
Profile-Driven System Optimizations for Accelerated Greybox Fuzzing
Yunhang Zhang† Chengbin Pang‡,1 Stefan Nagy† Xun Chen∗ Jun Xu†

†University of Utah ‡Nanjing University *Samsung Research America

ABSTRACT
Greybox fuzzing is a highly popular option for security testing,
incentivizing tremendous efforts to improve its performance. Prior
research has brought many algorithmic advancements, leading to
substantial performance growth. However, less attention has been
paid to the system-level designs of greybox fuzzing tools, despite
the high impacts of such designs on fuzzing throughput.

In this paper, we explore system-level optimizations for greybox
fuzzing. Throughout an empirical study, we unveil two system-
level optimization opportunities. First, the common fuzzing mode
with a fork server visibly slows down the target execution, which
can be optimized by coupling persistent mode with efficient state
recovery. Second, greybox fuzzing tools rely on the native Operating
System (OS) to support interactions issued by the target program,
involving complex but fuzzing-irrelevant operations. Simplification
of OS interactions represents another optimization opportunity.

We develop two techniques, informed by a short profiling phase
of the fuzzing tool, to achieve the optimizations above. The first
technique enables reliable and efficient persistent mode by learning
critical execution states from the profiling and patching the target
program to reset them. The second technique introduces user-space
abstractions to simulate OS functionality, reducing expensive OS
interactions. Evaluated with 20 programs and the MAGMA bench-
mark, we demonstrate that our optimizations can accelerate AFL
and AFL++ for higher code coverage and faster bug finding.

CCS CONCEPTS
• Security and privacy→ Software and application security.

KEYWORDS
Greybox Fuzzing, System Optimizations, Profile-Driven

ACM Reference Format: Yunhang Zhang, Chengbin Pang, Ste-
fan Nagy, Xun Chen, Jun Xu. 2023. Profile-Driven System Opti-
mizations for Accelerated Greybox Fuzzing. In ACM Conference
on Computer and Communications Security (CCS ’23), November
26–30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA, 15
page. https://doi.org/xxxxx.

1 INTRODUCTION
Greybox fuzzing [64, 66, 69, 88] is a useful method for security
testing. It works by continuously mutating existing test cases to
produce new ones for exercising the target software. In recent years,
1Pang contributed to this work while visiting Stevens Institute of Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN XXXX. . . $XXX
https://doi.org/XXXX

both research and adoption of greybox fuzzing have grown tremen-
dously, thanks to the availability of two generic, easily extendable
greybox fuzzing tools: AFL [86] and AFL++ [54].
Motivation: A major development goal of greybox fuzzing is to
improve its performance — typically measured by code covered
or bugs found in a given time window. In principle, this goal is
dependent on both algorithm factors and system factors. Algorithm
factors affect the scheduling of test cases (i.e., which test cases to
mutate first and how long a test case should be mutated), mutation
of test cases (i.e., how to mutate a test case), and retaining of test
cases (i.e., what criteria to follow for keeping test cases). The ma-
jority of prior research focuses on improving these factors, leading
to algorithmic advancements and a performance leap of greybox
fuzzing [40, 47, 48, 67, 68, 71, 72, 80, 87?].

In contrast, system factors determine the time needed to com-
plete a fuzzing iteration (or precisely, the process to generate, ex-
ecute, and process a test case). Enhancing the system factors can
bring a higher iteration frequency and, thus, a better fuzzing perfor-
mance. However, less research has been conducted in this direction,
motivating us to explore and optimize the system factors.
Study: To understand the optimization opportunities behind the
system factors, we perform a quantitative study on AFL with a set
of benchmark programs listed in Table 1. The study unveils two
optimization opportunities which we explain in the following.
Optimization I: By default, both AFL and AFL++ run in the
fork server mode, where they spawn a child process of the target
program to execute each test case. The fork server mode can slow
down the target execution in twoways. First, forking a child process
takes time due to operations like page table duplication. Our study
in §2.2 shows that the fork alone can consume 4% of the total time
of a fuzzing iteration. Second, the child process involves redundant
operations that are meaningless to fuzzing, such as page faults due
to copy-on-write and cleanups when terminating the process.

Targeting Optimization I, AFL and AFL++ incorporate the
persistent mode [26, 27], where they insert a loop into the target
program that continuously runs different test cases without an
exit. In this mode, no forking is needed, and the aforementioned
redundant operations no longer occur. However, our study shows
that the persistent mode often fails to run a fuzzing target because
the effects left over by previous test cases interrupt the execution
of follow-up fuzzing. To re-enable the persistent mode in those
cases, a possibility is to use the snapshot mode proposed in recent
research [75, 84]. Before running any test case, the snapshot mode
saves a copy of the execution states. Once finishing a test case,
it resets the affected states before switching to the next test case.
However, as we will unveil in §2.3, the snapshot mode—due to
operations like coarse-grained memory tracking and recovery—still
visibly offsets the efficiency of the persistent mode.
Optimization II: During fuzzing, the target program can also
issue interactions with the Operating System (OS) for goals like
fetching the test case. Both AFL and AFL++ relay those interactions

https://doi.org/XXXX

to the native OS. However, modern OSes involve complex opera-
tions that are expensive but unnecessary for fuzzing. According to
our study, the time spent on interactions with the OS can account
for 16.72% of the total program execution time when running AFL
(see Table 13 in Appendix). This illustrates another under-explored
opportunity for optimization: we can accelerate the target program
execution by simplifying the OS interactions.
Our Approach: In this paper, we aim to achieve Optimization
I and Optimization II. Our key insight is that running the grey-
box fuzzing tool for a short period of time—a profiling phase—can
help us gain the information needed to fulfill the desired optimiza-
tions. Following this insight, we design two techniques targeting
Optimization I and Optimization II, respectively.
Profile-driven State Recovery: In the persistent mode, the states
must be recovered to avoid crashes are global data (broadly de-
fined, including global variables, arguments of main function, and
environment variables, etc.). By dynamically analyzing the target
program with test cases from the profiling phase, we understand
what global variables are manipulated and then patch the target
program to reset those global variables before running a test case.
This enables us to reset the critical states and stabilize the persistent
mode with high efficiency. Considering that we may miss global
variables newly covered in post-optimization fuzzing, our profiling-
and-patching process can be configured to run periodically.
Profile-driven OS Abstraction: Given specific fuzzing settings, the
OS interactions from the target program are often predictable. We
can build an understanding of those OS interactions by execut-
ing and tracing the test cases from the profiling phase. After re-
placing the observed OS interactions with in-process, behavior-
preserving but minimized operations, we can significantly elimi-
nate the cost of OS interactions. In particular, we create a virtual
file system (VFS), in the form of a user-space library, to handle
files identified in the profiling phase. During fuzzing, the VFS is
linked to the target program and handles operations to the files it
covers. For instance, objdump reads data from both the test case
and /usr/share/locale/locale.alias on the disk. Our VFS
can include a copy of the two files and intercept accesses to them
with user-space operations. To cover a broader spectrum of system
calls, we further extend the VFS to support socket operations.
Evaluation:We evaluate our two optimizations with 20 popular
fuzzing benchmarks on both AFL and AFL++. In 7 cases where
the persistent mode fails to run, our profile-driven state recovery
successfully re-enables it. Compared to the fork server mode, the
re-enabled persistent mode brings a 83%/206% increase in execution
speed with AFL/AFL++. Coupled with the persistent mode (native
or enabled by us), our profile-driven OS abstraction accelerates the
execution speed by 35%/120% given AFL/AFL++. Considering that
the snapshot mode represents the best option when the persistent
mode is inapplicable, we compare the snapshot mode and the com-
bination of our two optimizations. Our combined optimizations
run 82.1%/59.9% faster than the snapshot mode on AFL/AFL++ and
cover 5.3%/17.4% more code. We also compare our combined opti-
mizations with the default fork server mode. GivenAFL/AFL++, our
optimizations increase the execution speed by 142%/381%, covering
8.8%/9.0% more code. We further run an evaluation on the MAGMA

