
A Little Goes a Long Way: Tuning Configuration
Selection for Continuous Kernel Fuzzing

Sanan Hasanov
University of Central Florida

Stefan Nagy
University of Utah

Paul Gazzillo
University of Central Florida

Abstract—The Linux kernel is actively-developed and widely-
used. It supports billions of devices of all classes, from high-
performance computing to the Internet-of-Things, in part because
of its sophisticated configuration system, which automatically
tailors the source code according to thousands of user-provided
configuration options. Fuzzing has been highly successful at
finding kernel bugs, being among the top bug reporters. Since
the kernel receives 100s of patches per day, fuzzers run contin-
uously, stopping regularly to rebuild the kernel with the latest
changes before restarting fuzzing. But kernel fuzzers currently
use predefined configuration settings that, as we show, exclude
the majority of new patches from the kernel binary, nullifying
the benefits of continuous fuzzing. Unfortunately, state-of-the-
art configuration testing techniques are generally ill-suited to
the needs of continuous fuzzing, excluding necessary options or
requiring too many configuration files to be tractable. We distill
down the needs of continuous testing into six properties with the
most impact, systematically analyze the space of configuration
selection strategies, and provide actionable recommendations.
Through our analysis, we discover that continuous fuzzers can
improve configuration variety without sacrificing performance.
We empirically evaluate our discovery by modifying the config-
uration selection strategy for syzkaller, the most popular Linux
kernel fuzzer, which subsequently found more than twice as many
new bugs (35 vs. 13) than with the original configuration file and
12x more (24 vs. 2) when considering only unique bugs—with
one security vulnerability being assigned a CVE.

I. INTRODUCTION

Operating system kernels are among the most important lay-
ers of modern computing stacks, and the Linux kernel is one of
the most actively-developed and widely-used kernels, used for
web servers, Internet-of-Things devices, mobile phones, super-
computing servers, and more [1], [2], [3]. Linux supports so
much variety because it is a highly-configurable software prod-
uct line [4], [5], [6]. It has over 15,000 configuration options
controlling architecture, memory management, scheduling, file
systems, and much more. Users tailor the kernel to their
needs by passing configuration options to its build system,
automatically customizing the kernel [7], [8].

The Linux kernel’s position in the global computing stack
makes it a high-value target, with vulnerabilities routinely
selling for millions of dollars [9]. Efforts to proactively
find and fix kernel vulnerabilities have embraced fuzzing, an
automated software testing technique that uncovers software
bugs through the generation of massive amounts of random
test cases. Kernel fuzzers feed random inputs to various kernel
interfaces, such as system calls [10], [11] or device-specific
I/O channels [12], [13]. Modern kernel fuzzers are fast [14],
precise [15], [16], and support many interfaces [17], [18].

Google’s syzkaller [10] has found nearly 4,000 vulnerabilities
in the Linux kernel alone [19] and is consistently among the
top reporters of kernel bugs [20], [21], [22].

The Linux kernel receives hundreds of changes daily in the
form of code patches [23], [24]. To accommodate this rapid
change, the syzbot test robot [25] runs syzkaller continuously
during kernel development. While fuzzing success depends on
running for as long as possible to maximize test coverage,
syzbot must regularly stop fuzzing and update its kernel [26] to
incorporate the latest changes, otherwise it risks missing new
bugs introduced during development. To balance this trade-
off, syzbot aims to run syzkaller for 12 hours before stopping
to pull new changes and recompile the kernel [27]. Yet, the
kernel is highly configurable, so whether code changes are
compiled in depends entirely on whether the configuration file
chosen by syzbot includes them.

But current configuration file selection strategies for kernel
fuzzers exclude most code changes [25], [28]. For instance,
syzkaller uses a small number of pre-selected configuration
files [29], [30], builds each kernel variant, and fuzzes the
variants separately. Fuzzing only a few configuration files is a
reasonable strategy since continuous fuzz testers already have
limited time to run before developers commit new changes.
Moreover, fuzzers have specific requirements for configuration
selection [31], [32]: they need to enable the kernel bug
detectors, such as address sanitizers, and they must enable
options required for booting kernels for them to fuzz. To set
the thousands of other options, testers use Linux’s default
configuration file [29] to provide a minimal bootable kernel
as a starting point [33].

Prior work, however, shows that Linux’s default configura-
tion file excludes almost 80% of code changes from the com-
piled binary [34], nullifying the effectiveness of continuous
fuzzing. Unfortunately, state-of-the-art configuration genera-
tion techniques are generally ill-suited to the needs of contin-
uous fuzzing. Random configuration files are rarely bootable
(§ IV), leave up to 80% of kernel source code unreachable
for fuzzers [35], and are unlikely to cover patches [34]. t-wise
sampling [36], [37] and combinatorial interaction testing [38]
ensure coverage of feature interactions but generate thousands
of configuration files [37], which would require fuzzers to
continuously build and test thousands of kernel binaries si-
multaneously instead of just a few, an unrealistic increase
in resource requirements. Maximal configuration approaches
attempt to build as many source lines as possible with a
small number of configuration files [39], [40] but can be too

large to boot [41], [42], may fail to build [43], and require
hours of build time [34], wasting limited time for fuzzing.
Configuration repair modifies existing configuration files to
ensure patch coverage [34], potentially helping continuous
fuzzers avoid excluding recent changes. But being relatively
new, configuration repair has only been applied to default
configuration files for compile testing, not continuous fuzzing.

The key challenge is that configuration selection for con-
tinuous fuzzing has two conflicting goals, fuzzer performance
and configuration variety. For performance, fuzzers want to
use few configuration files, so the fuzzer can test for as long
as possible on the same binary. But for variety, they want
to use many configuration files, so that the fuzzer test can a
larger variety of code in the kernel. Current kernel fuzzers
emphasize fuzzer performance at the expense of configuration
variety, which leads to missed opportunities to test most recent
code changes and alternative variations of the kernel.

To help mitigate the challenge of continuously fuzzing
highly-configurable software, we survey the space of con-
figuration testing techniques and systematically analyze their
impacts on continuous fuzzing. We identify six key properties
of configuration testing strategies that impact a continuous
fuzzer’s performance, resource utilization, patch coverage,
and ability to boot and run on the kernel. Based on our
analysis, we create several recommendations for fuzz testers
to select a configuration file based on their needs. Notably,
we show how continuous fuzzers can improve bug finding
capabilities without sacrificing performance or increasing re-
source utilization by using configuration repair to modify
the configuration files used to build the kernel, all with no
engineering changes to the fuzzer itself. To the best of our
knowledge, no systematic analysis of configuration selection
for continuous kernel fuzzers has been conducted previously
and used to improve to their bug-finding capabilities.

We empirically evaluate our discovery by modifying
syzbot’s configuration selection strategy to include config-
uration repair. We emulate syzbot’s test infrastructure and
compare syzkaller’s bug-finding capability and performance
with and without configuration repair. Our experiments show
a substantial impact on the number of previously-unreported
bugs, with no significant impact on performance. With the
modified configuration selection strategy, syzkaller found more
than twice as many previously-unreported bugs (35 vs. 13)
than with syzkaller’s original configuration files, although
11 of these were found by both approaches. When consid-
ering only unique bugs, the new approach finds 12x more
previously-unreported bugs (24 vs. 2). We reported all 35
new bugs found and are working with Linux developers to
fix them. As of writing, 8 have been acknowledged, 4 have
been patched. One bug exposed a security vulnerability that
was assigned a CVE [44].

In this paper, we make the following contributions:

• We replicate prior patch coverage results on syzkaller’s
configuration selection tool, and show it fails to build
more than half of a sample of recent patches (§ III).

• We study configuration selection strategies, identify the
key properties that impact continuous fuzzing and provide
recommendations for testers (§ IV).

• We modify syzkaller’s configuration generation to include
configuration repair and compare its new bug finding and
performance results with and without repair (§ V).

• We reported 35 previously-unreported kernel bugs to
Linux developers and one security vulnerability (§ VI).

II. BACKGROUND

This section provides an overview of kernel fuzzing and
kernel configurability.

A. Coverage-Guided Kernel Fuzzing

Fuzzing is one of today’s most successful software bug
discovery techniques, having found thousands of bugs and
vulnerabilities in numerous applications, kernels, and other
computing systems. Given a software target, fuzzers operate by
generating massive amounts of random test cases and execut-
ing each on the target, leveraging lightweight program intro-
spection to detect interesting test-case-induced program states
(e.g., crashes [45], time-outs [46], or invariant violations [47]).
Most fuzzers today are coverage guided: instrumenting the
target to report the code coverage of all test cases, but saving—
and subsequently mutating—only the minority that reveal new
code coverage. Popular coverage-guided application fuzzers
include AFL++ [45] and libFuzzer [48].

With the success of application fuzzing, many efforts are
extending coverage-guided fuzzing to OS kernels. Like appli-
cation fuzzers, kernel fuzzers operate by feeding test cases
to the kernel’s various input vectors: general-purpose system
calls [10], [11], driver-specific I/O control handlers [15], [49],
or the hardware–kernel memory boundary (e.g., memory-
mapped I/O, port I/O, direct memory access) [12], [13],
[18], [17]. By far today’s most popular kernel fuzzer is
Google’s syzkaller [10], which has found over 10,000 bugs
in numerous kernels such as Linux, FreeBSD, OpenBSD, and
Android. Many academic and industrial efforts are continuing
to improve syzkaller to attain higher speed [14], generate more
precise inputs [16], and find non-trivial classes of bugs [50].

B. Highly-Configurable OS Kernels

TABLE I: Recent operating system kernels and their configuration speci-
fication languages alongside their estimated total configurable features. We
compute each by searching for configuration option names in their respective
configuration specification languages.

