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Fuzzing stands as one of the most practical techniques for testing software efficiently. When applying fuzzing
to software library APIs, high-quality fuzzing harnesses are essential, enabling fuzzers to execute the APIs
with precise sequences and function parameters. Although software developers commonly rely on manual
efforts to create fuzzing harnesses, there has been a growing interest in automating this process. Existing
works are often constrained in scalability and effectiveness due to their reliance on compiler-based analysis
or runtime execution traces, which require manual setup and configuration. Our investigation of multiple
actively fuzzed libraries reveals that a large number of exported API functions externally used by various
open-source projects remain untested by existing harnesses or unit-test files. The lack of testing for these API
functions increase the risk of vulnerabilities going undetected, potentially leading to security issues.

In order to address the lack of coverage affecting existing fuzzing methods, we propose a novel approach to
automatically generate fuzzing harnesses by extracting usage patterns of untested functions from real-world
scenarios, using techniques based on lightweight Abstract Syntax Tree parsing to extract API usage from
external source code. Then, we integrate the usage patterns into existing harnesses to construct new ones
covering these untested functions. We have implemented a prototype of this concept named WildSync,
enabling the automatic synthesis of fuzzing harnesses for C/C++ libraries on OSS-Fuzz. In our experiments,
WildSync successfully produced 469 new harnesses for 24 actively fuzzed libraries on OSS-Fuzz, and also 3
widely used libraries that can be later integrated into OSS-Fuzz. This results in a significant increase in test
coverage spanning over 1.3k functions and 16k lines of code, while also identifying 7 previously undetected
bugs.
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1 Introduction
Fuzzing is a widely adopted technique for uncovering vulnerabilities in software by feeding the
target program with a large number of automatically generated inputs. Because of its simplicity,
ease of deployment, and effectiveness in revealing undesired program behaviors, it has gained
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attention in both industry and academia ever since its first introduction in the 1990s [18]. Major
companies like Google [19], Cisco [1], Microsoft [2], and numerous open-source projects[22] have
incorporated fuzzing into their security development practices [17].

In recent years, attention has been paid to the fuzzing of open-source software libraries. As being
the backbone of the modern software ecosystem, it is important that the open-source foundation
be secure and reliable. In response, Google launched the OSS-Fuzz project [22] in 2016 to provide
continuous fuzzing for open-source software libraries. Developers are encouraged to construct
harnesses and integrate their libraries with OSS-Fuzz to expand test coverage. To-date, OSS-Fuzz
supports multiple programming languages and has identified over 36,000 bugs in more than 1,000
open-source projects.
To conduct fuzzing on software libraries, fuzzing harnesses are essential as they provide entry

points for the fuzzer to interact with the library under test. These harnesses essentially consist
of programs containing the desired sequences of library API calls for testing purposes. Creating
an effective fuzzing harness is not trivial, as it requires the developer to understand a library’s
API usage and construct harnesses with appropriate function parameters passing to the API call
sequences.
Despite the extensive effort dedicated to fuzzing open-source libraries at scale, a significant

portion of the code remains uncovered, as highlighted in the OSS-Fuzz report [3]. In our preliminary
study, we examined the usage of 50 C/C++ open-source projects tested on OSS-Fuzz in comparison
to their external usage. Surprisingly, we discovered over 1,000 library APIs utilized by other projects
that are not covered by either OSS-Fuzz or the library’s internal test cases. As being publicly
accessible APIs, it is reasonable to construct clear and effective harnesses for these untested APIs,
not solely relying on the chances of these functions being deeply embedded in the existing harnesses
to be accessed by conventional fuzzers. Although multiple tools have been proposed to generate
fuzzing harnesses based on the consumer code of the library, most of them rely on compiler-based
analysis, such as runtime instrumentation or LLVM-based analysis, on the external projects to
extract the API usage [6, 12, 28]. This limits the ability of existing methods to scale up without
significant manual intervention.

Unlike prior works that attempt to capture complete API call sequences from external projects,
we propose a new approach to automatically synthesize fuzzing harnesses for untested functions.
Our approach leverages the usage of these untested functions in real-world consumer code, along
with the workflow embedded in existing harnesses. We have observed that many libraries build
their core functionalities based on constructing library-specific non-primitive type data structures.
Within a library, functions accepting parameters of the same non-primitive data types often exhibit
shared data semantics. By utilizing existing harnesses that facilitate the conversion of fuzz inputs
into these specialized data structures, we can effectively test previously uncovered functions that
also accept the same data structures. Since these core data structures have already been instantiated
within the existing harnesses, our analysis can be confined to a small subset of the external codebase
to infer the correct API usage patterns. This enables us to identify the necessary preconditions and
constraints required to invoke the newly targeted APIs in a manner consistent with their intended
usage, without the need for extensive analysis of the whole consumer codebase.

With this approach in mind, we have developed WildSync to automatically synthesize fuzzing
harnesses for untested library APIs with their usage in the wild. WildSync begins by searching for
external usage of the target library based on the library dependency information acquired from a
Linux distribution’s package manager. It then extracts the usage of a target library from the source
code of the dependent libraries. By relying on data flow analysis based on Abstract Syntax Tree
(AST) parsing, WildSync extracts the API usage from the external source code. This lightweight
static code analysis approach allows WildSync to scale up easily without requiring compiled
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information from the consumer code. With WildSync, we demonstrate that today’s ubiquitous
software reuse is an opportunity for automating fuzzing harness generation, while also provide
a way to examine the correctness of library usage throughout the nowadays complex software
supply-chain.
To showcase the effectiveness and practicality of our approach, we applied WildSync to 24

existing C/C++ libraries continuously fuzzed on OSS-Fuzz. WildSync automatically searched for
untested API usage in the wild and synthesized new fuzzing harnesses for these libraries. We
also selected 3 widely used open-source libraries currently not on OSS-Fuzz to demonstrate the
workflow of using WildSync to generate harnesses from scratch. With the aid of WildSync, 469
new harnesses were created, which achieves up to 400% improvement in test coverage for these
libraries. Despite the fact that most libraries have been extensively fuzzed on OSS-Fuzz, we are
able to identify 7 new bugs with the new harnesses generated by WildSync after a manual review
of the results.

In summary, this paper makes the following contributions:
• We propose a new approach to automatically generate fuzzing harnesses by leveraging the
usage of untested functions from real-world scenarios. Our approach is purely a language-
level technique, without the need for non-standard build artifacts or specialized but often-
unavailable testing frameworks.
• We have developed an automatic harness synthesis tool, WildSync, designed to generate
fuzzing harnesses for C/C++ libraries. In our evaluation, WildSync successfully synthesized
in total of 469 new harnesses for 27 open-source libraries. This results in an increase of nearly
20k lines of code coverage and the discovery of 7 new bugs.
• We make WildSync publicly available at: https://github.com/spencerwuwu/WildSync.

2 Background Knowledge & Challenges
2.1 Background Knowledge
Fuzzing refers to testing a program by providing it with random or semi-random data as input.
A fuzzer begins by executing the program with an initial set of seed inputs. While executing
the program, the fuzzer monitors the code coverage and generates new inputs likely to reach
unexplored code areas. These new inputs are then executed, providing additional information for
the fuzzer to generate further inputs.
To conduct fuzzing on software libraries, fuzzing harnesses play a crucial role in enabling fuzz

testing of software libraries by serving as designated entry points through which the fuzzer interacts
with the library under test. A conventional fuzzing harness typically consists of the following
structure:
(1) Init: Consume a data buffer (fuzz input) and initialize the corresponding data structure for

the library APIs based on the input data.
(2) Process: Validate the correctness of the given data format and execute multiple operations

with the library APIs that developers wish to test.
(3) Destroy: Destroy any data structures created and free up memory space.

2.2 Challenges for Synthesizing Fuzzing Harnesses
While the concept of fuzzing may seem straightforward, creating effective fuzzing harnesses for
libraries at scale is far from trivial. Developers encounter several challenges when creating effective
fuzzing entry programs, whether done manually or automatically:
• API call sequences: The harness should invoke API sequences in a manner that accurately
reflects how the target library should be used, ensuring efficient testing of library usage.
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• Function parameters: Constructing harnesses requires careful consideration of the appro-
priate function parameters to pass to the API call sequences.

Multiple research works [6, 12, 26, 28, 29] have been presented to try to capture the usage of these
API sequences from various sources of consumer code and convert them into harnesses. However,
existing implementations often rely on compiler-based analysis of external projects, which can
be limited to specific environments or difficult to scale up. Even when compiled information is
available, the extracted API sequences may be overly lengthy, or the API usage may be scattered
across the codebase, making it challenging to track relations. Several tools even require developers
to fine-tune the harnesses manually [6, 12], or to provide additional information to guide the
generation process [13, 14], which creates additional overhead and may not be feasible for large-
scale automation.

Another direction of the proposed works involves analyzing the internal code of the library [8, 11,
15]. Harnesses generated by these tools could be biased on the internal developers’ understanding
of the library, or being diverged from how the library is actually used in practice.

3 WildSync’s Approach

1 // int ov_time_seek(OggVorbis_File ∗vf, double s);
2
3 bool VorbisDecoder::seek(double s)
4 {
5 int result = 0;
6
7 // Avoid ov_time_seek (which calls ov_pcm_seek) when seeking to 0, to avoid
8 // a bug in libvorbis <= 1.3.4 when seeking to PCM 0 in multiplexed streams.
9 if (s <= 0.000001)
10 // ....
11 else
12 result = ov_time_seek(&handle, s);
13 // ...