Fuzzing Tool Target ProgramInitiate Target
(e.g., fork)

Target Execution
Scheduling, Mutation, and

Testcase Preparation

②

① ③

Figure 1: A typical workflow of greybox fuzzing.

benchmark [59]. It shows that our optimizations enable AFL/AFL++
to discover not only more bugs but also in a faster manner.
Contribution: In summary, our contributions are as follows.
• We perform a study to understand how the system designs of
greybox fuzzing tools affect their efficiency. The study further
unveils two optimization opportunities behind the designs.

• We propose the idea of profile-driven optimizations to enhance
the system designs of greybox fuzzing tools. Following this idea,
we create two techniques to realize the optimization opportu-
nities identified in our study. The two techniques represent the
first of their kind.

• We implement the two optimization techniques on top of AFL
and AFL++. Evaluating the two techniques with 20 common
benchmark programs and MAGMA, we show that our optimiza-
tions can significantly increase the fuzzing speed of both AFL
and AFL++, benefiting their code coverage and bug finding. Our
code has been anonymized and released at https://anonymous.
4open.science/r/Profile-guided-Fuzzing-4F4B.

2 BACKGROUND AND MOTIVATION
2.1 Greybox Fuzzing
Greybox fuzzing [54, 86] is an iterative process, following a typical
workflow presented in Figure 1. In each iteration, the fuzzing tools
perform scheduling (when needed) and mutations of existing test
cases to derive a new one, based on feedback from previous fuzzing
iterations (Step➀). Given a ready test case, the fuzzing tool initiates
the target program, such as forking a child process, for running the
test case (Step ➁). The target program follows up to finish the test
case and “return” the feedback (e.g., code coverage and crashes) to
the fuzzing tool (Step ➂).

The performance of greybox fuzzing—usually measured by code
covered or bugs found in a given time window—depends on both
algorithmic factors and system factors.
Algorithmic factorsmainly consist of scheduling of test cases (i.e.,
which test cases should be mutated first and how long a test case
should be mutated), mutations of test cases (i.e., how a test case
should be mutated), and criteria to appraise test cases (e.g., code
coverage, code coverage plus calling context, and path coverage).
Past research has invested tremendous efforts in improving these
factors, aiming to prioritize the scheduling of high-quality test cases,
introduce smarter mutations, and retain test cases of high values.
The efforts have led to a performance leap of greybox fuzzing [40,
46–49, 56, 67, 68, 71, 72, 80, 87?].
System factors affect the time needed to accomplish one fuzzing
iteration, assuming that the scheduling, mutation, and feedback
schemes are determined. In principle, the system factors are rooted
in how the fuzzing tool is designed to accomplish steps ➀-➂ (e.g.,
how the fuzzing tool initiates the target program).

In this paper, we focus on optimizing the system factors of grey-
box fuzzing, motivated by that less research has been conducted in

2

https://anonymous.4open.science/r/Profile-guided-Fuzzing-4F4B
https://anonymous.4open.science/r/Profile-guided-Fuzzing-4F4B

Table 1: Benchmark programs used in our study.

Project Version Driver Option Seed

binutils 2.38 objdump -d @@ [12]
binutils 2.38 readelf -a @@ [12]
unrtf 0.21.10 unrtf –latex @@ [37]
woff2 1.02 woff2_decompress @@ [38]
qickjs 2021-03-27 qickjs @@ [32]
jpeg 9e djpeg @@ [35]
libtiff 4.4.0 tiff2ps @@ [35]
libxml2 2.9.2 xmllint @@ [53]
tidyhtml 5.9.20 tidyhtml -qicu @@ [53]
optipng 0.7.7 optipng @@ -out /dev/null [29]
libpcap 5.0.0 tcpdump -vvvvXX -ee -nn -r @@ [30]
mupdf 1.20.2 mutool draw @@ [52]

this direction. Specifically, we aim to inspect and rectify the fuzzing
tool’s designs that slow down a fuzzing iteration, thus bringing a
higher iteration frequency and a better fuzzing performance.

2.2 Motivating Study
To understand the potential opportunities for system optimization,
we conduct a study to dissect the time consumed by greybox fuzzing
tools in completing steps ➀-➂. For better generality, we consider
AFL [86] (version 2.57b) since its system-level designs have been
followed by many other tools [41, 42, 45, 49, 56, 63, 67, 85]
Experimental Setup: To support the study, we gather a set of
12 projects included in the OSS-Fuzz program [79] (summarized
in Table 1). These projects have also been used for evaluations in top-
venue papers (CCS/USENIX/NDSS/S&P/ACSAC/FSE/ASE/ICSE/ISS
TA/PLDI). Instead of running manually-crafted fuzzing drivers
shipped with OSS-Fuzz, we pick a popular application from each
project as the target, as those applications cover complete execution
and represent more general scenarios. Dictionaries fromAFL are ap-
plied wherever available. As the experiments focus on performance,
we keep the deterministic mutations to reduce randomness. Further,
we use the test cases shipped with AFL as seeds and configure AFL
to run the default fork server mode. Finally, we configure AFL to
run with both ext4 file system mounted on an SSD and tmpfs
memory file system mounted on a 64MB RAM disk [61] to
understand the impact of IO. All experiments are conducted on
CloudLab [73] with machines of the same configurations: 16-core
AMD 7302P@3.00GHz, 128GB ECC memory, Ubuntu 16.04 TLS.

We customize the code of AFL to gather information about the
time they spend at different steps illustrated in Figure 1:
Step ➀: In the run_target function, AFL initiates the target pro-
gram and waits for it to finish a given test case. The period from
finishing one test case to initiating the target program for the next
test case is considered Step ➀, where the time cost is measured.
Step ➁: AFL invokes fork in __afl_start_forkserver to start
a new process for executing the target program. We count the time
between calling and return of fork as the time of Step ➁.
Step ➂: After forking in __afl_start_forkserver, AFL waits
for the target program to finish the test case. We consider that
period as ➂ and count the time.
Results:We dry-run AFL with the 12 projects on test cases from
24 hours of fuzzing. The best and worst results are discarded to
reduce outliers. Figure 2 visualizes the distribution of average time
spent by the fuzzing tools at different steps (check the FS_SSD and
FS_TMPFS bars). Of all the time, 84% is spent on Step ➂ (executing
the target program). In contrast, Step➀ and Step➁ account for 12%
and 4% of the time. One thing worth discussing is that using tmpfs

indeed accelerates fuzzing compared to using SSD. On average,
tmpfs reduces 2% of the time needed for a fuzzing iteration. In all
follow-up experiments, tmpfs is used by default.

