UCL), we have utlized UCL imaging package for absorption and scatter recon-

struction, from time-resolved data (TOAST) [118], and embedded it in the SCIRun inter-

active simulation and visualization package developed at the University of Utah [108].

Reconstruction of a segmented 3D head model is used as an example for demonstrating

the capabilities of the combined TOAST/SCIRun approach. The primary reason for in-

tegrating TOAST into SCIRun is to enable the user to interactively control the modeling,

simulation, and visualization parameters — even while the computation is in progress.

This control allows the user to vary boundary conditions or model geometries or various

computational parameters during the simulation. SCIRun provides full visualization

capabilities together with fast and efficient matrix solvers.

We have performed a preliminary study on the use of advanced 3D Finite Element

modeling, reconstruction, and visualization TOAST-SCIRun software for Optical To-

mography. We should emphasis that several aspects of the case modelled here are too

simplistic, but the ease of integration of existing software and the tractable reconstruction

times obtained suggest that such an approach is promising. We are currently addressing

better meshing strategies, as well as improved reconstruction methods. Furthermore,

more interactive links will be integrated into the TOAST-SCIRun system to take better

advantage of the SCIRun steering capabilities.

10.7 Visualization and Manipulation of
Large-scale Datasets

In addition to the medical simulations described here, SCIRun is also being used

to perform a wide variety of medical visualizations. Since SCIRun is designed for

large-scale problems, it is being successfully applied to visualize large medical imaging

datasets, even when there are not significant components of simulation and modeling.

These datasets are becoming larger at a rapid pace and are quickly outstripping the
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capabilities of currently available systems. Specifically, SCIRun is being used as a

basis for some of the research performed by the Advanced Visualization Technology

Center (http://www.avtc.org). This is a collaboration between the University of Utah, Los

Alamos National Laboratory, and Argonne National Laboratory for developing methods

to interactively visualize and steer multiterabyte datasets.

10.8 Local and Global Visualization Using
Haptic Devices

Currently, most graphical techniques emphasize either a global or local perspective

when visualizing vector or scalar field data, yet ideally one wishes simultaneous access

to both perspectives. The global perspective is required for navigation and development

of an overall gestalt, whereas a local perspective is required for detailed information

extraction. Our approach is to augment a global visual display with local display methods

that combine graphics and haptic displays.

� Using global visualization techniques such as line integral convolution (LIC) [21],

volume rendering [62, 67, 80, 117] and critical point extraction [85], we enable

simultaneous local and global field visualization by allowing the user to introduce

flow advection icons such as streamlines, stream ribbons, streamtubes, and/or col-

ored dyes into the global representation of the vector or scalar field.

� Using a haptic interface, such as the Sarcos Dextrous Arm Master [46] or Phan-

tom [103], we will provide haptic representations of scalar and vector field intensi-

ties in local regions while visualizing the global field [87]. We will also investigate

haptic methods to facilitate visualization of heterogeneous data, such as simultane-

ous scalar and vector fields.

In order to apply local and/or global visualization methods to large-scale 3D data sets in

an interactive manner, we will need to develop new visualization algorithms. In addition,

the human expert will need to have access to computational steering aids in order to

close the loop of simulation and visualization. The haptic and visualization algorithms

will be integrated into SCIRun to allow for rapid feedback when visualization parameters
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are changed, such as the location of a 3D streamline advection widget or the method of

haptic interaction such as mapping to joints or the control law for force display.

10.9 Chapter Summary

In this chapter we described several large-scale scientific, engineering, and med-

ical applications that are being developed within the SCIRun problem solving envi-

ronment. The flexible, extensible, integrated programming environment provided by

SCIRun makes it a natural tool for implementing and interacting with such large-scale

modeling, simulation, and visualization applications.



APPENDIX

SOFTWARE DESIGN

This appendix will describe many of the design choices that were made as we wrote

SCIRun. In particular, we will describe design choices which were changed in the middle

of the project, and design choices that we would reconsider if we were starting the project

again from scratch.