Kernel Config. Language Approx. Configs
ANDROID KCONFIG [51] 19,392
FREEBSD config [52] 1,440
LINUX KCONFIG [53] 19,397
NETBSD config [54] 3,141
OPENBSD config [55] 1,252
XNU config [56] 1,004

Modern OS kernels are veritable software product lines:
codebases intentionally developed to be compilable as a
multitude of unique variants. For everyday kernels, variants
often take on the form of OS-specific distributions (e.g.,

Ubuntu and Debian, which are derived from the Linux ker-
nel [53]). However, the highly-configurable nature of today’s
kernels enables fine-grained control over virtually all build
characteristics—from toggling-on specific features (e.g., TLS,
IPV6), the desired target architecture (e.g., ARM, X86-64),
security mechanisms (e.g., KASLR, KASAN), and much more.

1 CONFIG_WERROR=y # Always installed.
2 CONFIG_SYSVIPC=n # Never installed.
3 CONFIG_AUDIT=m # Optional module.

Listing 1: An example synthetic KCONFIG feature configuration.

To enable modular configuration, today’s kernels are often
equipped with feature-modeling systems. Table I shows the
feature-modeling systems and approximate feature counts for
various commodity kernels, with the most popular being
KCONFIG [53]. At a high level, a KCONFIG configuration
governs any number of kernel features, with each represented
as “CONFIG FEATURE = y (always installed) || n (never
installed) || m (an optional loadable module)”. Listing 1 dis-
plays a synthetic example of a KCONFIG kernel configuration.

While facilitating a seemingly-endless number of configura-
tions is important for maintaining broad deployment flexibility,
subtle interactions between kernel features often bear unfore-
seen consequences. In many cases, specific feature combina-
tions create unbootable or otherwise unusable builds; while
others introduce obvious security flaws (known as “misconfig-
uration” bugs [57]). The configurability of kernels complicates
fuzzing because testers must first choose a configuration file to
compile the kernel binary. But the configuration file determines
what source code is included in the binary. With so many
possible options, ensuring the binary even has the desired code
to test is non-trivial, much less ensuring the code is tested.

III. PATCH COVERAGE OF FUZZER CONFIGURATION FILES

A study of configuration repair for patch coverage found
that commonly-used configuration files for testing exclude
most patches to the kernel codebase [34]. Configuration repair
in this context refers to a technique that automatically modifies
a configuration file to change what code the configuration
file covers. For instance, krepair [34] takes a Linux kernel
patchfile (or any set of files and lines) and a configuration
file and automatically discovers and applies changes to the
configuration file so that the code in the patchfile is covered
when building the repaired configuration file. Since kernel
configuration files are applied at build time, any code not
covered is excluded from the kernel binary. For continuous
fuzzers, when a configuration file it uses to build a kernel
excludes patched code, no matter how much run-time coverage
the fuzzer is able to achieve, it will never be able to cover the
patches excluded during the build. Yet including large amounts
of code results in unbootable or slow kernels [34].

Prior work evaluating coverage limitations of configuration
files used in testing only evaluated Linux’s default con-
figuration defconfig. But syzkaller and other fuzzers add

Sy
zka

ller KA
FL

Defc
on

fig
0

20

40

60

80

100

Pa
tc

h
Co

ve
ra

ge
 (%

)

43.2%

24.1% 21.8%

98.6% 98.6% 98.5%

Original
Repaired

Fig. 1: Average patch coverage of syzkaller, kAFL, and defconfig.
.

additional configuration options to defconfig, potentially
leading to more code included in the kernel binary than
with defconfig. To evaluate how much code kernel fuzzers
include, we replicate the prior configuration file patch cov-
erage experiment by modifying its artifact [58]. Instead of
defconfig, we evaluate the configuration files from two
popular kernel fuzzers, syzkaller and kAFL, to see how much
patched code they omit. Our modified scripts are available in
our publicly-available artifact [59].

To compare to existing work, we use an identical experi-
mental setup. As previously reported, there are 507 randomly-
selected patches from a “whole year (2021/09/19–2022/09/18)
of Linux kernel development, which provides a 5% margin of
error with a 98% confidence level” [34]. We use syzkaller’s
own configuration generation tool, syz-kconf [29] on the
committed version of the kernel for each patch. kAFL, in
contrast, provides a fixed configuration file [32], [28], which
we use for each committed version of the kernel.

Figure 1 shows the results of replicating the patch coverage
experiments on syzkaller and kAFL’s configuration files in the
first two bar groups. The last bar group is patch coverage
results for defconfig as taken from the original study. The
y-axis is the average patch coverage across all patches. For
each bar group, the first bar is the original configuration file’s
average patch coverage. The second is the patch coverage after
applying configuration repair with the krepair tool [34]. The
error bars represent the 95% confidence interval of the average.

Prior work showed defconfig only covers 21.8% of
patched code on average, while after applying krepair, the
resulting configuration file covered 98.5%. Comparatively,
syzkaller’s syz-kconf covers more, 43.2%, although it is
still less than half of patched code. kAFL’s configuration file,
however, is similar to defconfig, with 24.1% patch coverage.
krepair increases patch coverage to 98.6% for both syzkaller
and kAFL. The error bars show the patch coverage averages of
the sample demonstrate a statistically significant improvement
to patch coverage; the repaired configurations are over 98% in

all three cases with a very small margin of error. Although we
evaluate syzkaller only in this paper, given the improvements
of patch coverage for both syzkaller and kAFL, we expect the
results to apply to kAFL and other kernel fuzzers.

Summary: Popular kernel fuzzers select configurations that
exclude the majority of patched code—counteracting the benefits
of continuously fuzzing updates to the kernel codebase.

IV. CONFIGURATION SELECTION STRATEGIES FOR
CONTINUOUS KERNEL FUZZING

We first discuss existing configuration selection techniques
and weigh their trade-offs with respect to continuous kernel
fuzzing. Next, we distill the needs of configuration selection
for continuous fuzzing into six properties and analyze each
technique across these categories. Finally, we provide rec-
ommendations for configuration selection strategies to guide
designers of continuous fuzzing platforms for picking the best
strategy or combinations of strategies for their goals.

A. Configuration Testing Techniques

There are many techniques for generating configuration files
for testing, each of which achieves specific testing goals. We
categorize them into seven groups of techniques.

Hand-selected configurations aim to customize kernels for
unique deployments. For instance, syzkaller and kAFL define
hand-selected configurations enabling options required for
booting their respective test infrastructure [29], [28]. As shown
in § III, these configurations exclude most patches, making
them insufficient for continuous testing of kernel changes.

Default configurations are configurations shipped with the
Linux kernel [40] and serve as the basis for building cus-
tomized, hand-selected configuration files [33]. They are small,
enabling relatively few features. Minimal configurations dis-
able as many features as possible. Minimal configurations
can be used as a fast-building sanity check recommended,
for instance, in the Linux patch submission guidelines [60].
Maximal configurations enable as many features as possible
to build as much code as possible, though not necessarily
all; e.g., Linux’s allyesconfig enables about 80% of the
codebase [39]. Commonly-used for build testing, maximal
configurations have also been used for static analysis [39] and
testing [37]. Maximal configuration have little variety, since
the goal is maximizing coverage, not feature interactions.

Random configurations, in contrast, are created by randomly
assigning options to be either enabled or disabled, such as with
the Linux kernel’s randconfig tool [40]. Randomly generated
configurations, we find, are not usually bootable, but they
are used for build testing and static analysis [34]. Interaction
testing approaches improve on random testing by maximizing
coverage of feature interactions, i.e., combinations of config-
uration options. Many algorithms have been developed for
this purpose [37], including t-wise [36], [37] sampling and
combinatorial interaction testing [38]. These algorithms are
effective at testing a wide variety of configurations, but they

also require testing a very large number of configuration files,
making them less suited to continuous fuzzing.

Configuration repair is not a configuration generation tech-
nique per se, but a technique to automatically modify existing
configuration files. Configuration repair has only been applied
to default configuration files to ensure patch coverage [34], but
the approach theoretically works to modify any configuration
file. Repair can preserve most options from the original file,
giving it the potential for preserving a continuous fuzzer’s
required options for booting and testing a kernel.

B. Considerations for Continuous Fuzzing

Prior configuration testing techniques have been applied to
a range of software analyses, including running tests, build
testing, and static analysis. To our knowledge, prior work
has not explicitly addressed the needs of continuous fuzzing,
which has several unique properties distinguishing it from
other testing techniques.

Bootable: Fuzz testers that rely on executing tests need the
kernel to be bootable on the test infrastructure. Otherwise,
the kernel cannot be tested. Required options: Kernel fuzz
testers rely on the kernel’s own bug detectors to report certain
warnings, such as address sanitizers. These bug detectors
are enabled via configuration options [31]. If not present,
the fuzzer cannot identify bugs. Patch Coverage: As prior
work [34] and our replication study shows, current continuous
fuzzing approaches, which use hand-selected configuration
files, miss the majority of patched code, contravening the core
goal of testing continuously on new code changes. Fuzzers
require at least configuration settings that include new code
changes into the kernel binary for continuous testing.

Few Files: Fuzzing depends on high test execution through-
put to cover as much of a codebase as possible, so fuzzers
are typically left to run for as long as feasible [27], [61],
[62], [19], [63], hours, days, or even weeks at a time. This
need complicates configuration testing, because many prior
techniques, such as feature interaction testing, depend on
generating and testing thousands of configuration files for
highly-configurable software like Linux [37], each of which
needs to be fuzzed individually for as long as possible. There-
fore, configuration testing strategies for continuous fuzzers are
restricted to producing few configuration files in to preserve
the resource utilization of the current practice of using a single
hand-selected configuration file.

Variety: While fuzzers may not be able to add much config-
uration variety to testing each new version of the kernel, they
can still add variety by altering the configuration file between
runs on new versions. As Abal et al. [65] reveal, modern-
day OS kernels such as Linux contain a significant number
of security vulnerabilities dependent on multi-feature interac-
tions. For example, Table II showcases 10 recent configuration-
dependent vulnerabilities in the Linux kernel found in the
CVE database [64], their assessed severity, and their respective
configuration features. For example, reaching vulnerabilities
CVE-2021-28039 and CVE-2021-20194 require the exclu-
sion of kernel features XEN BALLOON MEMORY HOTPLUG and

TABLE II: Recent configuration-dependent vulnerabilities and their relevant
configuration features. Features in red were not present in any kernel
configurations fuzzed by SyzKaller at the time the vulnerability was reported.