Listing 1. External usage of ov_time_seek

The design of WildSync originated from the observation that many libraries construct their
core functionalities using custom non-primitive type data structures. Within a library, functions
accepting parameters of the same non-primitive data types often imply commonalities in their
usage patterns. For instance, the gdImagePtr data structure in the libgd library is utilized across
multiple API functions to manipulate images, while struct archive and struct archive_entry
in libarchive handle all archive file operations.

As the core purpose of fuzzing harnesses is to convert fuzzing inputs into these data structures,
and then exercise the library APIs with them. For the libraries that exhibit such patterns, we can
leverage the existing harnesses that initialize the data structures and test more APIs that accept the
same data structures.
To achieve this, we group API functions based on the data structures they accept and further

categorize them into 3 types of functions as discussed in Section 2.1: init, process, and clean-up. As
init and clean-up functions are responsible for setting up the fuzzing process correctly, we consider
them non-trivial to automatically generate harnesses for, which requires careful engineering.
Conversely, the process type of functions that accept the same function parameters are suitable
candidates for substitution or combination and can be fuzzed in a meaningful manner. We propose
to synthesize new harnesses for the process functions by mimicking the workflow of existing
ones, thereby extending the previous efforts conducted by the developers to test the library usage
comprehensively.

As these untestedAPIs serve different functionalities, they naturally require additional parameters
not present in the existing harnesses. Moreover, there may be additional constraints that must be

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA043. Publication date: July 2025.



WildSync: Automated Fuzzing Harness Synthesis via Wild API Usage Recovery ISSTA043:5

satisfied to call these functions correctly. We propose to extract the external usage of these untested
APIs, identify the additional parameters suitable for fuzzing, while adhering to any constraints
specified in the external source code. We illustrate this process with Listing 1, which showcases
an external code snippet utilizing the ov_time_seek function from the vorbis library. Assuming
that the existing harness of vorbis covers the initialization of the OggVorbis_File data type, our
objective is to extend it to fuzz the ov_time_seek function. In the code snippet, we observe that
the function ov_time_seek is called with an additional double parameter s. While we cannot infer
the exact value of this parameter from the code snippet alone, we can populate it with fuzzing
input to robustly test the function. At the same time, we should also include the condition check
applied to the parameter s in the external code, so that the API can be called correctly without
triggering known limitations or redundant crashes.

With this model in mind, we move away from the traditional approach of capturing and creating
complete API call sequences. Instead, we focus on analyzing the surrounding code snippets to
extract the necessary semantics for correct API usage. To achieve this, we developed a lightweight
analysis tool that extracts the Abstract Syntax Tree (AST) of the relevant code snippets. As long
as the analyzed code is syntactically correct, we can extract the required information to generate
harnesses for the target API functions. This approach scales efficiently since it eliminates the need
to compile the entire codebase for usage extraction — a task that would require significant effort.
Instead, we can collect usage patterns at scale, enabling broader and more efficient analysis.

4 Design of WildSync
With the presented idea in mind, we have designed WildSync to automatically synthesize fuzzing
harnesses for untested functions. The workflow of WildSync is depicted in Figure 1.

Fig. 1. Workflow of WildSync.

First, WildSync employs several filters to identify target functions for which harnesses need
to be synthesized. Subsequently, WildSync extracts the usage of the target functions from the
source code of the dependent libraries using Abstract Syntax Tree (AST) parsing and variable data
flow analysis. Based on the extracted code, WildSync determines the new variables that need to
be fuzzed. After that, WildSync synthesizes new fuzzing harnesses for the untested functions
by integrating the extracted usage into new harnesses based on existing ones. A try-compile and
try-fuzz procedure is conducted to eliminate invalid harnesses.
Regarding the source of external usage of the target function, WildSync leverages a Linux

distribution’s package manager and retrieves all other open-source projects1 that are using the
library under test. This source of information is chosen for inferring external usage of libraries due
to its reliability and public availability.

1Included as packages available for this distribution.
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4.1 Target Function Selection
The first step of WildSync is to identify the target functions for which harnesses need to be
synthesized from all the untested functions. As described in Section 3, we categorize the library
APIs into 3 types: init, process, and clean-up functions. This is done naively based on their names;
for example, functions with "create" in their name are categorized as init functions, while those with
"destroy" are considered clean-up functions. Currently, we focus solely on synthesizing harnesses
for the process functions and exclude the other two types of functions. We consider the other two
types out of the scope of the current design of WildSync. Error handling and some I/O related
functions are also excluded from the synthesis process as they are not the main target of fuzzing.
The list of keywords we use to categorize functions can be found in Table 1.

Additionally, WildSync applies a filter to remove uninteresting functions to be fuzzed based on
the function’s structural complexity and the number of additional function calls it makes. For the
current implementation, we keep only functions that have at least one function call, branch, loop,
or have more than 5 lines of code in the function body.

Table 1. Keywords to match in function name to group APIs into different categories.

Category Keywords
Init create, init, new, alloc, open
Clean-up destroy, free, close, delete

Excluded errno, error, print, dump, geterr, cancel, write, pathname, timeout, file, handler,
strerror, perror, exporter, display

Once the target functions are identified, WildSync matches them with existing harnesses. It
extracts all function signatures from the target library’s source code and compares the data types
of their parameters. Each target function is then paired with the existing harness that initializes the
highest number of the same library-specific non-primitive data types used as function parameters.
For primitive data types, WildSync in general does not attempt to match them with existing
ones and seeks to initialize them with external usage. However, if the function signatures being
matched contain not only identical data types but also identical names for these primitive data type
parameters, WildSync will instead directly use these values from the existing harness instead of
trying to initialize them. Functions without a matching harness are excluded from the synthesis
process.

4.2 Target Function Usage Extraction
The purpose of extracting the usage of the target function in real-world scenarios is to capture the
correct procedure to set up function parameters that are not initialized in the existing harnesses.
Since single external code snippets may contain numerous other libraries or variables that are not
locally defined, the current design of WildSync extracts the minimal size of code while retaining
the essential initialization and constraints before passing these function parameters to the target
function.
Step 1: Marking Data Dependent Statements. To accomplish target function usage extraction,
WildSync first constructs a Control Flow Graph (CFG) and a Data Flow Graph (DFG) based on
the Abstract Syntax Tree (AST) of the external code snippet calling the target function. Each node
in the CFG and DFG represents a statement in the code snippet. For each function parameter
not initialized in the existing harnesses, WildSync utilizes a backtracing algorithm on the DFG
to obtain the dependency def-use chain from the target function to the first use of this function
parameter. The backtracing algorithm is outlined in Algorithm 1. It begins from the target function
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call in the DFG, and traces back each parent node. When a parent node has data dependency with
the current node on the function parameter currently tracking, WildSync marks the parent node as
a required data-dependent statement to be extracted later. The procedure halts upon reaching the
first use of this function parameter within the external code snippet, whether it’s the declaration of
or undefined locally (such as being a global variable).

1 void external_usage(my_lib_st data,
int param1, double param2) {

2
3 int a = mylib_process1(param1);
4 char ∗c = NULL;
5 int unrelated = unrelated_func(a);
6 if (a > 0) {
7 float b = unknown_func(param2);
8 mylib_init(&c);
9 mylib_target(data, a + b, c,

MYLIB_FLAG);
10 } else {
11 do_something_else();
12 }
13 }

→

1
2
3 int a =

mylib_process1(param1);
4 char ∗c = NULL;
5
6 if (a > 0) {
7 float b =

unknown_func(param2);
8 mylib_init(&c);
9 mylib_target(data, a +

b, c, MYLIB_FLAG);
10 }

→

1 int param1 = {<int> to be
filled};

2
3 int a = mylib_process1(param1);
4 char ∗c = NULL;
5
6 if (a > 0) {
7 float b = {<float> to be

filled};
8 mylib_init(&c);
9 mylib_target(data, a + b, c,

MYLIB_FLAG);
10 }

(a) Marking statements to extract (b) Handle variable declaration initialization (c) Extracted code snippet

Fig. 2. Example of extracting external usage of mylib_target. Assuming variable data will be provided by

the existing harness synthesizing with. (a) marks the depended statements (data-flow dependency marked in

blue and control-flow in green). (b) shows the variables that need to be declared and initialized (blue is the

variable required declaration; red is an unknown function as an assignee to be removed; green is an identified

macro to be kept in place). (c) shows the extracted code snippet.

Fig. 3. Data Flow Graph (DFG) of the external code snippet in Figure 2 (a).

This process is illustrated with an example in Figure 2 (a), alongside with the corresponding
DFG in Figure 3. In the example, the target function is mylib_target, and data is a function
parameter already initialized in the existing harnesses. The objective here is to extract how this
external code initializes other variables passing to mylib_target. After applying the backtracing
algorithm, WildSync marks the statements at Line 3, 4, 7, and 8, which we highlight in blue. It
is noteworthy that the current implementation of WildSync aims to minimize the size of the
extracted code snippet. The tracing algorithm only tracks code statements directly altering the
value of the function parameters, disregarding any potential side effects for all other code ignored.
For instance, Line 5 will be excluded during backtracing from mylib_target as it does not alter
any value passing to mylib_target, despite its association with the a variable.
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Step 2: Completing Control Flow Structure. After analyzing the data dependency, the next
step is to complete the extracted code snippet by addressing CFG dependencies. As the DFG
backtracing algorithm only captures the collection of data-dependent statements, WildSync needs
to reconstruct the control flow structure among these lines. The algorithm for this process is shown
in Algorithm 2. This step aims to capture the control flow structure (e.g. if-else conditions, loops,
etc) among the marked data-dependent statements. Similar to the DFG backtracing algorithm,
WildSync starts from the target function call in the CFG and traces backward to each parent node.
If the edge between the current node and its parent node is a conditional edge, plus there exists a
marked data-dependent statement with a line number smaller than the current node, WildSync
marks this parent node as a required control statement. The result of applying this algorithm on
the example code in Figure 2 (a) is marked in green. Specifically, the if condition in Line 6, situated
between marked Line 3 and Line 8, is determined to be an essential control statement and thus
included in the extracted code snippet.