2.3 Optimization Opportunities
Initiating Target Program: AFL adopts the fork server mode,
where it spawns a child process to run the target program on each
test case. The forking process takes time due to operations like page
table duplication. As shown in Figure 2, the forking operation alone
consumes about 4% of the total time. More critically, running a new
process to execute each test case incurs other costs (e.g., process
cleanup at exit and page faults due to copy-on-write). As we will
unveil later in this subsection, the target execution can speed up
by 62% after eliminating those costs. This inspires the need for
Optimization I: replacing the fork server mode.

Snapshot mode: Targeting Optimization I, Xu et al. proposed
to replace the fork server mode with the snapshot mode [75, 84].
The idea is to designate the same process to run the target program
on all test cases. Technically, they customize the Linux kernel to
snapshot the process’ memory before running a test case. During
fuzzing, all writable pages are configured read-only and get copied
upon modification (i.e., copy-on-write). Once finishing a test case,
the kernel restores the modified memory (and file status). This way,
forking is avoided while every test case still runs in a clean state.

To understand the effectiveness of the snapshot mode, we ex-
tended our study to cover the snapshot mode developed for AFL.
The public implementation [28] only works with AFL-2.4b and
GCC. We ported the implementation to work with AFL-2.57b and
LLVM such that the settings are aligned with the other studies.
More details of our implementation are presented in Figure 10.
Results: On all the programs except for unrtf where the snapshot
mode malfunctioned, the snapshot mode indeed reduces the time of
a fuzzing iteration (see Figure 2). On average, the reduction rate is
28%. This efficiency improvement mainly comes from two sources.
First, the snapshot mode avoids fork and eliminates the associated
time cost, as clearly illustrated in Figure 2. Second, as a side benefit
of removing fork, the snapshot mode reduces the number of page
faults. We utilize perf to count the page faults triggered by the
experiments in our study. Table 11 in the Appendix summarizes the
average number of page faults triggered by different fuzzing modes
on each test case. Compared to fork server mode, the snapshot
mode helps reduce page faults on every program, resulting in an
55% reduction rate on average.

Persistent mode: Going beyond snapshot mode, both AFL and
AFL++ introduce the persistent mode [8, 27] where the target
program is executed continuously on different test cases. Figure 10
in the Appendix illustrates how this is donewith objdump following
the official guidance of AFL [27]. In this mode, neither snapshot nor
restore of memory is performed. In addition, no extra operations
(e.g., the copy-on-write used by the snapshotmode to trackmodified
memory) are needed at fuzzing time. Thus, the persistent mode runs
even faster than the snapshot mode. Another crucial advantage
of persistent mode is that it requires no OS kernel modification,
presenting better user-friendliness and higher robustness.

3

OBJDUMP READELF WOFF2 QUICKJS DJPEG TIFF2PS UNRTF TCPDUMP MUTOOL XMLLINT TIDYHTML OPTIPNG
0

20

40

60

80

100

Di
str

ibu
tio

n
of

 E
xp

en
de

d
Ti

m
e

(%
) FS

_S
SD

FS
_S

SD

FS
_S

SD

FS
_S

SD

FS
_S

SD

FS
_S

SD

FS
_S

SD

FS
_S

SD

FS
_S

SD

FS
_S

SD

FS
_S

SD

FS
_S

SD

FS
_T

M
PF

S

FS
_T

M
PF

S

FS
_T

M
PF

S

FS
_T

M
PF

S

FS
_T

M
PF

S

FS
_T

M
PF

S

FS
_T

M
PF

S

FS
_T

M
PF

S

FS
_T

M
PF

S

FS
_T

M
PF

S

FS
_T

M
PF

S

FS
_T

M
PF

S

SS SS SS

SS SS

SS

SS
 (f

ail
ed

)

SS

SS

SS

SS

SS

PM PM

PM

PM

PM

PM

PM
 (c

ra
sh

)

PM
 (c

ra
sh

)

PM
 (c

ra
sh

)

PM
 (c

ra
sh

)

PM
 (c

ra
sh

)

PM
 (c

ra
sh

)

Fuzzer
Fork
Target

Figure 2: Distribution of time spent by AFL at different steps in a fuzzing iteration. FS_SSD refers to the fork server mode running with an SSD; FS_TMPFS stands for
the fork server mode running with a tmpfs; SS means the snapshot mode; and PM is the persistent mode. unrtf, tcpdump, mutool, xmllint, tidyhtml, and optipng
fail to run under PM, and unrtf incurs failures of SS. In the legend, Fuzzer, Fork, and Target represent steps ➀, ➁, and ➂, respectively. All numbers are calculated
using the total time of FS_SSD as the baseline. For instance, Fuzzer under SS is calculated as [time spent on step ➀ by SS]

[total time spent by FS_SSD] .

Table 2: Average number of pages recovered by the snapshot mode for each
test case. unrtf should be ignored as the tool was not running correctly on it.
objdump readelf woff2 qickjs djpeg tiff2ps unrtf tcpdump mutool xmllint tidyhtml optipng

36 25 90 37 30 31 1,897 402 996 48 52 80

We further tested the persistent mode on the 12 benchmark pro-
grams. To avoid resource exhaustion, we re-fork a new process after
looping the program 1,000 times. As shown in Figure 2 (the PM
bars), the persistent mode — in cases where it can work (objdump,
readelf,woff2,qickjs, djpeg, tiff2ps) — indeed runs faster than
the snapshot mode. On average, persistent mode requires 19.6% less
time to complete a fuzzing iteration. The reason is that snapshot
mode needs to snapshot, track, and reset the memory while persis-
tent mode does not. As summarized in Table 2, the snapshot needs
to reset at least dozens of memory pages on each test case when
applied to our benchmark programs. Given larger programs like
mutool and tcpdump, the number can increase to several hundred.

Despite its benefits, persistent mode carries an intrinsic restric-
tion as stated in [26]: “persistent mode requires that the target’s state
can be completely reset so that multiple calls can be performed without
resource leaks, and that earlier runs will have no impact on future
runs”. This restriction often limits the persistent mode’s applica-
bility. In our study, it fails to run 6 programs (unrtf, tcpdump,
mutool, xmllint, tidyhtml, and optipng). The reason is the ef-
fects left over by previous test cases are not cleaned, crashing the
execution of follow-up test cases. For a better understanding, we
present a detailed analysis of mutool in Figure 3.
1 int optind = 0; // a global index
2 int main(int argc, char ∗∗argv){ ...
3 if (!scan || ∗scan == '\0') {
4 if (optind == 0) optind++;
5 scan = argv[optind]+1;
6 optind++; //the increase here accumulates infinitely
7 }
8 }

Figure 3: An example where persistent mode fails to run (mutool). In the
persistent mode, optind keeps increasing given different test cases. If optind
grows too big, it incurs out-of-bound access at line 5 and crashes the execution.