CVE [64] Severity Kernel Configuration Features
CVE-2023-4155 5.8 (Med) VMAP STACK
CVE-2023-3090 7.8 (High) IPVLAN
CVE-2023-0461 7.8 (High) TLS ∥ XFRM ESPINTCP
CVE-2021-35039 7.8 (High) !MODULE SIG

CVE-2021-28039 6.5 (Med) !XEN BALLOON MEMORY HOTPLUG
&& XEN UNPOPULATED ALLOC

CVE-2021-20194 7.8 (High)
BPF && BPF SYSCALL
&& CGROUPS && CGROUP BPF
&& !HARDENED USERCOPY

CVE-2018-19854 4.7 (Med) CRYPTO USER
CVE-2018-17182 7.8 (High) DEBUG VM VMACACHE
CVE-2017-8070 7.8 (High) VMAP STACK
CVE-2017-7889 7.8 (High) STRICT DEVMEM

HARDENED USERCOPY, respectively. Therefore kernel fuzzing,
if it hopes to uncover such configuration-dependent bugs,
needs at least some variety in its configuration file selection.

Fast Build: Critical to a fuzzer’s bug-finding effectiveness
is its ability to maintain a high test case throughput, requiring
each component of the fuzzing loop to be as optimized as
possible. Application-level fuzzers like AFL [45] and lib-
Fuzzer [48] have long benefited from performance enhance-
ments in their code coverage tracing [66], [67] and process
execution [68], [69] steps, which make up the two most time-
consuming components of application fuzzer designs [70].
Unfortunately, current kernel fuzzers have significantly more
complex components—relying on virtualized and/or emulated
environments to run the kernel—that cannot easily be decom-
posed and optimized for higher fuzzing speeds. Yet, compared
to application fuzzers, kernel fuzzers aim to fuzz software that
is substantially larger in size; for example, the Linux v6.6
kernel is upwards of over half of a gigabyte large. Larger
kernel configurations create larger kernel builds, placing higher
resource strain on a fuzzer’s virtualization and emulation
infrastructure. Therefore, kernels using smaller kernel binary
have the potential for better performance and also require less
time to build, saving more time for fuzzing.

C. Recommendations for Configuration Selection

Table III summarizes the impact of configuration testing
techniques on continuous fuzzing across the six properties
identified above, one per column. Each row marks which
properties each technique has.

Considering bootability, in our tests, allyesconfig fails
to boot in syzkaller’s QEMU-based virtualization setup [31],
which is not surprising given prior works’ conclusions that
it can be too large to boot [41], [42] or may even fail to
build [43]. allnoconfig also failed to boot in our tests.
Additionally, generating 100 randconfigs resulted in no
bootable kernels. defconfig is bootable, but lacks the options
required by the fuzzer, which is why syzkaller’s syz-kconf tool
adds additional options to defconfig.

Three techniques remain: hand-selection, interaction testing,
and repair. Hand-selection fails to include changes most of the
time (§ III)—nullifying the benefits of fuzzing continuously
and also adding no configuration variety. Interaction testing

requires generating so many configuration files that only
increasing the compute resources considerably would make
it feasible. Moreover, not all generated configuration files
will be bootable or cover patches, requiring manual effort
to filter out unusable configurations. Computational resource
requirements can be computed by by multiplying the number
of configurations used by the resources needed by one fuzzing
run. Resources needed for interaction testing are proportional
to the number of unique configuration files it generates, as each
one requires building and fuzzing a separate kernel binary.

In contrast, configuration repair does achieve patch cov-
erage, even with only a single repaired configuration file.
This avoids the computational resource burden of interaction
testing and, as our evaluation (§ V) shows, generally preserves
build time and the required options needed for fuzzing. As a
trade-off to preserving configuration settings, however, it only
adds relatively small amounts of variety, though our evaluation
shows a substantial impact.

We make the following recommendations for adding con-
figuration testing techniques to continuous fuzzing:

Repair hand-selected configuration files for continuous
fuzzing. Continuous fuzzers should use hand-selected config-
uration files that have been repaired, since this will use the
same compute resources as hand-selected, but add the benefits
of patch coverage and configuration variety.

Use interaction testing if adding compute resources is
viable. For platforms willing to add considerable compute
resources to support fuzzing many configuration files in paral-
lel, interaction testing can provide more variety than repairing
hand-selected configuration files.

Use hand-selected configurations when only concerned with
a specific device. For fuzz testers who only need to test a
specific configuration of the kernel, e.g., device manufacturers
who are only concerned with specific kernel features, variety
is unnecessary, and a hand-selected configuration file suffices.

Use interaction testing if only concerned with a specific
kernel version. For fuzz testers only concerned with a specific
kernel version, i.e., a long-term release version [71], continu-
ous testing is not necessary. Instead, the tester can add variety
with interaction testing or random testing.

V. EVALUATION

We evaluate the effects of applying our recommendation to
use configuration repair for syzkaller’s current hand-selected
configuration file approach. We emulate syzbot’s test infras-
tructure that runs syzkaller, but modify syzbot’s configuration
generation process to include additional variety using the
krepair configuration repair tool [72].

Besides configuration selection, all other design decisions
are left in place. We compare syzkaller’s performance and
bug-finding capabilities with and without adding configuration
repair.

A. Experimental Setup

We first selected a set of previous syzkaller runs, since
the configuration files used are recorded in bug reports on

TABLE III: A comparison of configuration selection strategies for the needs of continuous fuzzing

Selection Strategy Techniques Bootable Required Opts Patch Coverage Few Files Variety Fast Build

Repair krepair [34] ✔ ✔ ✔ ✔ ✔ ✔

Hand-Selected syzkaller [29], kAFL [28] ✔ ✔ ✗ ✔ ✗ ✔

Interaction Testing t-wise [36], [37], combinatorial [38] ✔ ✔ ✔ ✗ ✔ ✗

Default defconfig [40] ✔ ✗ ✗ ✔ ✗ ✔

Maximal allyesconfig [40], vampyr [39] ✗ ✔ ✔ ✔ ✗ ✗

Minimal allnoconfig [40] ✗ ✗ ✗ ✔ ✗ ✔

Random randconfig [40] ✗ ✗ ✔ ✗ ✔ ✗

syzkaller’s reporting dashboard [25]. We took a sample of 30
such configuration files from these previous bug reports. Then,
to get Linux versions close to those that syzkaller was testing
at the time of the report, we check out one or more commits
from the Linux development tree [23] from the time period
given in the bug report that provided the configuration file,
for a total of 46 unique commits. The set of Linux commit
IDs1, configuration files2, and URLs of the bug reports from
the syzbot dashboard3 can be found in the publicly-available
artifact [59].

For each combination of configuration file and Linux com-
mit, we ran syzkaller with and without the krepair-modified
configuration file. To repair the configuration files, we checked
out each Linux commit and used krepair to modify the original
configuration file, feeding the patch file that updated the
version to the commit ID, i.e., with git show, as input
to krepair. We configured, built, and ran syzkaller twice for
each commit/configuration combination on the same commit
IDs, once with the original configuration and once with the
modified configuration files. For both sets of configuration
files, we run syzkaller using the same virtualization settings as
described in its documentation [31], QEMU with 4GB RAM
and 8 virtual CPUs per run, and for the same amount of
fuzzing time, 12 hours as described by the syzkaller developers
on their mailing list [27].

All experiments were run on a server with a 2.25GHz AMD
EPYC 7742 and 512GB of RAM, running Ubuntu 22.04.2
LTS. Our publicly-available artifact contains the experiment
scripts used to run the experiments [59].

B. Research Questions

To evaluate the impact of modifying syzbot’s configuration
selection, we ask the following research questions.

RQ1 (Bug discovery) How does configuration repair affect
bug discovery?

RQ2 (Performance impacts) How does configuration repair
affect performance?

RQ3 (Configuration variety) How much configuration va-
riety is introduced by configuration repair?

C. RQ1: Bug Discovery

To evaluate bug-finding capacity, we measure the number of
alarms found by syzkaller in all runs, both with and without

1icse25-master/data_tables/Table_of_all_crashes.xlsx
2icse25-master/camera_ready/configuration_files/
3icse25-master/links_to_syzbot_bug_reports.txt

267 22831

Repaired Original

(a) All bugs found.

24 211

Repaired
Original

(b) Previously-unreported bugs found.

Fig. 2: Bugs found by syzkaller using krepaired configuration files compared
to the original configuration files.

the krepair-modified configuration file. Since the same bugs
are reported multiple times in the same run and across runs, we
deduplicate and aggregate the bugs found. After deduplication,
syzkaller found 269 bugs with the original configuration files
and 298 with the krepaired configuration files.

Even though the same set of kernel versions and the same
amount of total fuzzing time was used, there was surprisingly
little overlap in the bugs found when comparing the two
configuration file selection approaches, as shown by the Venn
diagram in Figure 2a. There were only 31 bugs that were found
by both approaches. This suggests that additional configuration
variety affected which bugs the fuzzer was able to find in the
same amount of time.

To find previously-unreported bugs, we search by hand
syzbot’s bug reporting history [25] for the same bug. While
both approaches found a similar number of bugs, most of the
bugs had been previously reported. When considering only
new, previously-unreported bugs, syzkaller with configuration
repair found considerably more, 35 new bugs compared to only
13 with the original configuration files as shown in Figure 2b.
Moreover, since 11 new bugs were found by both, syzkaller
with configuration repair found 24 unique new bugs compared
to only 2 with the original configuration files—a 12x increase.
§ VI lists all new bugs found.