A.1 The C++ Programming Language

In 1994, when we started the development of SCIRun, the C++ programming language

was still very immature. In particular, many features of C++ had not been implemented in

the available compilers.

In particular, the choice of C++ was a controversial choice for implementing scientific

programs. Many have experienced difficulty with the performance of C++ when using it

in this manner. In examining this issue, we found the the lack of performance stemmed

from two issues:

1. Immature optimization in C++ compilers: We addressed this issue by providing C

code kernels for those few portions of the code for which performance was most

critical. In SCIRun, these were the code kernels mentioned in Chapter 6. Current

compilers have addressed this issue to a large degree but have not yet reached

perfection, so the need for the hand-tuned C kernels still exists.

2. Excessive use of abstraction: Many novices haphazardly use all of the nice ab-

stractions which C++ provides. In many cases, they produce very readable programs

which run very slowly. In SCIRun, we have attempted to recognize the costs of

these abstractions and to use them appropriately.
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The C++ programming language has been a good choice. However, newer features,

such as exceptions, namespaces, and member templates, were not completely specified

or not widely available at the time of SCIRun’s inception. SCIRun will likely evolve to

leverage many of these newer programming features.

A.2 Library: Multitask

When SCIRun started, no object-oriented thread libraries were available. Today, the

Java language provides a nice interface to threads. Other libraries in C++ are also under

development. In a future version of SCIRun, we will adopt a Thread library which is

modeled after the Java thread library. It uses the term “Thread” instead of “Task,” since

that has become the term of choice.

A.3 Library: Classlib

The Standard Template Library (STL) has recently emerged as a powerful way of

expressing standard container template objects. SCIRun may evolve to utilize the STL

more completely and may adopt many of its methodologies (i.e., iterators). However, the

STL has a very steep learning curve. It is also unclear how efficient the STL will be in a

high performance computing environment.

Finally, a new implementation of SCIRun would make more extensive use of excep-

tions and namespaces which are now available in most C++ compilers.

A.4 Library: TCL

The very first implementation of SCIRun used a Motif-based user interface. It lever-

aged MiNT [24], an object-oriented wrapper to the Motif libraries. MiNT drastically

reduced the complexity of implementing a Motif user interface, but the process was still

very complex. In particular, callbacks were extremely cumbersome. One was required

to implement a wealth of tiny callback functions in order to implement even the simplest

user interfaces. Since Motif is not multithreaded, the Motif code had to be carefully

managed with locks.

Several months after we started SCIRun, we adopted Tcl/Tk as the user interface. It

was a drastic improvement over Motif. The primary advantage is the reduction in lines of
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code required to implement a user interface. A secondary advantage was the availability

of a scripting language, which we adopted for saving SCIRun networks, for evaluating

expressions, among other uses. We were also able to rapidly prototype user interfaces —

drastically reducing the development cycle time. The layout mechanisms available with

the “pack” mechanism are much simpler than those found in the Motif form. Finally,

Tcl/Tk seems to have a smaller memory footprint than Motif.

However, Tcl/Tk did not solve all problems with the user interfaces. Tcl/Tk is not

thread-safe, so meticulous locking is still necessary. Tcl/Tk is currently very slow, which

limits the rate at which the program can efficiently update the user interface. Since the

user interface is used as a visualization tool to inform the user of the internal state of

SCIRun, we would like to have a more flexible, more efficient interface that can perform

these updates more frequently.

The use of Tcl/Tk also complicates the distribution of a SCIRun “binary,” since the

Tcl script files are required in order to execute SCIRun. However, this is not a major

limitation since a single file could be created that contains all of the Tcl code. It could

also be encrypted or otherwise encoded in order to protect the contents of the Tcl code.