Algorithm 1 Backtracing from target API in DFG to mark data
dependent statements

𝑛𝑒𝑤_𝑛𝑜𝑑𝑒𝑠 ←[target function statement in DFG]
𝑣𝑎𝑟 ← name of the variable backtracing
𝐷𝐹𝐺_𝑚𝑎𝑟𝑘𝑒𝑑_𝑛𝑜𝑑𝑒𝑠 ← []
while 𝑛𝑒𝑤_𝑛𝑜𝑑𝑒𝑠 do

𝑐𝑢𝑟_𝑛𝑜𝑑𝑒 ← 𝑛𝑒𝑤_𝑛𝑜𝑑𝑒𝑠.𝑝𝑜𝑝 ( )
for each 𝑝𝑎𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒 of 𝑐𝑢𝑟_𝑛𝑜𝑑𝑒 do

if has_seen(𝑝𝑎𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒) then
continue

end if

if ℎ𝑎𝑠_𝑑𝑎𝑡𝑎_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦(𝑝𝑎𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒 , 𝑐𝑢𝑟_𝑛𝑜𝑑𝑒 ,
𝑣𝑎𝑟 ) then

𝐷𝐹𝐺_𝑚𝑎𝑟𝑘𝑒𝑑_𝑛𝑜𝑑𝑒𝑠.𝑎𝑑𝑑 (𝑝𝑎𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒 )
𝑛𝑒𝑤_𝑛𝑜𝑑𝑒𝑠.𝑎𝑑𝑑 (𝑝𝑎𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒 )

end if

end for

end while

return 𝐷𝐹𝐺_𝑚𝑎𝑟𝑘𝑒𝑑_𝑛𝑜𝑑𝑒𝑠

Algorithm 2 Backtracing CFG from data dependent statements to mark
control flow dependency

𝑛𝑒𝑤_𝑛𝑜𝑑𝑒𝑠 ←[target function statement in CFG]
𝑐𝑜𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙_𝑒𝑑𝑔𝑒𝑠 ←[conditional edges e.g. "if_pos", "if_neg"]
𝐶𝐹𝐺_𝑚𝑎𝑟𝑘𝑒𝑑_𝑛𝑜𝑑𝑒𝑠 ← []
while 𝑛𝑒𝑤_𝑛𝑜𝑑𝑒𝑠 do

𝑐𝑢𝑟_𝑛𝑜𝑑𝑒 ← 𝑛𝑒𝑤_𝑛𝑜𝑑𝑒𝑠𝑠.𝑝𝑜𝑝 ( )
for each 𝑝𝑎𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒 of 𝑐𝑢𝑟_𝑛𝑜𝑑𝑒 do

if has_seen(𝑝𝑎𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒) or
𝑝𝑎𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒.𝑙𝑖𝑛𝑒𝑛𝑜 ≥ 𝑐𝑢𝑟_𝑛𝑜𝑑𝑒.𝑙𝑖𝑛𝑒𝑛𝑜 then

continue ⊲ Check lineno to avoid loop
end if

𝑒𝑑𝑔𝑒_𝑡𝑦𝑝𝑒 ← type of edge from 𝑝𝑎𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒 to 𝑐𝑢𝑟_𝑛𝑜𝑑𝑒
if 𝑒𝑑𝑔𝑒_𝑡𝑦𝑝𝑒 is 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑒𝑑𝑔𝑒𝑠 and
∃ 𝐷𝐹𝐺_𝑚𝑎𝑟𝑘𝑒𝑑_𝑛𝑜𝑑𝑒.𝑙𝑖𝑛𝑒𝑛𝑜 < 𝑝𝑎𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒.𝑙𝑖𝑛𝑒𝑛𝑜

then

𝐶𝐹𝐺_𝑚𝑎𝑟𝑘𝑒𝑑_𝑛𝑜𝑑𝑒𝑠.𝑎𝑑𝑑 (𝑝𝑎𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒 )
end if

𝑛𝑒𝑤_𝑛𝑜𝑑𝑒𝑠.𝑎𝑑𝑑 (𝑝𝑎𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒 )
end for

end while

return𝐶𝐹𝐺_𝑚𝑎𝑟𝑘𝑒𝑑_𝑛𝑜𝑑𝑒𝑠

Step 3: Complete Variable Declaration and initialization. With the extracted code, WildSync
proceeds to complete the extracted code snippet by adding missing variable declarations and
marking locations required for value assignments. These marked locations will later be assigned
with values during the synthesis of the new harnesses. To achieve this, WildSync constructs a
new AST and executes the following steps: (1) Removal of unknown functions and (2) Declaration
and initialization of unseen variables.
First, WildSync imports the symbols of functions exported by the target library as well as

common standard libraries in order to preserve the code sections referencing these functions in
the extracted code snippet. Other functions that are not declared within these scopes are directly
removed for being unrelated to the current approach. If a removed function acts as an operand to
another value assignment, this location is marked for later assignment. Next, WildSync declares
and initializes all the variables that are not defined in the extracted code snippet. For declaration, if
the variable appears in the external code snippet but is not defined locally, WildSync reinstates the
declaration with the same type. If the variable is not defined in the external code snippet, it may
be a global variable or a value accessed by pointers and structures, In this case, WildSync simply
declares them as random integers or pointers to memory with arbitrary values. After declaring all
missing variables, WildSync marks the locations where value initialization is required along with
the types to be assigned. For macros, WildSync applies simple heuristics to distinguish them and
keeps them as they are in the extracted code snippet.
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In Figure 2 (b) and (c), we illustrate the process of completing variable initialization.

4.3 Fuzzing Harness Synthesis
After obtaining the extracted code snippet, we attempt to synthesize new harnesses by integrating
the extracted usage with existing ones. First, based on the previous matching candidates described
in Section 4.1, WildSync places the extracted code snippet into the existing harnesses at the
location where the matched core data structures are initialized. The current strategy is to insert
the extracted code snippet into the existing harnesses instead of replacing anything to minimize
potential side effects. The variable names of these core data structures within the extracted code are
replaced with the ones in the original harness. Variable name collisions are resolved by renaming
the variables in the extracted code snippet.
Next, WildSync attempts to provide values for the variables that need initialization in the

extracted code snippet. This is achieved by splitting the data bytes provided by the fuzzer into
different chunks, and assigning them to the marked locations according to the requested types. As
the current implementation of WildSync targets libFuzzer-style harnesses, this is accomplished by
rewriting the harness entry point LLVMFuzzerTestOneInput. Figure 4 demonstrates the synthe-
sized harness for the example external code snippet from Figure 2. WildSync synthesizes the new
harness by inserting the extracted code snippet into the existing harness, and then splitting the
original input data buffer into different chunks and assigning them to the marked locations.
1 extern "C" int LLVMFuzzerTestOneInput(const uint8_t ∗_DATA, size_t _LEN) {
2 // Splitting the input data, need an extra <int> and <float>
3 if (_LEN < sizeof(int) + sizeof(float) + 1) return 0;
4 const uint8_t ∗_DATA_POINTER = _DATA;
5
6 int __fuzz_0;
7 memcpy(&__fuzz_0, _DATA_POINTER, sizeof(int));
8 _DATA_POINTER += sizeof(int);
9
10 float __fuzz_1;
11 memcpy(&__fuzz_1, _DATA_POINTER, sizeof(float));
12 _DATA_POINTER += sizeof(float);
13
14 // End splitting data by redirecting the original function parameters
15 const uint8_t ∗data = _DATA_POINTER;
16 size_t len = _LEN − (sizeof(int) + sizeof(float));
17 if (len < 1) return 0;
18 my_lib_st a = mylib_initdata(data, len);
19 if (!a) return 0;
20
21 int param1 = __fuzz_0;
22 int _a = mylib_process1(param1); // Fixing name collision
23 char ∗c = NULL;
24 if (_a > 0) {
25 float b = __fuzz_1;
26 mylib_init(&c);
27 mylib_target(a, _a + b, c, MYLIB_FLAG); // Subsitute matched variable
28 }
29 mylib_do_something(a);
30
31 mylib_destroy(a);
32 return 0;
33 }

Fig. 4. Example of new harness synthesis from Figure 2. The gray areas are the new synthesized code and

white is the original harness. WildSync first splits the original input data into two parts, an integer and a

float (marked in red), in order to fill in the values marked in the extracted code snippet. Then insert the

rewritten extracted API call.

For simplicity and efficiency when exploring target functions, WildSync synthesizes one harness
for each target function instead of combining multiple target functions into one harness.
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4.4 Invalid Harness Deduction
In the process of synthesizing new harnesses, WildSync may substitute unknown variable types
with integer or arbitrary chunks of data, potentially leading to invalid harnesses that do not properly
initialize data structures passed to the target function. Therefore, after all harnesses have been
synthesized, WildSync performs a try-compile and try-fuzz step to eliminate these invalid ones.