We analyzed the types of all bugs found by syzkaller with

Stalls

Deadlock

Integer Underflow/Overflow

NULL Pointer Dereference

Out-of-Bounds

Use-After-Free

General Protection Fault

BUG_ON()

Warning

2.9%
12.6%

2.9%
16.4%

5.7%
1.1%

5.7%
6.3%

8.6%
4.1%

11.4%
4.5%

17.1%
8.2%

17.1%
16.4%

28.6%
30.5%

Repaired
Original

Fig. 3: Comparison of the distribution of bugs found repaired and original
configuration files.

both the krepaired and original configuration files. Figure 3
shows the percentage of bugs per category for the krepaired
configuration files, which yielded 298 bugs, and the original,
which yielded 259. Warnings are bugs caused by violations
of assertions written into code by developers. Such bugs are
reported as warnings because developers prefer to trigger a
warning and continue running rather than a kernel panic to,
e.g., ease debugging and recovery of the kernel [73], although
users may opt to panic on assertion violations [74]. BUG ON
bugs are assertion violations that developers decide should
panic the kernel [75]. General protection faults, uses after free,
out-of-bounds accesses and NULL pointer dereferences, inte-
ger overflow/underflow, stalls, and deadlock are from various
kernel sanitizer and bug-reporting tools [76] whose output is
recognized by syzkaller.

The types of bugs found both with and without the krepaired
configuration file are comparable, as shown. Overall, we
observe that the majority (54%) of bugs found using the
krepaired configuration with syzkaller are memory safety bugs,
which are highly relevant to kernel security. A total of 17.1%
are classified as temporal memory use-after-frees (11.4%) and
null-pointer dereferences (5.7%). Other memory safety errors
include out-of-bounds accesses (8.6%), generic protection
faults (17.1%), and integer-related errors (5.7%). We also see
that 5.8% of found bugs fall under stalls or deadlocks, which
are also commonly-exploited bug classes [77], [78].

RQ1: Modifying the configuration selection strategy helped the
fuzzer identify different bugs and more previously-unreported
bugs compared to the original configuration files.

D. RQ2: Performance Impacts

We evaluate the performance impacts of repairing configu-
ration files before fuzzing by rerunning the steps of the bug-
finding experiments, measuring (1) configuration generation

TABLE IV: Five-point summaries of kernel configuration time in seconds.

Original Configurations Repaired Configurations
Min 2.23 39.48
25th 2.38 43.53
Median 2.39 44.27
75th 2.43 170.11
Max 2.57 172.99

TABLE V: Five-point summaries of kernel build times in seconds.

Original Configurations Repaired Configurations
Min 120.47 105.82
25th 154.64 193.17
Median 180.29 261.65
75th 240.25 270.96
Max 251.42 412.82

time, (2) kernel build time, and (3) fuzzer throughput and
coverage. We randomly-selected 10 Linux commits, which can
be found in the artifact [59], to perform the evaluation and used
the same original and krepaired configuration files used in the
bug-finding evaluation.

Configuration times: Table IV summarizes the distributions
of configuration times for both the original and krepaired
configuration files. To configure the kernel with an existing
configuration file, the user runs make olddefconfig, which
imports an existing configuration file, checking it for consis-
tency. This process typically takes only seconds, as shown
in the five-point summary for the original configuration. For
the krepaired configuration files, we first run krepair on the
configuration file before importing it, which can take several
minutes. Although the krepair time was not included in the
12-hour fuzzing time in the bug-finding experiments, krepair
time is very small compared to the typical fuzzing times.

Build times: Table V summarizes the distributions of build
times for the original and krepaired configuration files. Once
configured, we build each kernel, parallelized with make -j,
measuring its time. Given the small configuration files and
high core-count of the experiment machine, build times were
less than 10 minutes in all cases.

Fuzzer performance: To evaluate fuzzer performance, we
measure test case test case throughput and total code coverage,
which are recorded by syzkaller. Test case throughput is the
number of test cases generated and executed over the 12
hours. High throughput is desirable for fuzzing, because it can
increase the opportunities to find bugs. Total code coverage is
the total number of basic blocks reached by any test case. Code
coverage is critical to fuzzers’ aim of testing as much of the
codebase as possible. For comparing throughput, we follow
the procedure of prior fuzzing literature [79] and report the
total test cases (i.e., system call sequences) executed per trial;
and for code coverage, we report the fuzzer-logged counts of
kernel basic blocks reached. We discuss our results below.

Test Case Throughput: Figure 4a compares test case
throughput for syzkaller with and without configuration repair
for each fuzzing trial. We posit that including more kernel code
likely causes fuzzing to execute more kernel code at the cost
of some throughput. On average, we observe that fuzzing on

Fuzzer Runs0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

Th
ro

ug
hp

ut
 (#

 o
f s

ys
te

m
 c

al
l s

eq
ue

nc
es

 e
xe

cu
te

d)

Repaired
Original

(a) syzkaller throughput with the original and krepaired configuration.

Fuzzer Runs0

25,000

50,000

75,000

100,000

125,000

150,000

175,000

200,000

Co
ve

ra
ge

 (#
 o

f B
lo

ck
s)

Repaired
Original

(b) syzkaller coverage with both the original and krepaired configuration.

Fig. 4: Comparing syzkaller performance before and after using krepair.

krepaired configuration files results in average throughput that
is 28.75% higher. In 3 of 10 trials, however, syzkaller achieves
a higher throughput with its original configuration file. The
krepaired configuration files only have an average of 76 kernel
more features than the original. Given the small amount of
change made to the configuration files, the throughput results
do not reveal a marked difference in throughput between the
original and krepaired configuration file.

Code Coverage: High fuzzing throughput alone is not
necessarily better for fuzzing if it is caused by repeatedly
covering the same fast-executing code paths. Coverage is just
as important for reaching bugs. We therefore also compare
the code coverage of syzkaller with and without repaired
configuration files. Following standard practice in fuzzing [50],
we measure code coverage in basic blocks. Figure 4b shows
the per-trial block coverage of syzkaller before and after using
krepair.

In 3 of 10 trials, syzkaller achieves slightly higher code
coverage with its original configuration file. Yet for the re-
maining 7 of 10 trials syzkaller coverage is higher with the
repaired configuration files and by larger margins. Overall,

TABLE VI: Number of configurations options changed by krepair.

Min 25th Median 75th 90th Max

57 70 76 90 115 1264

coverage averages 9.04% more basic blocks than with the
original configuration file. With a higher average code cov-
erage and throughput, we can conclude that using krepair to
modifying the configuration selection strategy does not harm
the performance of fuzzing. Indeed, the increase configuration
variety and build coverage of code changes is likely the source
of improved bug finding, since it opens new code paths to
exploration and provides evidence for why there was discovery
of previously-unreported kernel bugs in § V-C.

RQ2: Fuzzing with repaired kernel configurations upholds sim-
ilar fuzzing performance to the original unmodified configura-
tions.

E. RQ3: Configuration Variety

We measure how much configuration variety using krepair
introduces when ensuring patch coverage by counting the
number of options in the configuration file before and after
repair. Table VI shows the distribution of the number of
options changed as a five-point summary, i.e., quartiles, the
minimum, and the maximum, plus the 90th percentile to
show how the vast majority of cases behave. In most cases
(90th percentile), there were 115 or fewer changed options,
representing a very small change in the configuration file.
While the maximum was 1,264 options, the kernel has over
19,000 options available in the Linux kernel, representing less
than a 7% change in the file.

While even this modest amount of configuration variety
had a surprisingly large increase bug-finding capabilities, it
also helps explain why fuzzing performance had little impact.
The kernel binaries produced were very similar to the original
configuration file. This similarity also ensured that the kernel
was still bootable in syzbot’s testing infrastructure.

RQ3: Variety in configurations improves bug-finding capabilities
of fuzzing while preserving the performance, bootability, and
other configuration requirements of the fuzzer.

VI. PREVIOUSLY-UNREPORTED BUGS

Table VII lists all 35 previously-undiscovered bugs identi-
fied by syzkaller when using repaired configuration files. The
table shows the type of bug (separated by dashed lines), the
function it was found in, the commit ID of the kernel, whether
we could reproduce the bug, whether developers confirmed
it, and whether it has been patched. All 35 bugs have been
reported to Linux developers. As of the time of writing 8 have
so far been confirmed and 4 have been patched. Moreover, we
discovered an out-of-bounds access in fbcon set font that
causes a local denial-of-service vulnerability that was assigned
a CVE [44] with a medium severity score of 5.5.

TABLE VII: All previously-unreported bugs found by syzkaller when using the modified configuration selection strategy.