To mitigate the above issue, the common strategy is to under-
stand the target program and identify the critical states that must
be recovered, followed by manually patching the target to perform
recovery. In the example shown in Figure 3, we will need to insert
code resetting optind to 0 before each fuzzing iteration. While
this strategy can work, it incurs a heavy burden on the user and
faces the risk of human errors.

Opportunity I: Enhancing persistent mode with an auto-
mated, efficient method to reset the affected execution states
will escalate Optimization I.

Table 3: Percentage of time spent in the kernel space during target program
execution in the persistent mode.
objdump readelf woff2 qickjs djpeg tiff2ps unrtf tcpdump mutool xmllint tidyhtml optipng
13.9 26.9 15.1 4.1 15.4 24.9 ✗ ✗ ✗ ✗ ✗ ✗

Target Program Execution: Target program execution consumes
the most time of a fuzzing iteration. Replacing the fork server mode
with persistent mode brings optimization. Another system-level
but underexplored aspect is the interactions between the target
program and the OS. Consider the 12 programs covered in our
study. As summarized in Table 8 in Appendix, all the programs
interact with the OS via system calls. They invoke tens or hundreds
of system calls when processing a single test case (tidyhtml even
uses 2,000+ system calls). Among the system calls, file operations
comprise the majority portion (85%+ in most cases). We further
extend our study to measure the time costs of the system calls. We
focus on the persistent mode as it represents the most optimized
option. Table 3 shows the percentage of time spent in the kernel
space during target program execution (Step ➂), which should
well approximate the time costs of system calls considering that
persistent mode avoids fork, process cleanup, and most page faults
(see Table 11). For all the programs except for qickjs, system
calls account for nearly or over 15% of the total execution time.
The percentage increases to 24%+ on readelf and tiff2ps. This
illustrates the opportunity of Optimization II: by simplifying the
OS interactions, we can further optimize the target program execution.

Little effort has been taken specifically toward Optimization II.
However, a common practice we adopt today can help indirectly.
When fuzzing a project, people often opt to create drivers that
directly invoke the target functions with a buffered input. Thus,
the test case can be passed via memory, following the scheme of
libFuzzer [22]. This way, interactions with the file system to load
the test case are avoided. Consider libpcap as an example. Instead
of using tcpdump as the fuzzing driver, we can also use manually-
created drivers where no file operations are needed (e.g., [24] can
be used to fuzz the pcap_setfilter function via buffer input).

Despite the applicability, manually creating fuzzing drivers to
avoid OS interactions is not a desired solution for Optimization
II. ➀ Many functions have integrated OS interactions, which are

4

impossible to bypass during fuzzing. In the aforementioned libp-
cap, many functions only take file input. Even manually created
drivers for those functions must include interactions with the file
system for test cases (e.g., [23]). In whole-application fuzzing, OS
interactions are often more prevalent and less feasible to avoid. ➁
Creating fuzzing drivers to reduce OS interactions requires insen-
sitive domain knowledge and heavy manual efforts, which is not
always feasible and affordable.

Opportunity II: Reducing OS interactions – Optimization
II– is another promising direction to speed up target program
execution. A solution without requiring manually-created
fuzzing drivers remains missing.

3 PROFILE-DRIVEN SYSTEM OPTIMIZATIONS
3.1 Approach Overview
In this paper, we explore a new approach to realizingOptimization
I and Optimization II. Our key insight is that by running the
fuzzing tool for a short period (a profiling phase), we can gain the
information needed to achieve both optimizations.
Optimization I: Enabling reliable persistent mode faces the bar-
rier of state recovery. In principle, the aforementioned snapshot
mode can support state recovery. However, as unveiled in §2.3,
snapshot mode can still offset the efficiency of persistent mode due
to operations like fuzzing-time memory tracking and recovery.

To reliably run persistent mode, three types of critical states need
to be recovered. State-➀: Global data can persist across fuzzing
iterations. Their values set by one test case can affect the follow-
ing test cases, leading to incorrect computation or even crashes.
The example described in Figure 3 shows how global data prevents
mutool from running the persistent mode. State-➁:Memory al-
located in one iteration should be recycled before entering the
next fuzzing iteration. Otherwise, memory leakage can happen.
State-➂: System-level status is also carried between test cases. In
particular, files opened by a test case may not be closed, leaving
over non-recycled kernel data structures and file descriptors.

Non-recycled memory (State-➁) is considered less critical as it
typically causes resource consumption instead of interrupted execu-
tion. In practice, people tend to ignore non-recycled memory even
in manual fuzzing drivers. We follow AFL [27] and AFL++ [8] to
handle it. Once the persistent mode completes a threshold number
of test cases, we re-fork the target program such that memory can
be recycled. Files (State-➂) can be efficiently recovered together
with our Optimization II. Related details will be covered shortly.

To handle global data (State-➀), an intuitive idea is to identify all
global objects compiled into the fuzzing target and reset all of them
before each fuzzing iteration. However, this idea is not optimal. As
shown in Table 12 (column “All Global Objects”) in Appendix,
a program can often use hundreds of global objects that occupy KBs
or even MBs of memory. Snapshotting and resetting all of them for
every test case can take significant time. An alternative method is
to track global objects modified during a fuzzing iteration and reset
them before the next iteration. Doing so requires recovering fewer
objects but faces the challenge of tracing modifications of global
objects. We can adopt the snapshot mode [84] to mark the global

Target Program

Kernel
File System

Target Program

Kernel
File System

In-process

/path/to/file
[open, read, write] After

Optimization

/path/to/file
[open, read, write]

Storage Device Storage Device

Figure 4: Optimizing file system interactions.

data segment as non-writable and trace modification at the page
level. This, however, would essentially degrade to the snapshot
mode, not to mention the high engineering complexities.

In this paper, we explore an approach for more aggressive op-
timization. Running dynamic analysis on the test cases from the
profiling phase, we learn what global variables are manipulated.
During fuzzing, we patch the target program to reset those global
variables before running a test case. This way, we require neither
recovering all global variables nor tracing the modifications at run-
time, offering better optimizations. An evident limitation of our
approach is that we will miss global variables newly covered in
post-optimization fuzzing. We address this issue by repeating the
profiling-and-patching process once observing reduced stability
during fuzzing. Stability is a metric used by AFL and AFL++ to mea-
sure the percentage of bitmap bytes that behave consistently. Low
stability indicates different executions of the same test case present
disparate behaviors and signifies abnormal fuzzing [7]. As we will
show in §5.2, our profiling and patching are highly efficient and
infrequently happen, imposing insignificant impacts on fuzzing.
Optimization II: Given specific fuzzing settings, the target pro-
gram often presents predictable OS interactions. Running test cases
from the profiling phase can give us a good understanding of the
OS interactions. This brings the key insight of our optimization: we
can replace the observed OS interactions with in-process, behavior-
preserving but simpler operations. Figure 4 reflects the idea on file
system interactions. We create a virtual file system (VFS), as a li-
brary, to handle files identified during the profiling phase. In fuzzing,
the VFS is linked to the target program and handles all operations
on the included files. For instance, objdump, when fuzzed in our
study, reads data from /usr/share/locale/locale.alias on
the disk. Our VFS can include a copy of the file and intercept all
accesses to the file with user-space operations.
1 uint vfs_read(int fd, void ∗buf, uint cnt){
2 vfs ∗file = VFS_GET_FILE(fd);//managed in memory
3 if (file == NULL) native_read();
4 cnt = CHK_COUNT(cnt, file);
5 if (cnt > 0){
6 memcpy(buf, file−>data+file−>off, cnt);//managed in memory
7 file−>offset += cnt;
8 return cnt;
9 }
10 }

Figure 5: Optimized read operations.