During the try-compile stage, most of the invalid harnesses are removed as they failed to compile
due to inconsistent type casting or other syntax errors. Try-fuzz further provides an opportunity
for developers to manually tweak the harnesses, with immediate crash feedback after running the
fuzzer. This allows developers to refine the harnesses for APIs that have implicit constraints not
captured by the current design of WildSync.

5 Evaluation
In this section, we’ll start by providing an overview of the implementation details of WildSync.
Next, we’ll delve into evaluating its effectiveness in both test coverage and bug discovery.

5.1 Implementation of WildSync
We developed WildSync primarily in Python, comprising approximately 5,000 lines of code in total.
At the moment, WildSync focuses on generating harnesses for C-style library APIs, and utilities
existing harnesses from libraries hosted on OSS-Fuzz. We retained all the compiling options and
initial fuzzing seed selections, making minor modifications to the scripts for each library under test
to incorporate the new harnesses.

5.1.1 Target Function Selection. The initial step of WildSync involves identifying the exposed
APIs and selects those for which harnesses will be synthesized for. To identify the exposed APIs,
all exported function symbols of the library compiled binary are considered as potentially exposed
API. Next, WildSync determines the functions it can synthesize harnesses for by comparing the
function parameters with those covered in the existing harnesses. As outlined in Section 4.1, init,
clean-up, and error-handling related functions are excluded from selection based on their names.

5.1.2 Target Function Usage Extraction & Harness Synthesis. WildSync retrieves the usage of the
target functions from external code sources. This involves fetching the source code of open-source
projects that depend on the library under test, leveraging the package management system of
ArchLinux to identify the dependencies. The core engine of analyzing Control-Flow Graph (CFG)
and Data-Flow Graph (DFG) with a lightweight Abstract Syntax Tree (AST) parser is built on top
of COMEX [9], a Python wrapper for the tree-sitter [4] parser generator. Approximately 2k lines
of Python code was added to COMEX to support C/C++ syntax. The implementation of program
slicing and new harness synthesis comprises around 3k lines of Python and shell scripts.

5.2 Experiment Setup
In this section, we present the evaluation of WildSync in the following aspects:
• Automation & Design How many new target functions can WildSync extract external
usage for and synthesize harnesses?What level of human effort is still required in the process?
(Section 5.3)
• Effectiveness What is the effectiveness of the new harnesses synthesized by WildSync in
terms of increased test coverage and bug discovery? (Section 5.4)
• Comparison How does WildSync compare to other approaches for automatic harness
generation? (Section 5.5)
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All our experiments are conducted on cloud machines with 32-core Intel Xeon Gold 6142 CPUs
at 2.6 GHz and 384GB of ECC DDR4-2666 memory provided by Cloudlab [10].

5.3 Synthesizing Fuzzing Harnesses with WildSync
To evaluate the effectiveness and practicality of WildSync, we widely selected 24 C/C++ projects
from OSS-Fuzz to synthesize new harnesses. Firstly, as WildSync utilizes ArchLinux’s package
manager, Pacman, to identify library dependencies, we found in total of 54 libraries on OSS-Fuzz
with such matches. Next, we removed 20 libraries that were not suitable for harness synthesis based
on the criteria discussed later in Section 6.4. After that, we focused on libraries with less than 70%
existing test coverage on OSS-Fuzz, and exclude the libraries without functions to synthesize for.

Additionally, we synthesized harnesses for 3 libraries from Pacman that are not on OSS-Fuzz but
actively maintained and widely used. These libraries are chosen for that they provide clear example
code that we can easily create base harnesses with, and then we apply WildSync to synthesize
more. In total, we include 27 open-source projects as target libraries to fuzz in our evaluation. It
contains a wide category of libraries including compression, format parsing, media processing, etc.

The initial step of WildSync is to search for the exposed APIs and their external usage.WildSync
fetched the source code of external projects depending on the target libraries, resulting in 304
projects retrieved for the 27 libraries. For each library, WildSync identified the exposed APIs and
selected untested ones to synthesize harnesses with. This process selected 1174 APIs as potential
targets among the 27 selected libraries.
Next, WildSync extracted the usage of the target functions from the external projects and

synthesized new harnesses for them. Following the synthesizing process, WildSync automatically
detected and removed invalid harnesses. AsWildSync substitutes unknown variables and data types
for integers and memory chunks, most of the invalid harnesses are eliminated for inconsistent type
casting. After removing the non-compilable ones, WildSync successfully synthesized harnesses
for 469 APIs. Each individual harness is created within a 30-second timeout, including the process
from extracting target function usage, and data-flow analysis, to harness synthesis.

The process of synthesizing new harnesses is fully automated, with minimal human intervention
required to incorporate the new harnesses into OSS-Fuzz’s compile pipeline. Additionally, as
most APIs are used in more than one external project, WildSync will be collecting them all and
synthesizing multiple harnesses for one API. To effectively conduct the evaluation, we performed
an additional manual review to select the most concise harness for each function. This review
process required less than 1 hour in total for all 27 target libraries. In reality, the manual review
process may not be necessary, as this can be further automated by implementing heuristics to keep
all diverse harnesses to fully test the usage of the APIs, and exclude harnesses with exact duplicated
usage.
The latter part of invalid harnesses deduction involves a try-fuzz of the harnesses, allowing

developers to inspect harnesses that crashed immediately after fuzzing started. During this stage, all
spurious crashes were identified, which we will discuss in Section 5.4.2. Additionally, 4 assertions
were raised from json-c and 1 in cairo due to certain data structures not matching specific
conditions when being passed to the target functions. These harnesses were manually fixed by
adding checks before calling the target functions and re-entered into the pipeline for fuzzing.

Automation of WildSync: WildSync demonstrates its capability by automatically synthesizing new
harnesses for 469 untested APIs spanning 27 libraries. This process demands minimal human intervention,
primarily involving the addition of new harnesses to the existing OSS-Fuzz setup and the removal of
redundant harnesses.
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5.4 Effectiveness of WildSync
In the next section of the evaluation, we conducted fuzzing experiments with both the original OSS-
Fuzz harnesses and the newly synthesized ones using libFuzzer. For the 3 additional libraries that
are not on OSS-Fuzz, the original "OSS-Fuzz harness" column stands for the number of harnesses
we manually constructed based on the example code provided by the library. These experiments
ran for 24 hours across 5 rounds, using identical sets of initial seeds for harnesses under the same
library.WhileWildSync ’s synthesized harnesses are inherently compatible with most conventional
fuzzers, we used libFuzzer due to its prominence in library testing. The outcome of the experiment
is summarized in Table 2.

Table 2. Coverage increase of new harnesses synthesized with WildSync. The first part shows the coverage

increase of the libraries already on OSS-Fuzz. The second manual section is the results of 3 libraries we

started from stretch. We manually created initial harnesses from the example code provided by the developers,

then expanded the API covered with WildSync. Each harness is fuzzed for 24 hours, 5 rounds with libFuzzer.

UC = Total unique crashes, S = Spurious crashes, N = Normal crashes with timeout/out-of-memory, B =

Crashes reported as bugs after manual review.

# API covered Line Coverage (avg) Function Coverage (avg) Crashes

Target Library

OSS-Fuzz WildSync OSS-Fuzz WildSync OSS-Fuzz WildSync #UC (S/N/B)

cairo 23 +56 12,366 +878 (+7.10%) 1,014 +97 (+9.58%) 0 (0,0,0)
cjson 6 +8 979 +183 (+18.69%) 31 +19 (+61.29%) 4 (0,4,0)
fribidi 3 +3 1,101 +144 (+13.08%) 20 +7 (+35.00%) 3 (0,3,0)
gdk-pixbuf 17 +14 1,593 +218 (+13.71%) 87 +13 (+14.71%) 8 (2,6,0)
json-c 4 +11 1,362 +544 (+39.94%) 68 +47 (+69.12%) 1 (0,1,0)
krb5 25 +5 6,561 +956 (+14.57%) 550 +64 (+11.64%) 1 (0,1,0)
lcms 67 +26 10,550 +400 (+3.79%) 714 +15 (+2.04%) 9 (0,8,1)
leptonica 278 +9 27,363 +897 (+3.28%) 1,168 +44 (+3.77%) 7 (1,6,0)
libarchive 33 +8 14,688 +1787 (+12.17%) 696 +44 (+6.32%) 7 (0,7,0)
libass 13 +4 6,415 +113 (+1.76%) 371 +8 (+2.10%) 4 (3,1,0)
libgd 8 +6 1,658 +62 (+3.75%) 79 +9 (+11.14%) 6 (0,6,0)
libheif 40 +3 4,200 +1366 (+32.53%) 338 +139 (+41.15%) 0 (0,0,0)
libpcap 9 +11 7,776 +1094 (+14.07%) 242 +40 (+16.52%) 3(0,3,0)
libplacebo 27 +4 2,258 +125 (+5.53%) 197 +12 (+5.88%) 2 (0,0,2)
libpng 21 +28 5,171 +381 (+7.37%) 161 +29 (+18.16%) 1 (0,1,0)
libsoup3 7 +14 99 +414 (+416.70%) 11 +32 (+287.27%) 4 (3,0,1)
libtiff 8 +14 12,981 +235 (+1.81%) 402 +21 (+5.22%) 14 (0,14,0)
libvnc 4 +13 871 +650 (+74.57%) 54 +29 (+54.37%) 16 (2,13,1)
libyang 11 +72 11,260 +3,047 (+27.06%) 469 +162 (+34.54%) 7 (6,1,0)
lmdb 13 +13 2,065 +341 (+16.51%) 78 +17 (+21.23%) 0 (0,0,0)
mxml 2 +12 1,087 +203 (+18.71%) 39 +11 (+28.57%) 13 (1,12,0)
vorbis 3 +6 2,463 +44 (+1.77%) 96 +7 (+7.29%) 0 (0,0,0)
yyjson 6 +29 3,795 +341 (+8.98%) 128 +235 (+183.59%) 2 (1,1,0)
zlib 29 +22 3,350 +209 (+6.23%) 94 +20 (+21.06%) 2 (1,1,0)
total 657 +391 142,013 +14,632 (+10.30%) 7,107 1,119 (+15.74%) 114 (20,89,5)