ID Type Location Kernel Version Reproducible Confirmed Patched
1 Use-After-Free hci conn hash flush b7455b10da762f2d ✔
2 Use-After-Free sco sock timeout b7455b10da762f2d
3 Use-After-Free f2fs iget 09e41676e35ab06e ✔
4 Use-After-Free diFree 09e41676e35ab06e
5 Null Ptr Deref filemap fault b7455b10da762f2d
6 Null Ptr Deref ext4 update overhead b7455b10da762f2d
7 Out-of-Bounds Access extAlloc b7455b10da762f2d ✔
8 Out-of-Bounds Access fbcon set font a54df7622717a40d ✔ ✔ ✔
9 Out-of-Bounds Access f2fs iget 509583475828c4fd ✔
10 Out-of-Bounds Access f2fs iget 66eee64b235411d5 ✔
11 Out-of-Bounds Access ntfs test inode a54df7622717a40d
12 Protection Fault nl802154 trigger scan 4d6d7ce9baaf9e67 ✔ ✔ ✔
13 Protection Fault efivar lock 9fbee811e479aca2 ✔ ✔
14 Protection Fault floppy ready 9ce08dd7ea24253a ✔
15 Protection Fault blkg destroy all 09e41676e35ab06e
16 Protection Fault reset interrupt b7455b10da762f2d ✔

17 Unspecified Bug page add anon rmap a54df7622717a40d ✔ ✔ ✔
18 Unspecified Bug rcu core 465461cf48465b8a ✔
19 Unspecified Bug smp call function b7455b10da762f2d ✔ ✔
20 Unspecified Bug ntfs perform write 4fafd96910add124 ✔
21 Unspecified Bug btrfs global root insert 509583475828c4fd ✔
22 Unspecified Bug jfs evict inode b7455b10da762f2d
23 Unspecified Bug erofs iget b7455b10da762f2d ✔
24 Unspecified Bug do journal end b7455b10da762f2d
25 Warning split vma a54df7622717a40d ✔ ✔ ✔
26 Warning get floppy geometr 9ce08dd7ea24253a
27 Warning invalidate drive e2f86c02fdc96ca2
28 Warning process fd request 4d6d7ce9baaf9e67
29 Warning udf truncate extents b7455b10da762f2d ✔
30 Warning vma merge 83e5775d7afda68f
31 Warning floppy read block 0 83e5775d7afda68f ✔
32 Warning btrfs block rsv release b7455b10da762f2d ✔
33 Warning send hsr supervision frame 80bd9028fecadae4
34 Warning fd locked ioctl e2f86c02fdc96ca2 ✔

35 Stall io ring exit work 129af770823407ee
Total 19 8 4

To help developers investigate a bug, syzkaller attempts to
generate a program that reproduces the bug. But due to the
limitations of syzkaller, not all bugs produce a reproducer
program. Of our 35 new bugs, syzkaller successfully generated
reproducers for 25 of them. Of these 25, 19 successfully
triggered the bug. Unfortunately, syzkaller’s inability to pro-
duce functional reproducers is a known problem. In consulting
syzkaller’s developers ourselves, we anticipate that kernel non-
determinism is the most likely root cause of our unrepro-
ducible crashes. The absence of reproducibility also makes
bug reporting and developer-side bug triage more difficult. As
the maintainer, Greg Kroah-Hartman points out [80].

Reproducer would be great, thanks. Otherwise this goes on
the thousands of other “syzbot-found-bugs-with-no-way-
to-reproduce” pile that we have...

We observe, however, that developers can occasionally di-
agnose and patch bugs without a reproducer. For exam-
ple, one of the general protection faults we found in
nl802154 trigger scan lacked a reproducer, but was
confirmed and patched by a kernel maintainer who inferred
its cause from the bug report alone [81]. At the time of
writing, the remaining bugs are still pending confirmation with
developers.

A. The Effects of Configuration Variety

For the 19 bugs that are reproducible, we investigated
whether they only apply to the modified configuration file

or were applicable to syzkaller’s original configuration file
(Table VIII). If the bug were only present when little-used
options were enabled, it may not be present in typical kernel
builds. Of the 19 reproducible bugs, we found that only 4
were specific to the repaired configuration file. The remain-
ing 15 reproduce the bug in kernels built with both the
repaired and original configuration file. This indicates that
adding configuration variety not only opens the fuzzer to code
excluded by its original configuration file, but it also helps
alter coverage patterns sufficiently to identify bugs it had not
otherwise covered when fuzzing kernels built with the original
configuration file.

To further investigate the effects of configuration variety on
fuzzing, we traced the coverage of reproducers that triggered
the same bug in both the repaired and original configuration
files. Our reasoning is that if the same bug is triggered, but
follows a different path between the two kernels, then the
fuzzer must have taken a path to reach the bug that is not
available with the original configuration file, even though the
bug is present in the latter’s kernel. To track coverage, we
ran the reproducers and collected coverage traces with kcov,
Linux’s built-in coverage tracer. Retrieving kcov data is only
feasible for bugs that do not crash the kernel, since it is the
kernel itself maintaining the coverage information. But for 6
of the 7 bugs that do not crash the kernel (they produce a
warning instead) we observed differences in the traces between

TABLE VIII: Bugs that depended on configuration variety to be found.

ID Type Location Method
1 Use-After-Free hci conn hash flush Reproducer

24 Unspecified Bug do journal end Reproducer
29 Warning udf truncate extends Reproducer
3 Use-After-Free f2fs iget Reproducer

17 Unspecified Bug page add anon rmap kcov
8 OOB Access fbcon set font kcov

13 Protection Fault efivar lock kcov
34 Warning fd locked ioctl kcov
30 Warning vma merge kcov
9 OOB Access f2fs iget Call Trace

kernels built with modified and original configuration files,
while the remaining 1 appeared unrelated to the repaired
configuration file. We quantify the differences between traces
as the percentage of differing lines. For the reproducers we
traced, these differences ranged from 0.13% to 36%.

For bugs that do crash the kernel, we manually investigated
the stack traces reported by syzkaller and to determine whether
any functions in the trace were only present in kernels built
with repaired configuration files. Our reasoning is that if
a function in the stack trace is configuration-specific, then
the repaired configuration file was necessary to identify the
bug along that specific trace. We found one crash that was
indeed configuration specific and detail this bug in the next
subsection.

Summary: We identify 10 bugs (Table VIII) whose reachability
is enhanced by configuration variety—even though these bugs
exist in kernels built with syzkaller’s original configuration.

B. Case Study: A Configuration-Specific Trace

To better understand how configuration variety helps fuzzers
find bugs, we perform a case study of bug #9 from Table VII,
which we identified as covering code only available in our
modified configuration file but resulting a bug that was re-
producible with syzkaller’s original configuration file. Its call
trace shows the bug location to be function f2fs iget in
source file fs/f2fs/inode.c, with a previous call occurring
to function f2fs fill super.

Listing 2 displays the relevant parts of the function, in-
cluding the ultimate call to the buggy function f2fs iget.
Caller function f2fs fill super contains several #ifdef
conditional compilation directives, which are controlled by the
kernel configuration. While relevant features CONFIG QUOTA
and CONFIG FS ENCRYPTION exist in both the modified
and configuration configuration file, CONFIG FS VERITY is
only enabled in the original configuration, while our modified
configuration file disables it, leading to the omission of this
source line in the kernel. The sb data structure is ultimately
passed to the buggy function f2fs iget. Although the stack
trace alone does not show direct involvement of the line
omitted by CONFIG FS VERITY, the trace illustrates how
modifying the configuration file alters code paths at build time,
leading to different coverage patterns and different bugs.

1 static int f2fs fill super(struct super block ∗sb, void ∗data,
int silent)

2 {
3 // (code omitted for brevity)
4 #ifdef CONFIG QUOTA
5 sb−>dq op = &f2fs quota operations;
6 sb−>s qcop = &f2fs quotactl ops;
7 sb−>s quota types = QTYPE MASK USR | QTYPE MASK GRP |

QTYPE MASK PRJ;
8
9 if (f2fs sb has quota ino(sbi)) {

10 for (i = 0; i < MAXQUOTAS; i++) {
11 if (f2fs qf ino(sbi−>sb, i))
12 sbi−>nquota files++;
13 }
14 }
15 #endif
16 sb−>s op = &f2fs sops;
17 #ifdef CONFIG FS ENCRYPTION
18 sb−>s cop = &f2fs cryptops;
19 #endif
20 // krepair disables CONFIG FS VERITY
21 #ifdef CONFIG FS VERITY
22 sb−>s vop = &f2fs verityops;
23 #endif
24 // (code omitted for brevity)
25 // call to f2fs iget containing the bug
26 sbi−>node inode = f2fs iget(sb, F2FS NODE INO(sbi));

Listing 2: Abridged code of fs/f2fs/super.c.

VII. THREATS TO VALIDITY

A. Internal validity

Our replication study produces patch coverage results simi-
lar to prior work, suggesting some generality to the limitations
of hand-selected patches for continuous testing. We evaluate
two popular fuzzers, syzkaller and kAFL, showing that both
suffer similar limitations. Our evaluation is for the Linux ker-
nel, which has especially high configurability. While syzkaller
supports other kernels, krepair does not.

Fuzzing uses randomization, so multiple runs may exhibit
different behavior. As of paper acceptance, there was no
known way to replicate individual syzkaller runs, as confirmed
by developers [82]. Snapshotting, however, has since been
added to syzkaller [83]. While not yet evaluated as of writing,
this feature should help with replicability in the future. We
mitigated fuzzer randomness in our experiments by comparing
the repaired and original configuration against many differ-
ent patches, which consistently exposed previously-unreported
bugs.

While not all bugs are confirmed yet by Linux’s developers
at the time of writing, we observe that most of our reported
bugs have reproducing test cases, proving their existence.

B. External validity

The replication study uses a sample of patches from a single
recent year. While that year contains about 17,000 patches
and the sample is large enough to have a low margin of error
(5%), it is possible that other years or other software would
have different patching behavior. A useful future study would
be to mine a large number of software repositories and takes
large samples of their change histories to evaluate how much
configuration variety exists in new code changes.

Our results show that another kernel fuzzer, kAFL, suffers
the same configuration testing limitations, but has no publicly-
available continuous testing infrastructure. syzkaller is the
most popular kernel fuzzer and the only one to our knowledge
that has an open source test robot. Additionally, many applica-
tions also have high configurability [84], [85], [86], including
those using Linux’s configuration system, Kconfig.

Our recommendations are specific to continuous fuzzing,
since fuzzing has specific needs separate from other testing
approaches, such as test suites and static analysis. A similar
systematic analysis, however, could be applied to those testing
approaches to provide the appropriate recommendations.

Our analysis of configuration selection strategies is based on
the current state-of-the-art. Future work could better integrate
configuration testing and continuous kernel fuzz testing for
further improvements in bug finding, for instance, by encoding
multiple configurations in a single binary and fuzzing them to-
gether [87], [88], [89] or incorporating configuration selection
into existing mutation strategies [90], [11].