To better illustrate the effectiveness of our optimization, we
showcase the read operation of our VFS in Figure 5. Roughly, its
time cost approximates a memcpy. More importantly, this example
illustrates four dimensions where our VFS brings optimization: (i) it
manages the data and metadata of files in memory, avoiding inter-
actions with the IO devices; (ii) it runs everything in the user space,

5

avoiding interrupts and context switches to the kernel; (iii) it only
keeps functionality mandated to maintain the needed behaviors,
removing all fuzzing-irrelevant operations of modern file systems
(e.g., journaling, caching, and crash persistence); (iv) an indepen-
dent VFS can run to support each fuzzing instance, eliminating
contention in the file system and improving the scalability.

Besides offering optimizations, our VFS also facilitatesOptimiza-
tion I. When the target program finishes a test case, we recover the
file system status by resetting the VFS (e.g., closing opened files).
The resetting is often equivalent to editing several memory bytes

3.2 Profile-driven State Recovery
Given a target program P and a fuzzing tool F (e.g.,AFL), we perform
the profiling phase by running F on P under the desired configura-
tions and fork server mode for time T. Then we proceed to enable
persistent mode with affected global data reset.
Collecting Target Objects: This step replays the test cases from
the profiling phase and gathers global objects that have been ma-
nipulated. As discussed above, we can remove the write permission
of the global data segment. A segmentation fault happens when a
test case writes to a global object, allowing us to catch the object.
However, the method can be very slow, particularly when there are
many test cases and many affected global objects. Further consider-
ing that we may need to rerun the profiling process periodically,
this permission-based method is less suitable.

In this paper, we propose an over-approximating but highly
efficient approach. Our idea is to instrument the target program to
add a check on every storing or address-taking operation of global
objects. Once any test case hits a check during profiling, the check
will log the corresponding global object by its name and type, and
we will deem the object modified.
1 int glob1;
2 int glob2;
3 int glob_buf[10];
4 int ∗glob_ptrs[] = {&glob1, &glob2};
5 void func(int arg1, arg2){
6 glob1 = 1; //check(glob1,int)
7 int ∗ptr1 = &glob2; //check(glob2,int)
8 int ∗ptr2 = &glob_buf[arg1]; //check(glob_buf,int[10])
9 ∗ptr1 = 0;
10 ∗(glob_ptrs[arg2]) = 0; //check(glob1,int); check(glob2,int)
11 }

Figure 6: Demonstration of checks to log global object accesses.

To better illustrate how our approach works, we show an ex-
ample in Figure 6. The checks on storing operations (e.g., line 6)
catch direct writing, while the checks on address-taking operations
(e.g., line 7) capture indirect writing via pointer dereferences (e.g.,
line 9). Besides, another form of indirect writing can exist. As
shown in line 4, a global array/struct can be initialized with point-
ers to other global objects. By retrieving and dereferencing pointers
from that array/struct, the nested global objects can be manipu-
lated (e.g., line 10). To identify these cases, we enumerate the
initialization of each global array and struct, and if the array/struct
is accessed, we collect the nested global objects referred to by the
fields (e.g., line 4).

We also gather two special types of “global objects”: (i) argu-
ments to the main function and (ii) environment variables, con-
sidering that their states also propagate between test cases. For
main’s arguments, we consider them always modified. For envi-
ronment variables, we trace and collect those fetched by standard

functions (e.g., setenv and unsetenv on Linux). As we will show
in Table 9, our approach is highly efficient, typically only taking
several seconds to profile all the test cases.
Patching Target Program: After gathering the global objects,
we de-duplicate the results and instrument the target program
to reset them during fuzzing. The instrumented code allocates a
shadow copy for each object and saves/restores the object to/from
its shadow copy before/after running a test case. For conservatives,
given a global object with a composite type (e.g., array or struct), we
save and restore the data occupying the entire type (e.g., the entire
array or struct) even if only some elements or fields are identified.
Handling Dependent Libraries: Programs often depend on ex-
ternal libraries. We support external libraries. The easiest way is to
link the libraries to the target program statically, and our approach
can be applied seamlessly. Alternatively, we can instrument the
libraries to support profiling and patching. The resulting libraries
can be dynamically linked and covered by our approach.

3.3 Profile-driven OS Abstraction
Modern OSes like Linux support hundreds of system calls [25].
Designing optimization to cover all of them is impractical. Accord-
ing to our study in §2.3, interactions with the file system are most
frequent. Other system calls, occurring less frequently, are pri-
marily associated with process management (e.g., rt_sigaction),
and memory management (e.g., mmap). These system calls are less
feasible to be simulated (e.g., signals are hardware-dependent). Con-
sidering these factors, we focus on file system interactions.
File System: To optimize file system interactions, we build a VFS, as
illustrated in § 3.1, to support the target program during fuzzing.We
start with understanding how the test cases from the profiling phase
interact with the file system. Specifically, we observe what files are
accessed and how they are accessed by the test cases. Depending on
the properties of an observed file, we handle it differently:

• Existing files are files existing in the native file system and accessed
for reading/writing during profiling. For such a file, we allocate a
virtual counterpart in the VFS that fully resides in memory and
keeps a copy of the file’s data and metadata. To ensure correctness,
the virtual file shares the same path as the native file.

• Non-existing files do not exist in the native file system but are
opened during profiling. We create an empty node for such a file
in the VFS, indicating the file at the path is nonexistent. At fuzzing
time, our VFS makes a quick return upon access to this file.

• New files are files newly created during the profiling process. We
omit these files as file creation is supported by VFS.

• The test case is a special file in the VFS, which we place at the path
specified by the fuzzer. We allocate shared memory to save the
file so the fuzzer can access it directly for updates.

• Standard input, output, and error are also handled by the VFS. In
principle, standard output and standard error do not affect fuzzing.
Thus, the VFS simply ignores them and fakes the return results
(e.g., how many bytes are written). Further, the VFS maintains a
buffer to simulate the standard input. The buffer is supported by
shared memory, which can be accessed by other processes like the
fuzzing tool. On request for data from standard input, contents
from the buffer will be returned without involving the IO.

6

To enable efficient access to the VFS, all files are organized in a
binary-search-tree based on their paths. More advanced structures,
such as red-black-tree, are not used as the number of files is typically
small (1 or 2). For each virtual file, we use a memory buffer of a
fixed size (256K for the data plus 432 bytes for the metadata), unless
our profiling indicates that a larger space is needed. It is possible
that some files are not observed during profiling fuzzing but get
accessed during fuzzing. The VFS accommodates those files by
redirecting their operations to the native file system. The creation
of new files will be handled by inserting new items into the VFS
with the desired metadata. However, to avoid excessive memory
use, we allow at most 96 files (16MB of memory in total). New files
beyond the quota will be sent to the native file system.