manual WildSync manual WildSync manual WildSync

libcue 2 +4 251 +78 (+31.08%) 31 +6 (+19.35%) 1 (0,0,1)
libharu 33 +40 1,845 +604 (+32.72%) 137 +40 (+29.20%) 19 (8,11,0)
libxmlb 15 +34 1,423 +1623 (+114.07%) 116 +136 (+117.47%) 32 (2,27,3)
total 50 +78 3,519 +2,305 (+65.50%) 284 +182 (+64.10%) 52(10,38,4)
All total 707 +469 145,532 +16,937 (+11.64%) 7,391 +1,301 (+17.60%) 166 (30,127,9)

5.4.1 Coverage Improvement. From Table 2, substantial increases in both line and function coverage
can be observed across various libraries. For libraries that have already undergone extensive fuzzing,
such as leptonica having as many as 45 harnesses, the absolute coverage improvements remain
remarkable.
However, it’s important to note that the number of newly covered functions doesn’t always

directly correspond to the addition of new APIs. For example, in the case of libpng, the selected
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new APIs primarily consist of shallow functions with limited additional function calls, resulting in
the coverage of only 29 new functions across 28 newly synthesized harnesses. In vorbis, the low
ratio of new APIs to coverage is due to the need for different options to be set during initialization,
a feature not yet supported by the current implementation of WildSync.
Regarding gdk-pixbuf, some of the new harnesses are derived from existing ones that are not

fully covered in the current OSS-Fuzz setup. Addressing bottlenecks in the original harnesses
could unlock further coverage potential. In contrast, despite introducing only 3 new API entries in
libheif, the synthesized harnesses achieve a substantial 139 new function coverage. This highlights
the efficacy and potential of WildSync in enhancing test coverage and identifying unexplored
areas in software libraries.

Coverage Improvement of WildSync: Based on the existing harnesses, WildSync successfully
synthesized new harnesses for 469 APIs across 27 libraries. This led to the addition of nearly 20k lines
of code and coverage of over 1.3k new functions, significantly boosting the testing capabilities of the
libraries under test.

5.4.2 Bug Hunting. In the evaluation of WildSync, we encountered in total of 166 errors triggered
by libFuzzer, which can categorized into three sets: bugs discovered after manual review, spurious
crashes due to API misuse, and timeout/out-of-memory.
First, after manually reviewing the crashes, we discovered 7 new bugs with the synthesized

harnesses. The numbers and types of bugs triggered are listed in Table 3. At the time of submitting
this paper, we have reported this issue to the original developers of the libraries, and 5 of the bugs
are confirmed and fixed.
Table 3. Reported bugs found by WildSync. Report ID I=issue, P=pull request. Patched=patch submitted but

not yet merged.

Library API entry Bug Type Status Report ID
lcms cmsDupContext Null pointer dereference Fixed 462 (I)

libplacebo pl_options_load Out-of-bound array access Fixed 326 (I)
pl_shader_finalize Assertion failed Fixed 327 (I)

libsoup3 soup_message_headers_get_content_type SEGV on unknown address Fixed 389 (I)
libvnc rfbRunEventLoop Buffer overflow Reported 615 (I)
libcue cd_get_track SEGV on unknown address Patched 60 (P)

libxmlb
xb_silo_query

SEGV on unknown address Fixed 208 (I)xb_silo_query_build_index
xb_silo_query_first

As WildSync extracts external code to synthesize new harnesses, it is expected to collect the
external code initializing and applying sanitize checks of the function arguments before calling
the target API. For example, some APIs receiving a pointer as a function parameter may require
the pointer to be initialized and non-null when passing to the function, and such checks are
often left to the API users. If a synthesized harness crashes for failing to provide such checks,
it should be considered a bug in the external project. However, the could also be some cases
which the library maintainers willing to fix the issue for the better safety of the API usage. In
Figure 5 we showed a bug discovered by WildSync. Originally libsoup left the sanitize check
to external developers, as done in Figure 5 (a) line 2. However, WildSync extracted the usage of
soup_message_headers_get_content_type from various external code, and discovered that all
implementations will directly pass the return from another function,
soup_message_get_response_headers, which could be a null pointer, leading to a crash in the
API. So, before reporting to all libraries using libsoup, we successfully convinced the library
maintainer that a sanitizer check should be deployed internally to ensure the safety of the API
usage.
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Among the errors triggered by harnesses generated with WildSync, only one was due to
WildSync failed to collect the API sanitizing check for that the check being out of reach of the
current implementation. We categorized this as a spurious crash. All the necessary checks, if any,
are correctly collected in other harnesses.

5.4.3 Spurious Crashes & Other Errors. During the try-fuzz stage, 29 crashes are identified early
and categorized as spurious crashes. Among them, 18 of these crashes are due to the current design
of WildSync attempting to assign random memory chunks to library specific data structures that
are not initialized. Unfortunately, these data structures often contain a hierarchy of pointers, which
will crash a harness immediately when being accessed and dereferenced. This can be improved
with future work on extracting multiple code snippets to initialize these data structures smartly. 3
errors are due to the APIs expecting a data array along with a size parameter in libass. A program
will easily crash if the size is not correctly set up when using these APIs. Although this could
be leveraged as a potential bug in the program utilizing libass and we had reported this to the
developers of the external projects, we categorized them as spurious bugs before concrete exploits
were discovered.

1 SoupMessage ∗message = soup_message_new (SOUP_METHOD_GET, use_uri);
2 if (!message) goto cleanup;
3 /∗ .... ∗/
4 const char∗ header_type = soup_message_headers_get_content_type(soup_message_get_response_headers (message), NULL);

(a) One of the external usage of soup_message_headers_get_content_type.

1 const char ∗ soup_message_headers_get_content_type (SoupMessageHeaders ∗hdrs, GHashTable ∗∗params) {
2 + g_return_val_if_fail (hdrs, NULL);
3 if (!hdrs−>content_type) return NULL;
4 /∗ .... ∗/ }

(b) Sanitize check being added to soup_message_headers_get_content_type and all other relative functions after the patch.

Fig. 5. Reported bug in libsoup and the corresponding patch.

The remaining 9 spurious crashes consist of various reasons, such as falsely fuzzing API ar-
guments taking file paths with randomly generated strings. Or a synthesized harness feeding
fuzzing inputs to an API, which are constant values, but the API attempts to write to the function
arguments and results in a crash. One is due to WildSync’s failure to collect an API sanitizing
check as described in Section 5.4.2.

Lastly, 127 errors triggered are libFuzzer aborts due to timeout or out-of-memory (a single input
taking more than 25 seconds or 2.5GB RAM to process). While these crashes could be potential
issues such as infinite loops, most of them may not necessarily be considered urgent issues to be
resolved by the library maintainers. Plus, plenty of the timeout or out-of-memory issues exist in the
original harnesses from which WildSync synthesizes from. We believe that most of these errors
should be resolved when the bottlenecks in the original harness are fixed.

Bug Hunting of WildSync: With the newly synthesized harnesses, WildSync discovered 7 new bugs
across the 27 open-source libraries. These functions remained untested by OSS-Fuzz despite the extensive
fuzzing efforts on these libraries; however, our newly developed harnesses successfully triggered crashes.

5.5 Comparison with Existing Works
In this section, we mainly compare WildSync with Hopper [8], a library API fuzzing engine
that infers intra- and inter-API constraints within libraries and mutates programs with grammar
awareness. This design contrasts with WildSync, which derives such constraints outside the
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libraries. Hopper automatically learns API constraints and data dependencies within a library,
then generates harnesses by mutating API sequences and values passing as function arguments. In
its paper evaluation, Hopper outperforms the test coverage of OSS-Fuzz and another automatic
harness synthesizer, GraphFuzz [11], which also applies internal library analysis to perform API
testing, discovering several new bugs.

To fairly evaluate WildSync’s effectiveness, we analyzed the same set of libraries listed in Table 2
using Hopper, with results presented in Table 4. Additionally, to ensure a thorough comparison, we
applied WildSync to the library versions evaluated in Hopper’s original study and compare the
bugs discovered by both tools. The results can be found in Table 5.
Another related and publicly accessible tool is FuzzGen [12], which performs whole-system

analysis to infer valid API interactions for a target library and synthesize fuzzing harnesses. While
conceptually similar to WildSync in its goal of extracting API usage from real-world scenarios,
FuzzGen primarily targets Android libraries and provides undocumented support for Linux Debian
system. Additionally, FuzzGen requires recompiling all external codebases with LLVM bitcode to
extract API usage, making it challenging to apply universally to compare with WildSync, as the
external projects WildSync analyzes lack a common build system. In Hopper’s paper, the authors
were only able to successfully run FuzzGen on one library, and instead referenced results for libvpx
and libaom from FuzzGen’s original paper. For consistency, we also include these numbers in our
evaluation, as shown in Table 5.