VIII. RELATED WORK

A. Configuration Analysis

Research continues to examine the challenges of maintain-
ing and securing configurable software. Melo et al. [91] show
developers struggle to perform precise configuration analysis
by-hand, particularly for complex code such as OS kernels.
Mordahl et al. [92] examine the effectiveness of applying
configuration-agnostic static analysis tools to the detection of
configuration-dependent application bugs. Ferreira et al. [93]
formalize configuration complexity and study its influence on
the occurrence of configuration-dependent kernel vulnerabili-
ties. Abal et al. [65] examine previously-fixed configuration-
dependent kernel bugs to quantify and understand their con-
figuration complexity. We believe that these and other studies
present further opportunities for applying configuration-aware
fuzzing, for example, to target pre-identified code regions
suspected of containing configuration-dependent bugs.

Prior research is also exploring static means of improv-
ing configuration-based analysis tasks. C-Reconfigurator [87],
Hercules [94], SugarC [89], and Maki [95] demonstrate the
feasibility of statically rewriting applications’ configuration-
dependent code to instead be invokable at runtime; for ex-
ample, rewriting an #ifdef-wrapped code block to instead
be guarded by an if() statement. Although these tech-
niques have yet to be applied beyond user-space applications,
we envision the potential for future synergistic approaches
combining configuration-aware kernel fuzzing with additional
static kernel analyses and transformations.

Research is also exploring dynamic approaches for rec-
ognizing differences between program variants. Meinicke et
al. [96] introduce the concept of variational traces: a compact
representation of the execution path differences among unique
variants of the same program. Ferreira et al. [97] perform
variational tracing at the call-graph-level. Kaoudis et al. [98]
improve the power of variational trace collection at the control-

and data-flow level by leveraging LLVM-based compiler in-
strumentation. We anticipate that advancements in kernel-level
execution profiling will facilitate even faster and more effective
configuration-aware kernel fuzzing.

Some prior work has explored continuous testing for soft-
ware product lines [99] albeit not for kernel fuzzing. Other
prior work has looked at command-line argument fuzzing for
user-space programs [100]. In our work, however, we use
existing, unmodified kernel fuzzing algorithms with config-
uration repair to improve configuration variety.

B. Kernel Fuzzing
Numerous kernel fuzzers have emerged over the years

employing different architectures and techniques. By far the
most popular is Google’s syzkaller [10]—among the first
kernel fuzzers to borrow successful principles from application
fuzzers like AFL [45], e.g., code coverage guidance, random
mutation, and grammars. Intel’s kAFL [11] adopts many of
the same features, but obtains far greater speed from its faster
hypervisor-accelerated VM snapshotting. While the majority
of today’s kernel fuzzers target open-source kernels such as
Linux, kAFL [11] and NTFUZZ [101] are among the few
available Windows kernel fuzzers.

Many industrial and academic enhancements are improv-
ing kernel fuzzing speed and effectiveness. DIFUZE [49],
SyzDescribe [15], and FUZZNG [16] extend the reach of
Syzkaller by automating generation of system-call-specific
input specifications for its “SyzLang” [10] grammar format.
Dr.Fuzz [102], DriFuzz [103], DevFuzz [18], and PrInt-
Fuzz [17] combine static and dynamic analyses to synthesize
virtual device models, increasing coverage when fuzzing their
associated device drivers. Agamotto [14] and Horus [104] both
accelerate kernel fuzzing via incremental process snapshot-
ting and optimized host–VM communication, respectively. As
configuration-aware fuzzing is orthogonal to the fuzzer used,
we expect that combining it with different fuzzing advance-
ments will yield improved capabilities in finding configuration-
dependent kernel bugs.

IX. CONCLUSION

Fuzzers have been very successful at finding kernel bugs,
but our replication study shows that the use of predefined
configuration settings leads to missed patches when fuzzers
stop to rebuild their kernel, nullifying the benefits of con-
tinuous testing. We systematically analyzed the challenges
of configuration testing for continuous fuzzers and provided
guidelines to configuration and fuzzing researchers, demon-
strating how fuzzers can improve both continuous and config-
uration testing without sacrificing performance. Our evaluation
confirms a substantial increase in previously-undiscovered
bugs by modifying only the configuration selection strategy
while preserving fuzzer performance.

ACKNOWLEDGMENTS

We would like to thank to anonymous reviewers for their
feedback which has helped improve the paper. This work was
supported in part by NSF grant CCF-1941816.

REFERENCES

[1] “Top 500,” 2020, https://www.top500.org/statistics/sublist/.
[2] “W3Techs Surveys: Usage statistics of Unix for websites,” https:

//w3techs.com/technologies/details/os-unix/all/all, 2019.
[3] “Iot developer survey results,” https://iot.eclipse.org/community/

resources/iot-surveys/assets/iot-developer-survey-2018.pdf, 2018.
[4] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wąsowski, “Evolu-

tion of the Linux kernel variability model,” in International Conference
on Software Product Lines. Springer, 2010, pp. 136–150.

[5] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and O. Spinczyk,
“Is the linux kernel a software product line,” in Proc. SPLC Workshop
on Open Source Software and Product Lines, 2007.

[6] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-Oriented
Software Product Lines: Concepts and Implementation. Springer
Publishing Company, Incorporated, 2013.

[7] IEEE, “IEEE Standard for Configuration Management in Systems and
Software Engineering,” 2012.

[8] P. Gazzillo, “Inferring and securing software configurations using
automated reasoning,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2020, 2020.

[9] M. Dellago, A. C. Simpson, and D. W. Woods, “Exploit brokers and
offensive cyber operations,” The Cyber Defense Review, 2022.

[10] D. Vyukov, “syzkaller,” https://github.com/google/syzkaller, 2023.
[11] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,

“kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels,” in
USENIX Security Symposium, ser. USENIX, 2017.

[12] K. Kim, T. Kim, E. Warraich, B. Lee, K. R. Butler, A. Bianchi, and
D. J. Tian, “Fuzzusb: Hybrid stateful fuzzing of usb gadget stacks,” in
2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022.

[13] H. Peng and M. Payer, “{USBFuzz}: A framework for fuzzing {USB}
drivers by device emulation,” in 29th USENIX Security Symposium
(USENIX Security 20), 2020, pp. 2559–2575.

[14] D. Song, F. Hetzelt, J. Kim, B. B. Kang, J.-P. Seifert, and M. Franz,
“Agamotto: Accelerating kernel driver fuzzing with lightweight virtual
machine checkpoints,” in USENIX Security Symposium, 2020.

[15] Y. Hao, G. Li, X. Zou, W. Chen, S. Zhu, Z. Qian, and A. A.
Sani, “Syzdescribe: Principled, automated, static generation of syscall
descriptions for kernel drivers,” in 2023 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, 2023, pp. 3262–3278.

[16] A. Bulekov, B. Das, S. Hajnoczi, and M. Egele, “No grammar,
no problem: Towards fuzzing the linux kernel without system-call
descriptions.” in Network and Distributed Systems Security Symposium
(NDSS), 2023.

[17] Z. Ma, B. Zhao, L. Ren, Z. Li, S. Ma, X. Luo, and C. Zhang, “Printfuzz:
fuzzing linux drivers via automated virtual device simulation,” in
Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2022, pp. 404–416.

[18] Y. Wu, T. Zhang, C. Jung, and D. Lee, “Devfuzz: Automatic device
model-guided device driver fuzzing,” in 2023 IEEE Symposium on
Security and Privacy (SP). IEEE Computer Society, 2023.

[19] X. Zou, G. Li, W. Chen, H. Zhang, and Z. Qian, “SyzScope: Revealing
High-Risk security impacts of Fuzzer-Exposed bugs in linux kernel,”
in USENIX Security Symposium, 2022.

[20] J. Corbet, “Some 5.5 kernel development statistics,” https://lwn.net/
Articles/810639/, 2020.

[21] ——, “Some 5.12 development statistics,” https://lwn.net/Articles/
853039/, 2021.

[22] ——, “Some 5.19 development statistics,” https://lwn.net/Articles/
902854/, 2022.

[23] “The linux-next integration testing tree,” https://git.kernel.org/pub/scm/
linux/kernel/git/next/linux-next.git/, 2024, accessed: 2024-03-21.

[24] J. Spaans, “Linux kernel mailing list,” https://lkml.org/, 2024, accessed:
2024-03-21.

[25] “syzbot,” https://syzkaller.appspot.com, 2024, accessed: 2024-03-21.
[26] syzbot, “ci-upstream-linux-next-kasan-gce-root,”

https://syzkaller.appspot.com/upstream/manager/
ci-upstream-linux-next-kasan-gce-root, 2024, accessed: 2024-03.

[27] A. Nogikh, “Re: syzkaller use,” https://groups.google.com/g/syzkaller/
c/kBcVUaF3O40/m/6SJdp0g4AgAJ, 2024, accessed: 2024-03-21.

[28] KAFL, “config.vanilla.virtio,” https://github.com/IntelLabs/kafl.targets/
blob/master/linux-kernel/config.vanilla.virtio, 2024, accessed: 2024-03.

[29] “syz-kconf in syzkaller on go.dev,” https://pkg.go.dev/github.com/
google/syzkaller/tools/syz-kconf, 2023, accessed: 2023-12-05.

[30] “syzkaller/dashboard/config/linux/,” https://github.com/google/
syzkaller/tree/master/dashboard/config/linux, 2022, accessed: 2024-03.

[31] “syzkaller settings,” https://github.com/google/syzkaller/blob/master/
docs/linux/setup_ubuntu-host_qemu-vm_x86-64-kernel.md, 2023, ac-
cessed: 2023-12-05.

[32] KAFL, “Configure and build target kernel,” https://intellabs.
github.io/kAFL/tutorials/linux/fuzzing_linux_kernel.html#
configure-and-build-target-kernel, 2024, accessed: 2024-03-19.

[33] K. Yaghmour, Building Embedded Linux Systems. O’Reilly Media,
Inc., 2003.

[34] N. F. Yıldıran, J. Oh, J. Lawall, and P. Gazzillo, “Maximizing Patch
Coverage for Testing of Highly-Configurable Software without Explod-
ing Build Times,” in Proceedings of the 32nd ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2024, 2024.