When opening or creating a file in the VFS, we create an unused
file descriptor starting at 4096. This is to reduce the chance of
conflicts with file descriptors assigned by the native file system.
Since the native file system assigns file descriptors starting from a
small number (typically 3), it will unlikely reach a big one like 4096
during fuzzing. In rare cases where the native file system creates a
file descriptor beyond 4095, we abort the execution and start a new
process where the VFS will use larger file descriptors (e.g., 9012).

To connect our VFS to the target program, we create interfaces
to operate on the VFS. The interfaces resemble the GLIBC wrap-
pers of POSIX system calls on files [31] (read, open, write, stat,
lseek, close, etc.). We do not implement higher-level interfaces
like fopen, considering that the low-level interfaces are more uni-
fied and easier to be captured comprehensively.
Socket:We also extend our VFS to support socket operations.When
a socket is created, we add a virtual file to work as the socket. The
virtual file, also maintained in memory, consists of a stream buffer
and management metadata (e.g., status of the socket). When two
sockets are connected via interfaces like connect and socketpair,
the VFS records the two related virtual files as paired. This way, the
VFS can correctly send the data from one socket to the other.

Our VFS only intends to support non-blocking operations (pre-
cisely, operations that immediately return, no matter whether the
data is ready or not). Blocking operations are not covered because
their user-space simulation (e.g., using a continuous loop) does
not bring optimizations. To avoid chaos due to the involvement
of blocking operations, we only mount the VFS for sockets if our
profiling shows that all socket-based operations are non-blocking.
In addition, the appearance of blocking operations during fuzzing
will abort the execution and restart the target program without VFS
for sockets. While the socket extension is an integrated part of our
research, we do not claim novelty credit for it. Similar ideas have
been used in several existing projects [1, 2], although they have
intentions other than optimizations.

4 IMPLEMENTATION
We have implemented a prototype to enable our optimizations on
AFL (version 2.57b) and AFL++ (version 4.01c).
Profiling: To gather global objects, we create an LLVM pass with
900 lines of C++ code to instrument the checks into the target
program. The pass supports LLVM 10, 11, and 12. To handle applica-
tions and libraries that cannot be compiled with Clang (in particular
GLIBC), we developed a GCC (version 8.4.0) plugin with 500 lines of

Table 4: Extra benchmark programs used in our evaluation.

Project Version Driver Option Seed

libtiff 4.4.0 tiff2pdf @@ [17]
libxslt 1.1.37 xsltproc @@ /out/sample.xml [18]
openssl 3.1.0-beta x509-test @@ [18]
bash 5.2.0 bash -n @@ [9]
exif 0.6.22.1 exif @@ [13]
mjs 1.26 mjs -f @@ [21]
flvmeta 1.22 flvmeta @@ [14]
jq 1.6-159 jq . @@ [20]

C++ code to add the checks. Both our LLVM pass and GCC plugin
run after the built-in optimizations to ensure the compiler does not
throw away our operations. To profile the OS interactions, we trace
system calls with strace and then analyze the results as needed.
Persistent Mode:We develop another LLVM pass for the saving
and restoring of global objects. The pass injects a constructor func-
tion into the main module for copying the target global objects. For
efficiency, all the objects are sequentially saved in a buffer added by
us. Our pass also adds code into the main function to reset the global
objects after each test case. A challenge is many global objects are
declared as static, which is invisible to the main module/function.
To handle a static object, we leverage the above LLVM pass and
GCC plugin to add a global pointer to the object. Thus, we can
indirectly reference the object via the pointer anywhere.

The target program may call exit,_exit,_Exit to terminate
the program. Thus, the execution will escape the persistent mode
loop (recall Figure 10). We intercept those functions using linker op-
tion "-Wl,-wrap,_exit -Wl,-wrap,exit -Wl,-wrap,_Exit"
and switch the execution to the persistent mode loop via longjmp.
The target program may register callbacks at the exit using inter-
faces like atexit and on_exit. We intercept atexit and on_exit
to gather the callbacks and invoke them on exit,_exit,_Exit.
VFS: We implement the VFS with around 1,400 lines of C code.
The implementation includes interfaces corresponding to GLIBC
wrappers of POSIX system calls for files and sockets [31]. To enable
efficient test case sharing, we modify AFL and AFL++ to write the
prepared test cases to VFS directly, using the interfaces we provide.
Mounting VFS: Tomount our VFS to the target program in fuzzing,
we rely on run-time hooking. We compile the VFS as a dynamic
library and load it to the target process. Before the target process
enters the persistent mode loop, we hijack the functions offered by
standard libraries (GLIBC and LIBPTHREAD) for file and socket
operations. When a hijacked function is called, we transfer the
execution to the VFS. This way, all accesses to the native file system
and sockets are redirected to our VFS. The hijacking is done by
rewriting the first several bytes of a target function with a call to
our VFS interface, using the FUNCHOOK library [15].

5 EVALUATION
Our evaluation centers around the following questions:
Q1: Can profile-driven state recovery achieve Optimization I?
Q2: Can profile-driven OS abstraction achieve Optimization II?
Q3: Can our profile-driven optimizations benefit fuzzing tools?

5.1 Experimental Setup
To support our evaluation, we gather 20 benchmark programs.
12 of them, listed in Table 1, are borrowed from our motivating
study. The remaining, listed in Table 4, are further identified from

7

Table 5: Statistic results of our evaluation. ✗ indicates the fuzzing tool failed to run in that mode. Fuzzing Speed is measured by the number of test cases processed
in 24 hours and normalized using FS as the baseline. For example, the result for PM is calculated by dividing the fuzzing speed of PM by that of FS. Stability lower

than 90% is highlighted in purple. Programs in a box are covered in our study. We did not identify global variables for mjs.

Project
AFL AFL++

Stability (%) Fuzzing Speed (baseline:FS) Stability (%) Fuzzing Speed (baseline:FS)
FS SS PM PM_VOS PM_REC PM_REC_VOS SS PM PM_VOS PM_REC PM_REC_VOS FS SS PM PM_VOS PM_REC PM_REC_VOS SS PM PM_VOS PM_REC PM_REC_VOS

objdump 100 98.7 98.7 98.7 99.9 99.9 1.86x 2.15x 2.51x 2.02x 2.55x 100 100 98.8 98.9 99.7 99.8 6.14x 4.79x 5.78x 4.63x 5.66x

readelf 100 100 95.8 95.6 99.8 99.7 2.92x 4.94x 5.42x 4.01x 4.56x 100 100 95.8 95.6 99.8 99.7 2.80x 5.24x 7.07x 5.60x 7.02x

woff2 100 100 100 100 100 100 1.72x 1.99x 2.19x 2.06x 2.19x 100 100 100 100 100 100 1.24x 18.6x 21.5x 16.2x 17.5x
qickjs 100 100 99.4 99.1 99.4 99.4 1.1x 1.32x 1.45x 1.25x 2.02x 100 100 97.2 97.2 97.6 97.5 1.73x 1.96x 2.02x 1.86x 1.93x

djpeg 100 100 100 100 100 100 1.79x 2.73x 3.37x 2.09x 2.85x 100 100 99.9 99.9 99.9 99.9 8.45x 2.59x 6.09x 2.46x 6.09x