A.5 Library: Dataflow

The “extended ports” described in Chapter 4 are not perfectly general. A newer

system is under consideration where the system can replace the implementation of a port

with different mechanisms (i.e., one for local communication, one for remote, etc.). The

ports should also be able to express a “uses” relationship between modules, in addition

to the client-server and producer-consumer relationships currently utilized.

Ideally, the visual programming interface would reflect these relationships in the

dataflow network.

A.6 Library: Datatypes

Many of the Datatypes mentioned in Chapter 5 have outgrown their initial design.

In particular, the Mesh class is likely to be reconsidered. A newer implementation will

separate the nodes from the mesh, using a “NodeSet” container to hold the nodes. This

will provide a mechanism to share nodes between multiple meshes and even surfaces.
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In addition to this change, we will implement element iterators which will access the

elements of the mesh for algorithms such as isosurfacing which currently subvert the

type system. We will need to experiment with methods to make this efficient.

The Field classes are also likely candidates for redesign. They currently do not make

use of templates which become cumbersome when trying to implement fields of different

numerical representation (i.e., int vs. short vs. double, etc.), and the fields are not

extensible to other types of fields (i.e., colors, tensors, etc.).

Finally, it will probably be a good idea to provide explicit 2D analogs to many of the

3D types provided in SCIRun. Currently, we embed 2D data in 3D fields, but it wastes at

least a factor of two in data storage and it does not provide for the most efficient access

(i.e., tri-linear interpolation instead of bilinear interpolation). As SCIRun becomes used

for other 2D simulations, it makes sense to cure these ills. In addition, we will need to

implement the 2D analogs to many of the modules, most notably a 2D graphical viewer.

A.7 Library: Geom and Module: Salmon

When SCIRun was initially implemented, two libraries were available commercially

for developing 3D graphics applications. Iris Inventor [130] is a scenegraph based

system for representing geometry. However, it is not thread-safe and it was not very

efficient. More recent implementations have addressed the performance issues, but the

issue of thread-safety made the library incompatible with the multithreaded SCIRun

environment. The second system is Iris Performer [101, 112]. It was originally designed

for multithreaded visual simulation systems, so does not suffer from the same limitation

as Inventor. It was also designed for high performance. However, it is consumes a consid-

erable percentage of processor resources. Early versions required that three processors

be dedicated to the Performer rendering pipeline. This is not acceptable on a desktop

system. Current versions now work on desktop systems.

SGI recognizes that neither of these products are sufficient for many systems, includ-

ing SCIRun. SGI has commissioned several efforts to address this problem, including

Cosmo 3D, OpenGL++, and the latest - Fahrenheit. When Fahrenheit materializes, it

will be considered as a suitable replacement for the Geom library which currently suffers
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from a lack of a coherent design. At the same time, the Salmon module will need to be

reimplemented.

A.8 Compatibility with Commercial Systems

We chose to write SCIRun from scratch instead of trying to address the problems with

currently available commercial systems. This allowed us greater freedom in choosing a

solution that may not be compatible with existing commercial code. It was also important

to have access to the source code of the implementation; commercial systems simply do

not have APIs that support the type of changes that we have made with SCIRun.

However, there are many modules written for AVS, Iris Explorer, Data Explorer and

the Visualization Toolkit which may be very useful in the SCIRun environment. If

the project were started over, we would closely examine the possibility of providing

support to utilize these existing modules. It is not clear if the work saved by writing the

compatibility interfaces would be greater than the work saved by reusing the modules.

However, the bigger issues surround the legal ramifications of such a system.

The Visualization Toolkit (vtk) would not suffer from such ramifications, since it is

a public domain system. It has also been a frequently requested addition to SCIRun.

Although it may not be as efficient as SCIRun in some cases, the combination would

allow the adoption of techniques that were developed for vtk.

A.9 Appendix Summary

We have described some of the design decisions made while implementing SCIRun.

Much of the computing world has changed since many of these design decisions were

made, so some of the design many need to evolve. Many of the decisions made in the

future will be driven by those applications described in Chapter 10.
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