[35] M. Acher, H. Martin, J. A. Pereira, A. Blouin, J.-M. Jézéquel, D. E.
Khelladi, L. Lesoil, and O. Barais, “Learning very large configuration
spaces: What matters for linux kernel sizes,” Ph.D. dissertation, Inria
Rennes-Bretagne Atlantique, 2019.

[36] K.-C. Tai and Y. Lei, “A test generation strategy for pairwise testing,”
IEEE Transactions on Software Engineering, Jan. 2002.

[37] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel, “A
comparison of 10 sampling algorithms for configurable systems,”
in Proceedings of the 38th International Conference on Software
Engineering, ser. ICSE ’16, 2016, p. 643–654.

[38] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton, “The
combinatorial design approach to automatic test generation,” IEEE
Software, vol. 13, no. 5, pp. 83–88, Sep. 1996.

[39] R. Tartler, C. Dietrich, J. Sincero, W. Schröder-Preikschat, and
D. Lohmann, “Static analysis of variability in system software: The
90,000 #ifdefs issue,” in USENIX Annual Technical Conference.

[40] “Mainline Linux git repository,” https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git, 2021.

[41] A. Maguire, “A zoological guide to kernel
data structures,” https://blogs.oracle.com/linux/post/
a-zoological-guide-to-kernel-data-structures, 2021.

[42] H.-C. Kuo, J. Chen, S. Mohan, and T. Xu, “Set the configuration for
the heart of the os: On the practicality of operating system kernel
debloating,” Proc. ACM Meas. Anal. Comput. Syst., may 2020.

[43] P. Michael Larabel, “Linux objtool Improvements Help Reduce RAM
Usage & Build Time During Large Kernel Builds,” https://www.
phoronix.com/news/Linux-objtool-allyesconfig-RAM, 2023.

[44] “CVE-2023-3161,” https://access.redhat.com/security/cve/
cve-2023-3161.

[45] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining
Incremental Steps of Fuzzing Research,” in USENIX Workshop on
Offensive Technologies, ser. WOOT, 2020.

[46] C. Lemieux, R. Padhye, K. Sen, and D. Song, “PerfFuzz: Automati-
cally Generating Pathological Inputs,” in ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA, 2018.

[47] A. Fioraldi, D. C. D’Elia, and D. Balzarotti, “The use of likely in-
variants as feedback for fuzzers,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 2829–2846.

[48] K. Serebryany, “Continuous fuzzing with libfuzzer and addresssani-
tizer,” in IEEE Cybersecurity Development Conference, 2016.

[49] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel,
and G. Vigna, “Difuze: Interface aware fuzzing for kernel drivers,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2123–2138.

[50] M. Fleischer, D. Das, P. Bose, W. Bai, K. Lu, M. Payer, C. Kruegel,
and G. Vigna, “ACTOR: Action-Guided kernel fuzzing,” in USENIX
Security Symposium, 2023.

[51] “Kconfig language,” https://android.googlesource.com/kernel/
common/+/refs/heads/android-mainline/Documentation/kbuild/
kconfig-language.rst, 2023, accessed: 2023-12-05.

[52] “FreeBSD Handbook: Chapter 10. Configuring the FreeBSD Kernel,”
https://docs.freebsd.org/en/books/handbook/kernelconfig/, 2023.

[53] “Kconfig language,” https://www.kernel.org/doc/html/latest/kbuild/
kconfig-language.html, 2023, accessed: 2023-12-05.

[54] “The netbsd guide: Tuning netbsd, 19.9.2. configuring the
kernel,” https://www.netbsd.org/docs/guide/en/chap-tuning.html#
tuning-kernel-configure, 2023, accessed: 2023-12-05.

https://www.top500.org/statistics/sublist/
https://w3techs.com/technologies/details/os-unix/all/all
https://w3techs.com/technologies/details/os-unix/all/all
https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2018.pdf
https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2018.pdf
https://github.com/google/syzkaller
https://lwn.net/Articles/810639/
https://lwn.net/Articles/810639/
https://lwn.net/Articles/853039/
https://lwn.net/Articles/853039/
https://lwn.net/Articles/902854/
https://lwn.net/Articles/902854/
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/
https://lkml.org/
https://syzkaller.appspot.com
https://syzkaller.appspot.com/upstream/manager/ci-upstream-linux-next-kasan-gce-root
https://syzkaller.appspot.com/upstream/manager/ci-upstream-linux-next-kasan-gce-root
https://groups.google.com/g/syzkaller/c/kBcVUaF3O40/m/6SJdp0g4AgAJ
https://groups.google.com/g/syzkaller/c/kBcVUaF3O40/m/6SJdp0g4AgAJ
https://github.com/IntelLabs/kafl.targets/blob/master/linux-kernel/config.vanilla.virtio
https://github.com/IntelLabs/kafl.targets/blob/master/linux-kernel/config.vanilla.virtio
https://pkg.go.dev/github.com/google/syzkaller/tools/syz-kconf
https://pkg.go.dev/github.com/google/syzkaller/tools/syz-kconf
https://github.com/google/syzkaller/tree/master/dashboard/config/linux
https://github.com/google/syzkaller/tree/master/dashboard/config/linux
https://github.com/google/syzkaller/blob/master/docs/linux/setup_ubuntu-host_qemu-vm_x86-64-kernel.md
https://github.com/google/syzkaller/blob/master/docs/linux/setup_ubuntu-host_qemu-vm_x86-64-kernel.md
https://intellabs.github.io/kAFL/tutorials/linux/fuzzing_linux_kernel.html#configure-and-build-target-kernel
https://intellabs.github.io/kAFL/tutorials/linux/fuzzing_linux_kernel.html#configure-and-build-target-kernel
https://intellabs.github.io/kAFL/tutorials/linux/fuzzing_linux_kernel.html#configure-and-build-target-kernel
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://blogs.oracle.com/linux/post/a-zoological-guide-to-kernel-data-structures
https://blogs.oracle.com/linux/post/a-zoological-guide-to-kernel-data-structures
https://www.phoronix.com/news/Linux-objtool-allyesconfig-RAM
https://www.phoronix.com/news/Linux-objtool-allyesconfig-RAM
https://access.redhat.com/security/cve/cve-2023-3161
https://access.redhat.com/security/cve/cve-2023-3161
https://android.googlesource.com/kernel/common/+/refs/heads/android-mainline/Documentation/kbuild/kconfig-language.rst
https://android.googlesource.com/kernel/common/+/refs/heads/android-mainline/Documentation/kbuild/kconfig-language.rst
https://android.googlesource.com/kernel/common/+/refs/heads/android-mainline/Documentation/kbuild/kconfig-language.rst
https://docs.freebsd.org/en/books/handbook/kernelconfig/
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
https://www.netbsd.org/docs/guide/en/chap-tuning.html#tuning-kernel-configure
https://www.netbsd.org/docs/guide/en/chap-tuning.html#tuning-kernel-configure

[55] “Openbsd faq: Building the system from source,” https://www.openbsd.
org/faq/faq5.html, 2023, accessed: 2023-12-05.

[56] “How to build xnu,” https://github.com/apple-oss-distributions/xnu#
how-to-build-xnu, 2023, accessed: 2023-12-05.

[57] A. Rahman, S. I. Shamim, D. B. Bose, and R. Pandita, “Security
misconfigurations in open source kubernetes manifests: An empirical
study,” ACM Trans. Softw. Eng. Methodol., vol. 32, no. 4, may 2023.

[58] N. F. Yıldıran, J. Oh, J. Lawall, and P. Gazzillo, “Artifact from
"Maximizing Patch Coverage for Testing of Highly-Configurable
Software without Exploding Build Times",” Feb. 2024. [Online].
Available: https://doi.org/10.5281/zenodo.10626343

[59] S. Hasanov, S. Nagy, and P. Gazzillo, “Artifact from "A Little Goes
a Long Way: Tuning Configuration Selection for Continuous Kernel
Fuzzing",” Aug. 2024. [Online]. Available: https://zenodo.org/doi/10.
5281/zenodo.10854982

[60] “Linux kernel patch submission checklist,” https://docs.kernel.org/
process/submit-checklist.html?highlight=allnoconfig, 2024.

[61] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’18, 2018.

[62] X. Tan, Y. Zhang, J. Lu, X. Xiong, Z. Liu, and M. Yang, “Syzdirect:
Directed greybox fuzzing for linux kernel,” in ACM SIGSAC Confer-
ence on Computer and Communications Security, 2023.

[63] W. Chen, Y. Wang, Z. Zhang, and Z. Qian, “Syzgen: Automated
generation of syscall specification of closed-source macos drivers,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 749–763.

[64] “Common Vulnerabilities and Exposures Database,” https://www.cve.
org/, 2024, accessed: 2024-03-21.

[65] I. Abal, C. Brabrand, and A. Wasowski, “42 variability bugs in the linux
kernel: A qualitative analysis,” in Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, 2014.

[66] S. Nagy, A. Nguyen-Tuong, J. D. Hiser, J. W. Davidson, and M. Hicks,
“Same coverage, less bloat: Accelerating binary-only fuzzing with
coverage-preserving coverage-guided tracing,” in ACM SIGSAC Con-
ference on Computer and Communications Security, 2021.

[67] C. Zhou, M. Wang, J. Liang, Z. Liu, and Y. Jiang, “Zeror: speed up
fuzzing with coverage-sensitive tracing and scheduling,” in IEEE/ACM
International Conference on Automated Software Engineering, 2020.

[68] L. Stone, R. Ranjan, S. Nagy, and M. Hicks, “No linux, no problem:
Fast and correct windows binary fuzzing via target-embedded snap-
shotting,” in USENIX Security Symposium, 2023.

[69] W. Xu, S. Kashyap, C. Min, and T. Kim, “Designing New Operating
Primitives to Improve Fuzzing Performance,” in ACM SIGSAC Con-
ference on Computer and Communications Security, ser. CCS, 2017.