tiff2ps 100 99.3 99.4 100 99.3 100 0.89x 1.47x 1.81x 1.25x 1.63x 100 100 99.0 99.1 99.9 99.9 3.42x 4.98x 7.06x 5.34x 6.39x
tiff2pdf 100 88.2 79.5 78.3 98.9 99.3 1.99x 2.12x 2.19x 2.16x 2.48x 100 94.0 76.0 73.0 99.9 99.9 2.87x 3.96x 6.16x 4.22x 6.34x
exif 100 100 100 100 100 100 0.17x 2.59x 3.02x 2.91x 3.12x 100 100 99.9 99.9 99.9 99.9 3.57x 2.93x 3.33x 2.75x 3.29x
mjs 100 100 99.7 99.7 99.7 99.7 1.08x 1.23x 1.52x 1.43x 1.74x 100 100 99.5 99.5 — — 2.97x 4.49x 5.29x — —
flvmeta 100 100 100 100 100 100 2.31x 2.32x 2.85x 2.69x 2.97x 100 100 99.6 99.6 99.6 99.6 2.52x 3.99x 5.29x 3.33x 6.58x
openssl 100 100 76.9 77.5 99.8 99.8 3.1x 4.93x 5.80x 3.73x 3.97x 100 100 78.2 78.3 99.8 99.8 1.82x 8.74x 9.63x 1.82x 2.03x
bash 100 100 20.2 20.8 95.7 95.7 0.38x 4.28x 4.38x 1.45x 1.53x 100 100 21.5 23.3 95.7 95.8 0.29x 4.95x 6.24x 3.47x 3.99x
jq 100 100 100 100 100 100 1.02x 1.21x 1.26x 1.25x 1.36x 100 100 99.1 99.1 99.1 99.1 1.17x 1.35x 1.39x 1.31x 1.37x
unrtf 100 ✗ ✗ ✗ 99.1 99.1 ✗ ✗ ✗ 1.24x 1.29x 100 93.1 ✗ ✗ 97.0 97.0 0.37x ✗ ✗ 2.11x 2.18x
tcpdump 100 99.9 ✗ ✗ 96.1 95.1 1.63x ✗ ✗ 1.72x 2.23x 100 100 ✗ ✗ 98.6 98.8 4.80x ✗ ✗ 5.30x 6.25x
mutool 99.9 99.9 ✗ ✗ 99.9 99.8 1.71x ✗ ✗ 2.33x 2.66x 99.9 99.9 ✗ ✗ 99.9 99.9 1.26x ✗ ✗ 2.98x 3.07x
xmllint 100 100 ✗ ✗ 99.9 99.9 1.43x ✗ ✗ 1.70x 2.02x 100 100 ✗ ✗ 99.8 99.8 2.27x ✗ ✗ 3.13x 3.96x
tidyhtml 100 100 ✗ ✗ 99.9 99.9 1.06x ✗ ✗ 1.24x 1.51x 100 100 ✗ ✗ 99.9 99.9 1.54x ✗ ✗ 1.76x 2.33x
optipng 100 100 ✗ ✗ 100 100 1.66x ✗ ✗ 1.55x 2.73x 100 100 ✗ ✗ 99.9 99.9 3.20x ✗ ✗ 1.45x 2.02x

libxslt 100 100 ✗ ✗ 99.9 99.9 2.65x ✗ ✗ 3.06x 3.08x 100 100 ✗ ✗ 99.8 99.8 2.92x ✗ ✗ 4.66x 5.90x

OSS-Fuzz [79]. We measure the diversity of the programs from
four dimensions: ➀ number of fuzzing papers using the programs, ➁
binary size, ➂ # of global objects identified by profiling after 24-hour
fuzzing, and ➃ # of average system calls incurred by a test case. The
distribution on the four dimensions is displayed in Figure 7.

To ensure that our state recovery covers the libraries, we stati-
cally compile the dependent libraries into the target program. For
GLIBC, we only handle the global objects that the target program
explicitly imports, considering that GLIBC is more self-contained
and many of its states only affect resource consumption (e.g., heap
allocation).We include bothAFL (version 2.57b) andAFL++ (version
4.01c), following the experimental setup in §2.2. All the experiments
are done with the tmpfs file system. We run AFL and AFL++ on
the 20 projects for 24 hours and repeat each test 10 times. The best
and worst results are discarded to mitigate outliers. For comparison,
we configure both AFL and AFL++ to run in the following modes:

▶ FS stands for the fork server mode. This is the default mode of
both fuzzers, where no extra configurations are needed.

▶ SS represents the snapshot mode we discussed in §2.2. The snap-
shot mode shipped with AFL++ [3] has unrepaired issues, crash-
ing most benchmark programs. We use a more stable version
available at https://github.com/galli-leo/AFL-Snapshot-LKM.

▶ PM refers to the persistent mode described in [26, 27]. We instru-
ment each benchmark to add a loop iterating the main function
(see Figure 10). We force the loop to exit after every 1,000 itera-
tions by default. On openssl, we reduce that to 100 as resource
exhaustion frequently happens when doing 1,000 iterations.

▶ PM_REC means we run the persistent mode with state recovery.
▶ PM_VOS means we run the persistent mode with OS abstraction.
▶ PM_REC_VOS, combing PM_REC and PM_VOS, runs the persistent

mode with both profile-driven state recovery and OS abstraction.

Our state recovery and OS abstraction require a profile. We run
the FS mode for 5 minutes and analyze the outcomes to build the
profile. While a longer profiling phase may lead to better accuracy,
5 minutes already produce satisfying results. To ensure fairness, we

BA
SH

TI
DY

HT
M

L
FL

VM
ET

A
QU

IC
KJ

S
EX

IF JQ
UN

RT
F

LI
BX

SL
T

M
JS

M
UT

OO
L

W
OF

F2
TI

FF
2P

S
OP

EN
SS

L
TI

FF
2P

DF
TC

PD
UM

P
RE

AD
EL

F
OB

JD
UM

P
OP

TI
PN

G
DJ

PE
G

XM
LL

IN
T

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(a) # of Referenced Papers

77.5

80.0

UN
RT

F
FL

VM
ET

A
M

JS
DJ

PE
G

EX
IF

OP
TI

PN
G

TI
FF

2P
S

TI
DY

HT
M

L
TI

FF
2P

DF JQ
RE

AD
EL

F
LI

BX
SL

T
W

OF
F2

BA
SH

XM
LL

IN
T

QU
IC

KJ
S

TC
PD

UM
P

OB
JD

UM
P

OP
EN

SS
L

M
UT

OO
L

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(b) Binary Size (MB)

1100

1200

FL
VM

ET
A

DJ
PE

G
EX

IF
W

OF
F2 M
JS

TI
FF

2P
DF

QU
IC

KJ
S

TI
DY

HT
M

L
TI

FF
2P

S JQ
OP

TI
PN

G
UN

RT
F

LI
BX

SL
T

OB
JD

UM
P

XM
LL

IN
T

RE
AD

EL
F

OP
EN

SS
L

M
UT

OO
L

TC
PD

UM
P

BA
SH

0

100

200

300

400

500

600

(c) # of Global Objects

1900

2000

QU
IC

KJ
S

M
JS

FL
VM

ET
A

OP
EN

SS
L

OP
TI

PN
G

TC
PD

UM
P JQ

LI
BX

SL
T

EX
IF

TI
FF

2P
S

RE
AD

EL
F

TI
FF

2P
DF

M
UT

OO
L

BA
SH

OB
JD

UM
P

XM
LL

IN
T

UN
RT

F
W

OF
F2

DJ
PE

G
TI

DY
HT

M
L

0

100

200

300

400

500

(d) # of System Calls

Figure 7: Distributions of benchmark programs in different dimensions

stop the experiments [300 +𝑋] seconds earlier for PM_REC, PM_VOS,
and PM_REC_VOS (𝑋 is the number of seconds needed for profiling
and patching the binary). During fuzzing, we redo the profiling-
and-patching if the fuzzer’s stability drops under 95%.