Table 4. Comparison of WildSync with Hopper. S = Spurious crashes, B = Crashes reported as bugs after

manual review. (Timeout and memory errors are excluded from the comparison for they being libFuzzer

specific features.)

APIs covered w/o spurious Line Coverage (avg) Function Coverage (avg) Line / API Unique Crashes (S/B)

Library

Hopper WildSync ∩ Hopper WildSync Hopper WildSync Hopper WildSync Hopper WildSync

cairo 328 78 73 18,552 13,244 1,552 1,112 56.56 169.79 16 / 0 0 / 0
cjson 78 15 15 2,103 1,162 112 50 26.96 77.47 1 / 1 0 / 0
fribidi 32 7 7 2,272 1,245 78 27 71.01 177.86 6 / 0 0 / 0
json-c 131 18 18 3,206 1,906 207 115 24.47 105.89 60 / 1 0 / 0
krb5 39 7 0 1,057 7,517 88 614 27.10 1,073.89 2 / 0 0 / 0
lcms 280 56 51 12,166 10,951 866 729 43.45 195.56 123 / 0 1 / 1
libarchive 265 40 18 12,327 16,475 868 740 46.52 411.88 41 / 0 0 / 0
libass 45 12 11 1,571 6,529 111 379 34.92 544.05 19 / 0 3 / 0
libgd 229 15 10 5,124 1,720 298 88 22.38 114.65 22 / 1 0 / 0
libheif 109 31 16 2,738 5,567 392 477 25.12 179.57 71 / 0 0 / 0
libpcap 82 20 20 6,801 8,870 323 282 82.94 443.51 39 / 0 0 / 0
libpng 194 54 53 4,917 5,552 298 190 25.35 102.81 15 / 0 0 / 0
libtiff 169 20 18 9,820 13,215 409 423 58.11 660.76 36 / 0 0 / 0
libvnc 21 15 0 453 1,521 32 81 21.59 101.41 0 / 0 2 / 1
libyang 266 48 39 13,312 14,308 736 631 50.04 298.08 57 / 0 6 / 0
lmdb 50 26 22 836 2,406 67 95 16.72 92.52 11 / 0 0 / 0
mxml 91 15 15 1,388 1,290 95 50 15.25 86.03 15 / 0 1 / 0
vorbis 34 9 0 696 2,507 44 103 20.48 278.51 77 / 0 0 / 0
yyjson 43 37 3 4,679 4,136 199 363 108.82 111.77 34 / 0 1 / 0
zlib 81 37 36 3,779 3,559 143 114 46.66 96.18 5 / 0 1 / 0
libcue 9 5 4 886 329 36 37 98.49 65.80 0 / 0 0 / 1
libharu 472 37 30 5,575 2,449 534 177 11.81 66.18 34 / 0 8 / 0
Total 2,807 602 423 114,260 126,456 7,489 6,877 40.71 210.06 684 / 3 22 / 3

5.5.1 Comparison with Hopper. Table 4 presents a comparison between WildSync and Hopper.
Five libraries were excluded from the evaluation due to errors Hopper encountered while resolving
certain header files. For each remaining library, we conducted 5 independent 24-hour trial runs
with Hopper. In the table, we present the number of new APIs successfully covered (i.e. excluded
the ones leading to spurious crashes), average line and function coverage, and the number of bugs
discovered by both tools.
Hopper is designed to generate programs that broadly cover a library’s APIs without relying

on any pre-existing knowledge. It successfully achieves high API coverage across the libraries we
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evaluated. In some cases, this extensive API coverage indeed leads to high line coverage. Hopper
excels in these libraries due to two key factors. First, it covers multiple entry-point APIs from
various sources, such as reading from memory or files, and attempts to initialize additional data
structures that are not necessarily handled by existing OSS-Fuzz harnesses. Secondly, its harnesses
include utility functions (e.g. library customized math functions) that, while not directly related
to a library’s core functionality, still contribute to broader line coverage. However, for half of the
evaluated targets, WildSync achieves significantly higher line coverage despite utilizing harnesses
that cover fewer APIs. This highlights the importance of well-tuned setup harnesses, which remain
crucial for effective fuzzing in many cases. Simply covering a large number of APIs does not
necessarily translate to better fuzzing efficiency if the harnesses are not optimized for deeper code
execution.

Also, Hopper generates a significant number of false positives in the form of crashes, primarily
caused by API misuse. Since Hopper learns API constraints while performing fuzzing and harness
generation, it does not inherently guarantee that the generated API sequences are valid. As a result,
many crashes occur due to incorrect API usage rather than actual bugs in the target libraries.
The original number of crashes Hopper produces is as high as 21,122 crashes. We first apply

Hopper’s learned constraints as a first filter to reduce this number to 10,741 crashes for further
debugging. To manage this volume, we leverage CASR [24] to cluster crashes with similar stack
traces, which still result in 687 unique groups of crashes to investigate. After manually reviewing
these cases, we found only three crashes were deemed valid issues worth reporting, while the
rest were classified as spurious. Among these bugs, we reported the bug Hopper found in libgd,
which has been acknowledged by the library maintainers and is pending a fix. For the other two,
the one in cjson was previously reported by Hopper’s authors but remains unfixed in the new
library version we tested on. The other in json-c is classified as a "document bug" by the library
maintainers and has no planned mitigation2.
The high number of spurious crashes generated by Hopper can be attributed to two major

factors. The first is its attempt to synthesize non-primitive data types for API calls. Although
Hopper analyzes the internal implementation of target libraries and tries to construct hierarchical
structures for these data types, this still often results in invalid test cases that lead to crashes
without meaningfully testing the library. The second major cause is the generation of invalid API
call sequences. We observed multiple crashes caused by harnesses accessing data structures after
calling APIs that free those structures. In contrast, WildSync mitigates such issues by categorizing
API calls into groups to enforce a correct execution order. The large volume of spurious crashes
raises questions about the extent to which Hopper’s high line coverage reflects meaningful testing.
While extensive coverage can be beneficial, its effectiveness in uncovering real bugs may be limited
if it primarily generates invalid crashes rather than facilitating deep exploration of a library’s
functionality. The distinct coverage patterns and bug discovery of WildSync and Hopper also
indicate the usefulness of WildSync’s design. Although WildSync may not achieve the same level
of API coverage as it relies on high-quality existing harnesses and external usage, it still opens up
new areas to explore a library’s functionality more effectively and to discover real bugs with fewer
spurious crashes.

Coverage Comparison with Hopper: Hopper achieves high API coverage and results in extensive line
coverage in some cases. Meanwhile, WildSync attains higher line coverage with fewer APIs, and further
extends test coverage with less spurious crashes. Each design has its own strengths, balancing coverage
breadth and testing effectiveness.

2https://github.com/json-c/json-c/issues/881
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Besides the evaluation on our collected benchmarks, we apply WildSync to the versions of
libraries presented in Hopper’s paper, and compare the coverage improvements achieved and bugs
discovered by both tools. We use 10 out of 11 libraries from Hopper’s evaluation, and present the
results in Table 5. The re2 library is excluded as it is mainly used in its C++ API, and is currently
out-of-scope for WildSync. The authors of Hopper attempted to reproduce FuzzGen’s results on
the same set of libraries, but could only successfully generate harnesses for cJSON. We also include
this number in the table, along with the results of libvpx and libaom presented in FuzzGen’s
original paper.

Table 5. Compairson with other tools on previous versions of libraries. The coverage and bug information are

referenced from the resuls presented Hopper’s paper [8], in which FuzzGen failed to synthesize harnesses for

most of the libraries.

Line Coverage Bug

Libraries (commit)

FuzzGen Hopper WildSync Function (Issue #) Hopper WildSync

cJSON_DetachItemViaPointer (#722) ✓ x No external usagecJSON (b45f48e) 186 1,997 1,157 cJSON_ReplaceItemViaPointer (#726) ✓ x No external usage
c-ares (4b7301a) - 5,012 2,730 ares_set_sortlist (#496) ✓ x No external usage

png_warning (#453) ✓ ✓libpng (f1848a3) - 9,610 5,559 png_image_write_to_file (#489) API mis-use -
cmsIsCLUT (#350) ✓ x No external usage
cmsBuildTabulatedToneCurveFloat (#351) ✓ x Bug free with external usage
cmsGetPostScriptCRD (#353) ✓ x Bug free with external usage
cmsIT8SaveToMem (#354) ✓ x Bug free with external usage

lcms (ef7bd0d) - 9,001 10,834

cmsIT8GetProperty (#355) x ✓
pcap_breakloop (#1147) ✓ ✓libpcap (acc5cb9) - 7,536 7,984 pcap_activate (#1098) ✓ ✓

sqlite3 (dcd7408) - 25,356 38,844 sqlite3_overload_function (bbbbb66b6b) ✓ ✓
gzsetparams (#761) API mis-use -
gzungetc (#837) ✓ ✓zlib (e554695) - 3,502 3,558
gzflush (#840) ✓ ✓

libmagic (0fa2c8c) - 4,230 5,544 -
libvpx (87315c0) 15,211 15,641 19,633 -
libaom (9a83c6a) 32,576 36,218 42,640 -

First, the coverage comparison between WildSync and Hopper is similar to the previous evalua-
tion. Hopper can achieve higher test coverage by successfully covering more APIs in some libraries,
while WildSync performs better in others. Particularly, in libpng, Hopper’s developers specifically
configured the starting APIs to cover more library-specific data structures, while WildSync only
has the existing OSS-Fuzz harness that covers less. We believe that if given the same amount of
entry APIs, WildSync can achieve comparable coverage with Hopper.
For the vulnerability discovery, we list out the bugs reported by Hopper that have been fixed

or confirmed by the library maintainers. Note that there are 2 bugs Hopper claimed in zlib and
libpng that require certain sequences of API calls to trigger the crashes. The library maintainers
actually denied to recognize these as issues, stating them being per library user’s responsibility to
ensure the correct usage. With WildSync’s approach, such rejection is more confidently avoided
as the usages of APIs are extracted from real-world scenarios. It will be either the interest of target
library maintainers to fix the bug as the case in Section 5.4.2, or a mis-use that we report to external
projects.