[70] S. Nagy and M. Hicks, “Full-speed Fuzzing: Reducing Fuzzing
Overhead through Coverage-guided Tracing,” in IEEE Symposium on
Security and Privacy, ser. Oakland, 2019.

[71] “The Linux Kernel Archives,” https://kernel.org/, 2024.
[72] https://github.com/paulgazz/kmax, 2024, accessed: 2024-02-06.
[73] “Warning about WARN_ON(),” https://lwn.net/Articles/969923/, 2024.
[74] “What to do in response to a kernel warning,” https://lwn.net/Articles/

876209/, 2021.
[75] “Deprecated Interfaces, Language Features, Attributes, and

Conventions,” https://docs.kernel.org/process/deprecated.html#
bug-and-bug-on, 2024, accessed: 2024-08-15.

[76] “Development tools for the kernel,” https://docs.kernel.org/6.6/
dev-tools/index.html, 2024.

[77] M. Xu, S. Kashyap, H. Zhao, and T. Kim, “Krace: Data race fuzzing
for kernel file systems,” in IEEE Symposium on Security and Privacy
(SP), 2020.

[78] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin, “Razzer:
Finding kernel race bugs through fuzzing,” in IEEE Symposium on
Security and Privacy (SP), 2019.

[79] S. Nagy, A. Nguyen-Tuong, J. D. Hiser, J. W. Davidson, and M. Hicks,
“Breaking Through Binaries: Compiler-quality Instrumentation for
Better Binary-only Fuzzing,” in USENIX Security Symposium, 2021.

[80] G. Kroah-Hartman, “Re: Syzkaller found a bug: KASAN: use-after-
free Read in do_update_region,” https://lore.kernel.org/lkml/Y35v%
2FieA0OrF510w@kroah.com/, 2022, accessed: 2024-03-20.

[81] “general_protection_fault,” https://lore.kernel.org/netdev/
20230301154450.547716-1-miquel.raynal@bootlin.com/, 2023.

[82] A. Nogikh, “using random seeds of syzkaller,” https://groups.
google.com/g/syzkaller/c/ABSK8qc9zfw/m/8Bs4MDWxBgAJ, 2022,
accessed: 2024-08-15.

[83] D. Vyukov, “add qemu snapshotting mode,” https://github.com/google/
syzkaller/commit/4d77b9fe7da3d014943a16cb4b9a4ca3a531521a.

[84] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki, “A study
of variability models and languages in the systems software domain,”
IEEE Transactions on Software Engineering, 2013.

[85] N. Wells, “Busybox: A swiss army knife for linux,” Linux Journal.
[86] R. Fielding and G. Kaiser, “The apache http server project,” IEEE

Internet Computing, vol. 1, no. 4, pp. 88–90, 1997.
[87] A. F. Iosif-Lazar, J. Melo, A. S. Dimovski, C. Brabrand, and

A. Wasowski, “Effective analysis of C programs by rewriting
variability,” CoRR, vol. abs/1701.08114, 2017. [Online]. Available:
http://arxiv.org/abs/1701.08114

[88] H. V. Nguyen, C. Kästner, and T. N. Nguyen, “Exploring variability-
aware execution for testing plugin-based web applications,” in Proceed-
ings of the 36th International Conference on Software Engineering, ser.
ICSE 2014, 2014, p. 907–918.

[89] Z. Patterson, Z. Zhang, B. Pappas, S. Wei, and P. Gazzillo, “Sugarc:
Scalable desugaring of real-world preprocessor usage into pure c,”
in Proceedings of the 44th International Conference on Software
Engineering, ser. ICSE ’22, 2022, p. 2056–2067.

[90] M. Wu, L. Jiang, J. Xiang, Y. Huang, H. Cui, L. Zhang, and Y. Zhang,
“One fuzzing strategy to rule them all,” in Proceedings of the 44th
International Conference on Software Engineering, 2022.

[91] J. Melo, F. B. Narcizo, D. W. Hansen, C. Brabrand, and A. Wasowski,
“Variability through the eyes of the programmer,” in Proceedings of the
25th International Conference on Program Comprehension, ser. ICPC
’17. IEEE Press, 2017, p. 34–44.

[92] A. Mordahl, J. Oh, U. Koc, S. Wei, and P. Gazzillo, “An empirical study
of real-world variability bugs detected by variability-oblivious tools,”
in Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2019, 2019, p. 50–61.

[93] G. Ferreira, M. Malik, C. Kästner, J. Pfeffer, and S. Apel, “Do# ifdefs
influence the occurrence of vulnerabilities? an empirical study of the
linux kernel,” in Software Product Line Conference, 2016.

[94] A. von Rhein, T. Thüm, I. Schaefer, J. Liebig, and S. Apel, “Variability
encoding: From compile-time to load-time variability,” Journal of
Logical and Algebraic Methods in Programming, vol. 85, 07 2015.

[95] B. Pappas and P. Gazzillo, “Semantic analysis of macro usage for
portability,” in Proceedings of the 46th International Conference on
Software Engineering, ser. ICSE ’24, 2024.

[96] J. Meinicke, C.-P. Wong, C. Kästner, T. Thüm, and G. Saake, “On
essential configuration complexity: Measuring interactions in highly-
configurable systems,” in IEEE/ACM International Conference on
Automated Software Engineering, 2016.

[97] G. Ferreira, C. Kästner, J. Pfeffer, and S. Apel, “Characterizing
complexity of highly-configurable systems with variational call graphs:
Analyzing configuration options interactions complexity in function
calls,” in Symposium and Bootcamp on the Science of Security, 2015.

[98] K. Kaoudis, H. Brodin, and E. Sultanik, “Automatically detecting
variability bugs through hybrid control and data flow analysis,” in IEEE
Security and Privacy Workshops (SPW), 2023.

[99] I. do Carmo Machado, J. D. McGregor, and E. Santana de Almeida,
“Strategies for testing products in software product lines,” SIGSOFT
Softw. Eng. Notes, p. 1–8, nov 2012.

[100] A. Lee, I. Ariq, Y. Kim, and M. Kim, “POWER: Program Option-
Aware Fuzzer for High Bug Detection Ability,” in 2022 IEEE 15th
International Conference on Software Testing, Verification and Valida-
tion (ICST). IEEE, 2022.

[101] J. Choi, K. Kim, D. Lee, and S. K. Cha, “Ntfuzz: Enabling type-
aware kernel fuzzing on windows with static binary analysis,” in IEEE
Symposium on Security and Privacy (SP), 2021.

[102] W. Zhao, K. Lu, Q. Wu, and Y. Qi, “Semantic-informed driver fuzzing
without both the hardware devices and the emulators,” in Network and
Distributed Systems Security Symposium (NDSS), 2022.

[103] Z. Shen, R. Roongta, and B. Dolan-Gavitt, “Drifuzz: Harvesting bugs in
device drivers from golden seeds,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 1275–1290.

[104] J. Liu, Y. Shen, Y. Xu, H. Sun, and Y. Jiang, “Horus: Accelerating
kernel fuzzing through efficient host-vm memory access procedures,”
ACM Trans. Softw. Eng. Methodol., nov 2023.

https://www.openbsd.org/faq/faq5.html
https://www.openbsd.org/faq/faq5.html
https://github.com/apple-oss-distributions/xnu#how-to-build-xnu
https://github.com/apple-oss-distributions/xnu#how-to-build-xnu
https://doi.org/10.5281/zenodo.10626343
https://zenodo.org/doi/10.5281/zenodo.10854982
https://zenodo.org/doi/10.5281/zenodo.10854982
https://docs.kernel.org/process/submit-checklist.html?highlight=allnoconfig
https://docs.kernel.org/process/submit-checklist.html?highlight=allnoconfig
https://www.cve.org/
https://www.cve.org/
https://kernel.org/
https://github.com/paulgazz/kmax
https://lwn.net/Articles/969923/
https://lwn.net/Articles/876209/
https://lwn.net/Articles/876209/
https://docs.kernel.org/process/deprecated.html#bug-and-bug-on
https://docs.kernel.org/process/deprecated.html#bug-and-bug-on
https://docs.kernel.org/6.6/dev-tools/index.html
https://docs.kernel.org/6.6/dev-tools/index.html
https://lore.kernel.org/lkml/Y35v%2FieA0OrF510w@kroah.com/
https://lore.kernel.org/lkml/Y35v%2FieA0OrF510w@kroah.com/
https://lore.kernel.org/netdev/20230301154450.547716-1-miquel.raynal@bootlin.com/
https://lore.kernel.org/netdev/20230301154450.547716-1-miquel.raynal@bootlin.com/
https://groups.google.com/g/syzkaller/c/ABSK8qc9zfw/m/8Bs4MDWxBgAJ
https://groups.google.com/g/syzkaller/c/ABSK8qc9zfw/m/8Bs4MDWxBgAJ
https://github.com/google/syzkaller/commit/4d77b9fe7da3d014943a16cb4b9a4ca3a531521a
https://github.com/google/syzkaller/commit/4d77b9fe7da3d014943a16cb4b9a4ca3a531521a
http://arxiv.org/abs/1701.08114

	Introduction
	Background
	Coverage-Guided Kernel Fuzzing
	Highly-Configurable OS Kernels

	Patch Coverage of Fuzzer Configuration Files
	Configuration Selection Strategies for Continuous Kernel Fuzzing
	Configuration Testing Techniques
	Considerations for Continuous Fuzzing
	Recommendations for Configuration Selection

	Evaluation
	Experimental Setup
	Research Questions
	RQ1: Bug Discovery
	RQ2: Performance Impacts
	RQ3: Configuration Variety

	Previously-Unreported Bugs
	The Effects of Configuration Variety
	Case Study: A Configuration-Specific Trace

	Threats to Validity
	Internal validity
	External validity

	Related Work
	Configuration Analysis
	Kernel Fuzzing

	Conclusion
	References