For the other 13 verified bugs reported by Hopper, WildSync is able to trigger 6 of them, while
discovering an additional bug missed by Hopper that is later reported by other. For the bugs not
triggered by WildSync, 4 of them are due to no external usage found. The other 3 are all issues
related to passing unchecked NULL pointers or value 0 to the APIs. These APIs are covered by
WildSync, but no crash is being triggered for that the real-world usage we collected is all bug-
free. We believe that WildSync will be able to capture these issues once observing any potential
misbehavior usage of the APIs in the external projects.
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Bug-Hunting Comparison with Hopper: The different behavior between Hopper and WildSync in
bug discovery reflects the diverse design of the two tools. We believe neither approach is superior to the
other, and the two can be combined to provide a more comprehensive test coverage for libraries.

5.5.2 Comparison with Other Tools. Other prior works highly related to WildSync, such as
Fudge [6], IntelliGen [28], and Daisy [29], are not publicly available. As a consequence, comparing
WildSync directly with these works poses a challenge. However, we propose that the experiments
conducted in this paper, particularly the comparison with existing, long-tested libraries on OSS-
Fuzz, offer a comprehensive approach to evaluate WildSync’s performance relative to these works.
Our rationale stems from two key observations. First, Fudge reported that the harnesses generated
by their tool were accepted and hosted on OSS-Fuzz, notably for the leptonica library. As depicted
in Table 2, leptonica boasts an exceptionally high number of existing harnesses. Despite this,
WildSync was able to synthesize 9 new harnesses for this library, covering nearly 900 new lines and
44 new functions. This underscores the efficacy of WildSync in augmenting existing harnesses and
identifying areas for further coverage. Second, at the time we conducted our evaluation, OSS-Fuzz
achieves significantly higher coverage than in the reported results of IntelliGen and Daisy. This
highlights the continuous growth and improvement of OSS-Fuzz over time, positioning it as a more
up-to-date benchmark for evaluating the effectiveness of WildSync.

Another recent work related to fuzzing harness synthesis is UTopia [15], which aims to generate
harnesses from existing unit tests with minimal human involvement. Unfortunately, the released
implementation of UTopia supports only a limited number of C++ unit-test frameworks, and is not
applicable to the benchmarks we use for WildSync’s evaluation.
In summary, while direct comparison with more prior works may be challenging due to their

unavailability or different implementation restrictions, the experiments conducted in this paper
offer a robust evaluation framework for assessing WildSync’s capabilities in enhancing fuzz testing
for software libraries.

6 Discussion
6.1 WildSync’s Time Efficiency
For the current implementation of WildSync, we cap our harness synthesis process with a 30-
second timeout for each API. The decision comes from the fact that the algorithm is only extracting
one API usage from one single source file at a time, and should not take long. WildSync first
locates files containing the target API usage in the source code of external projects. Then, it parses
the AST of these located files to identify the relevant external functions using the target API. In this
phase, most of the files can be parsed within 5 second, except for some large files with more than
20k lines of code. After that, WildSync constructs CFG and DFG individually for these external
functions to perform program slicing. The current implementation can handle a single functions
with up to 1k lines of code or cyclomatic complexity lower than 50.

6.2 Combining with Other Techniques
The core concept behind WildSync is to gather how a target library is utilized in the wild and
leverage the knowledge to generate fuzzing harnesses effectively. We envision that by integrating
WildSync with other techniques that focus on analyzing API dependencies internally, we can
create more comprehensive harnesses. This integration can help highlight the knowledge gap
between the internal library developers and external users.
Furthermore, we believe that the approach employed by WildSync can be extended to other

testing techniques beyond fuzzing, such as unit-test case generation. By leveraging external usage
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patterns, developers can gain valuable insights into potential edge cases and usage scenarios to
enhance their testing infrastructure. This broader application of WildSync has the potential to
enhance testing practices across various domains and improve software reliability and robustness.

6.3 Extending to Other Languages
While WildSync currently focuses on generating harnesses for C libraries, we believe that its
underlying ideas can be extended to support other programming languages. However, this expansion
would require a thorough analysis of language-specific features and constructs. For instance, when
attempting to apply the current version of WildSync to libraries written purely in C++, we
encountered challenges related to namespace resolution and the object-oriented nature of API
calls. Addressing these issues would involve adapting WildSync’s techniques to handle C++’s
unique characteristics, such as classes, inheritance, and polymorphism. Exploring the extension of
WildSync to other languages could significantly broaden its applicability and impact, enabling
developers to automatically generate fuzzing harnesses for a wider range of software projects.
This extension would involve incorporating language-specific parsing and analysis techniques to
effectively capture usage patterns and generate robust harnesses.

6.4 Libraries Applicable with WildSync
Despite its promising and extensible nature, WildSync may face challenges when dealing with
system-level libraries that handle file system or network operations. These libraries often require
specific environmental setups to be tested accurately and may have limited interfaces suitable for
fuzzing. Cryptography libraries are excluded as well for they requiring standard and strict call
sequences. As a result, WildSync’s ability to generate effective fuzzing harnesses for such libraries
may be limited at the moment. However, we believe that by integrating WildSync with other
techniques that focus on system-level testing, we can overcome these challenges and extend its
applicability to a broader range of libraries and software projects.

6.5 Large Language Model Based Fuzz Driver Generation
Fuzzing APIs is inherently challenging, and recent work has explored leveraging LLM-based (Large
Language Model) approaches to automate fuzzing harness generation. Google’s OSS-Fuzz-Gen [16]
represents one of the first attempts in this direction, demonstrating the feasibility of using LLMs
for this task. However, the generalizability of such approaches remains uncertain. Zhang et al. [27]
conducted an in-depth study investigating key challenges in using LLMs for effective fuzz driver
generation, offering critical insights into their limitations and potential improvements. In parallel,
WildSync provides a deterministic program analysis approach to automate harness synthesis.
We believe that WildSync will foster future research in this area, potentially providing a hybrid
alternative or design that enhances the robustness and adaptability of automated fuzzing harness
generation.

7 Related Work
7.1 Coverage-based Fuzzing
AFL, libfuzzer, honggfuzz [21, 23, 25] are the three state-of-the-art coverage-based fuzzer. They
have proved to be high-performance and pragmatic fuzzing engines by being deployed in numerous
projects. They have also inspired countless research projects. Angora [7] is a Rust-based fuzzer that
tried to collect more information than AFL but without losing efficiency. In order to mutate input
efficiently, Angora incorporates taint analysis [20] to track which parts of the program are affected
by input values. It also introduced several novel techniques including byte-level taint tracking,
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context-sensitive branch count, gradient descent search, and input length exploration. Redqueen
[5] introduced the concept of "Input-to-State Correspondence". The authors observed that often
there are direct relationships between input and program states. They introduced ’redqueen’, a
lightweight instrumentation to track these relationships alternative to taint analysis.

7.2 Automatic Harness Synthesis
Library fuzzing is a challenging task as it requires constructing a fuzzing harness that contains
the desired sequences of library API calls to test with. However, as the number of libraries grows,
it becomes increasingly difficult to manually create fuzzing harnesses for each library. Several
works have been presented to generate fuzzing harnesses automatically. FuzzBuilder [13] and
FuzzBuilderEx [14] aim to automate the transformation of unit test cases into fuzzing harnesses, but
they require manual configuration and the resulting harnesses may still require significant manual
effort to ensure quality. Fudge [6] automatically generates fuzzing harness candidates based on
buffer access parameter signatures from usage extracted from client code, but human intervention is
needed to evaluate and update the generated code. FuzzGen [12] leverages whole-system analysis to
infer API dependencies and generate fuzzers, but manual review is required to repair the generated
programs. IntelliGen [28] focuses on identifying entry functions and generating fuzzing harnesses,
but it may overlook API relations, leading to incomplete harnesses. Daisy [29] models object
behaviors and constructs interface calls based on object usage sequences, while GraphFuzz [11]
and RUBICK [26] use graph-based techniques to model API usage and control dependencies. These
approaches show promise in modeling object-oriented API usage but may require sophisticated
techniques based on compilers or runtime execution, limiting their scalability without manual
intervention. In contrast, WildSync performs analysis on abstract syntax trees obtained from
syntax highlighters, requiring no additional human effort beyond the presence of code snippets.
While it may not capture complete API call sequences, it offers a scalable solution for synthesizing
fuzzing harnesses.

Recent work UTopia [15] automates the synthesis of fuzzing harnesses from existing unit tests,
but it is currently limited to certain build systems. That being said, UTopia is a promising work
that can be integrated with WildSync to further improve the quality of the synthesized harnesses.
Hopper [8] tries to learn the API usage pattern from the source code to generate fuzzing harnesses.
As demonstrated in the evaluation, as being able to covering more APIs as being a bottom-up
appraoch, its harnesses’ mutated API sequences may be too distinct from normal usage.

8 Conclusion
In this paper, we presented WildSync, a novel approach to automatically synthesize fuzzing har-
nesses for open-source libraries. WildSync is designed to be light-weight, scalable, and with limited
manual intervention to generate harnesses for previously untested functions. We demonstrated the
effectiveness of WildSync by applying it to 27 C/C++ libraries. As a result, WildSync is able to
generate 469 new harnesses for these libraries. With the new harnesses, we observed up to 400% test
coverage improvement for these libraries, and identified 7 new bugs after manual review. Overall,
these findings underscore the significant potential of WildSync to enhance software testing and
improve the reliability of open-source libraries, paving the way for future research into further
automation and integration of fuzzing techniques in diverse software ecosystems.

9 Data Availability
We make WildSync publicly available at: https://github.com/spencerwuwu/WildSync along with
scripts to reproduce the results presented in the paper.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA043. Publication date: July 2025.

https://github.com/spencerwuwu/WildSync


WildSync: Automated Fuzzing Harness Synthesis via Wild API Usage Recovery ISSTA043:21

References
[1] 2021. Cisco secure development lifecycle. https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/

docs/cisco-secure-development-lifecycle.pdf
[2] 2021. Microsoft Security Development Lifecycle. https://www.microsoft.com/en-us/securityengineering/sdl/practices
[3] 2024. Fuzzing Introspection of OSS-Fuzz projects. https://introspector.oss-fuzz.com/projects-overview
[4] 2024. Tree-sitter. https://tree-sitter.github.io/tree-sitter/
[5] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and Thorsten Holz. 2018. REDQUEEN: Fuzzing

with Input-to-State Correspondence. In Network and Distributed System Security Symposium (NDSS).
[6] Domagoj Babić, Stefan Bucur, Yaohui Chen, Franjo Ivančić, Tim King, Markus Kusano, Caroline Lemieux, László

Szekeres, and Wei Wang. 2019. Fudge: fuzz driver generation at scale. In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 975–985.

[7] Peng Chen and Hao Chen. 2018. Angora: efficient fuzzing by principled search. In IEEE Symposium on Security and
Privacy (Oakland).

[8] Peng Chen, Yuxuan Xie, Yunlong Lyu, Yuxiao Wang, and Hao Chen. 2023. Hopper: Interpretative fuzzing for libraries.
In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security. 1600–1614.

[9] Debeshee Das, Noble Saji Mathews, Alex Mathai, Srikanth Tamilselvam, Kranthi Sedamaki, Sridhar Chimalakonda, and
Atul Kumar. 2023. COMEX: A Tool for Generating Customized Source Code Representations. In 2023 38th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 2054–2057. doi:10.1109/ASE56229.2023.00010

[10] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler,
David Johnson, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Operation of CloudLab. In
Proceedings of the USENIX Annual Technical Conference (ATC). 1–14. https://www.flux.utah.edu/paper/duplyakin-atc19

[11] Harrison Green and Thanassis Avgerinos. 2022. Graphfuzz: Library API fuzzing with lifetime-aware dataflow graphs.
In Proceedings of the 44th International Conference on Software Engineering. 1070–1081.

[12] Kyriakos Ispoglou, Daniel Austin, Vishwath Mohan, and Mathias Payer. 2020. {FuzzGen}: Automatic fuzzer generation.
In 29th USENIX Security Symposium (USENIX Security 20). 2271–2287.

[13] Joonun Jang and Huy Kang Kim. 2019. Fuzzbuilder: automated building greybox fuzzing environment for c/c++ library.
In Proceedings of the 35th Annual Computer Security Applications Conference. 627–637.

[14] Sanghoon Jeon, Minsoo Ryu, Dongyoung Kim, and Huy Kang Kim. 2022. Automatically Seed Corpus and Fuzzing
Executables Generation Using Test Framework. IEEE Access 10 (2022), 90408–90428.

[15] Bokdeuk Jeong, Joonun Jang, Hayoon Yi, Jiin Moon, Junsik Kim, Intae Jeon, Taesoo Kim, WooChul Shim, and Yong Ho
Hwang. 2023. Utopia: Automatic generation of fuzz driver using unit tests. In 2023 IEEE Symposium on Security and
Privacy (SP). IEEE, 2676–2692.

[16] Dongge Liu, Oliver Chang, Jonathan metzman, Martin Sablotny, and Mihai Maruseac. 2024. OSS-Fuzz-Gen: Automated
Fuzz Target Generation. https://github.com/google/oss-fuzz-gen

[17] Valentin Jean Marie Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele, Edward J Schwartz, and
Maverick Woo. 2019. The art, science, and engineering of fuzzing: A survey. IEEE Transactions on Software Engineering
(2019).

[18] Barton P Miller, Louis Fredriksen, and Bryan So. 1990. An empirical study of the reliability of UNIX utilities. Commun.
ACM 33, 12 (1990), 32–44.

[19] Max Moroz and Kostya Serebryany. 2016. Guided in-process fuzzing of Chrome components. Google Security Blog
(2016).

[20] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You Ever Wanted to Know about Dynamic
Taint Analysis and Forward Symbolic Execution (but Might Have Been Afraid to Ask). In IEEE Symposium on Security
and Privacy (Oakland).

[21] Kosta Serebryany. 2016. Continuous fuzzing with libfuzzer and addresssanitizer. In IEEE Cybersecurity Development
Conference (SecDev).

[22] Kostya Serebryany. 2017. OSS-Fuzz - Google’s continuous fuzzing service for open source software. In USENIX Security
Symposium (USENIX).

[23] Robert Swiecki. 2018. honggfuzz. http://honggfuzz.com/
[24] Ilya Yegorov and Georgy Savidov. 2024. Crash Report Accumulation During Continuous Fuzzing. In Ivannikov Memorial

Workshop 2024. IEEE. https://arxiv.org/abs/2405.18174
[25] Michal Zalewski. 2017. American fuzzy lop. http://lcamtuf.coredump.cx/afl/
[26] Cen Zhang, Yuekang Li, Hao Zhou, Xiaohan Zhang, Yaowen Zheng, Xian Zhan, Xiaofei Xie, Xiapu Luo, Xinghua Li,

Yang Liu, et al. 2023. Automata-guided control-flow-sensitive fuzz driver generation. In Proceedings of the 32nd USENIX
Conference on Security Symposium. 2867–2884.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA043. Publication date: July 2025.

https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-secure-development-lifecycle.pdf
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-secure-development-lifecycle.pdf
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://introspector.oss-fuzz.com/projects-overview
https://tree-sitter.github.io/tree-sitter/
https://doi.org/10.1109/ASE56229.2023.00010
https://www.flux.utah.edu/paper/duplyakin-atc19
https://github.com/google/oss-fuzz-gen
http://honggfuzz.com/
https://arxiv.org/abs/2405.18174
http://lcamtuf.coredump.cx/afl/


ISSTA043:22 Wei-Cheng Wu, Stefan Nagy, and Christophe Hauser

[27] Cen Zhang, Yaowen Zheng, Mingqiang Bai, Yeting Li, Wei Ma, Xiaofei Xie, Yuekang Li, Limin Sun, and Yang Liu. 2024.
How Effective Are They? Exploring Large Language Model Based Fuzz Driver Generation. In Proceedings of the 33rd
ACM SIGSOFT International Symposium on Software Testing and Analysis (Vienna, Austria) (ISSTA 2024). Association
for Computing Machinery, New York, NY, USA, 1223–1235. doi:10.1145/3650212.3680355

[28] Mingrui Zhang, Jianzhong Liu, Fuchen Ma, Huafeng Zhang, and Yu Jiang. 2021. Intelligen: Automatic driver synthesis
for fuzz testing. In 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE, 318–327.

[29] Mingrui Zhang, Chijin Zhou, Jianzhong Liu, Mingzhe Wang, Jie Liang, Juan Zhu, and Yu Jiang. 2023. Daisy: Effective
Fuzz Driver Synthesis with Object Usage Sequence Analysis. In 2023 IEEE/ACM 45th International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 87–98.

Received 2024-10-30; accepted 2025-03-31

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA043. Publication date: July 2025.

https://doi.org/10.1145/3650212.3680355

	Abstract
	1 Introduction
	2 Background Knowledge & Challenges
	2.1 Background Knowledge
	2.2 Challenges for Synthesizing Fuzzing Harnesses

	3 WildSync's Approach
	4 Design of WildSync
	4.1 Target Function Selection
	4.2 Target Function Usage Extraction
	4.3 Fuzzing Harness Synthesis
	4.4 Invalid Harness Deduction

	5 Evaluation
	5.1 Implementation of WildSync
	5.2 Experiment Setup
	5.3 Synthesizing Fuzzing Harnesses with WildSync
	5.4 Effectiveness of WildSync
	5.5 Comparison with Existing Works

	6 Discussion
	6.1 WildSync's Time Efficiency
	6.2 Combining with Other Techniques
	6.3 Extending to Other Languages
	6.4 Libraries Applicable with WildSync
	6.5 Large Language Model Based Fuzz Driver Generation

	7 Related Work
	7.1 Coverage-based Fuzzing
	7.2 Automatic Harness Synthesis

	8 Conclusion
	9 Data Availability
	References