5.2 Profile-driven State Recovery
Our state recovery aims to promote PM mode as a replacement of
the FS mode, thus achieving Optimization I. As pointed out in
§2.2, the PM mode can fail to run a fuzzing target due to exceptions.
In this evaluation, we measure whether our state recovery can
re-enable the PM mode in those cases and, if so, assess the benefits.
Enabling PM: As shown in Table 5, the native PM mode fails to
run 7 out of 20 fuzzing targets (unrtf, tcpdump, mutool, libxml2,
tidyhtml, optipng, and libxslt). All the failures are caused by
non-recovered global objects that corrupt follow-up fuzzing itera-
tions. The reason for mupdf has been illustrated in Figure 3. unrtf,

8

https://github.com/galli-leo/AFL-Snapshot-LKM

OBJDUMP READELF WOFF2 QUICKJS DJPEG TIFF2PS UNRTF TCPDUMP MUTOOL XMLLINT TIDYHTML OPTIPNG
0

20

40

60

80

100

Di
str

ibu
tio

n
of

 E
xp

en
de

d
Ti

m
e

(%
)

FS
_S

SD

FS
_S

SD

FS
_S

SD

FS
_S

SD

FS
_S

SD

FS
_S

SD

FS
_S

SD

FS
_S

SD

FS
_S

SD

FS
_S

SD

FS
_S

SD

FS
_S

SD

FS
_T

M
PF

S

FS
_T

M
PF

S

FS
_T

M
PF

S

FS
_T

M
PF

S

FS
_T

M
PF

S

FS
_T

M
PF

S

FS
_T

M
PF

S

FS
_T

M
PF

S

FS
_T

M
PF

S

FS
_T

M
PF

S

FS
_T

M
PF

S

FS
_T

M
PF

S

SS SS SS

SS

SS

SS

SS
 (f

ail
ed

)

SS

SS

SS

SS

SS

PM PM

PM

PM

PM

PM

PM
 (c

ra
sh

)

PM
 (c

ra
sh

)

PM
 (c

ra
sh

)

PM
 (c

ra
sh

)

PM
 (c

ra
sh

)

PM
 (c

ra
sh

)

PM
_V

OS

PM
_V

OS

PM
_V

OS

PM
_V

OS

PM
_V

OS

PM
_V

OS

PM
_V

OS
 (c

ra
sh

)

PM
_V

OS
 (c

ra
sh

)

PM
_V

OS
 (c

ra
sh

)

PM
_V

OS
 (c

ra
sh

)

PM
_V

OS
 (c

ra
sh

)

PM
_V

OS
 (c

ra
sh

)

PM
_R

EC

PM
_R

EC

PM
_R

EC

PM
_R

EC

PM
_R

EC

PM
_R

EC

PM
_R

EC

PM
_R

EC

PM
_R

EC

PM
_R

EC

PM
_R

EC

PM
_R

EC

RE
C_

VO
S

RE
C_

VO
S RE

C_
VO

S

RE
C_

VO
S

RE
C_

VO
S

RE
C_

VO
S

RE
C_

VO
S

RE
C_

VO
S

RE
C_

VO
S

RE
C_

VO
S RE

C_
VO

S

RE
C_

VO
S

Fuzzer
Fork
Target

Figure 8: Distribution of time spent by AFL at different steps in a fuzzing iteration. In the legend, Fuzzer, Fork, and Target represent steps ➀, ➁, and ➂ discussed in
§2.1. All numbers are calculated using the total time of FS_SSD as the baseline. For instance, Fuzzer under SS is calculated as [time spent on step ➀ by SS]

[total time spent by FS_SSD] .

tcpdump, tidyhtml, and optipng share similar patterns. The fail-
ures of libxml2 and libxslt have similar root causes, which we
explain in Figure 11 in Appendix.

In all the cases above, our profiling identifies the responsible
global objects and guides our state recovery to reset their values in
each fuzzing iteration. As shown in Table 5 (the PM_REC column), the
state recovery re-enables the PM mode in all the cases with stability
close to 100% (96.1%- 100% for AFL; 97.0%- 99.9% for AFL++).

Moreover, our state recovery can help stabilize the PM mode. On
tiff2pdf, bash, and openssl, the PM mode has a lower than 80%
stability (only 20% on bash) due to unrecovered execution states.
Our state recovery increases their stability to 95%+.
Performance Gain: The direct benefit of enabling PM mode is
faster fuzzing speed. As shown in Table 5, on the 7 programs where
the native PM mode fails, reenabling PM with state recovery (i.e.,
PM_REC) can increase the fuzzing speed of AFL/AFL++ by 83%/206%
compared to their default fork server mode. On the other 13 pro-
grams, PM_REC can similarly accelerate the fork server mode.

To understand why PM_REC brings performance gains and what
leads to a higher gain, we expand our study in §2.2 to include the
PM_REC mode. Figure 8 shows that PM_REC fully eliminates fork
and significantly reduces the time of target program execution.
But why can PM_REC accelerate target program execution? The
main reason is PM_REC decreases page faults. As shown in Table 11
in Appendix, PM_REC reduces 96% page faults incurred by the FS
mode. The number of reduced page faults positively affects the time
reduction for target program execution. PM_VOS reduces the page
faults more significantly on readelf (90.8→0.2 per test case)
and mutool (343.7→0.2 per test case). Correspondingly, PM_VOS
optimizes the two programs the most.

Another option to “enable” the PMmode on the 7 programs is the
SSmode. In our evaluation, the SSmode of bothAFL andAFL++ can
run all 7 programs (except for AFL on unrtf). As shown in Table 5,
the SS mode also accelerates the PM mode, thanks to its elimination
of fork (Figure 8) and reduction of page faults (Table 11). However,
SS is less efficient than the PM_REC mode. On average, SS only in-
creases the fuzzing speed of FSmode by 60.4% on AFL and 177% on
AFL++. On the same set of programs, PM_REC increases the fuzzing
speed by 110% and 283% for AFL and AFL++. The performance
advantage of PM_REC over SS is attributed to two reasons. ① The
states that PM_REC needs to reset are pre-determined based on the
profiling. In contrast, SS needs to trace those states at run-time,
introducing extra costs. As shown in Table 2, SS often needs to
trace dozens or hundreds of pages. ② PM_REC performs object-level

memory recovery, which incurs lower costs than PM_REC’s page-
level recovery. As we can see in Table 12 in Appendix, PM_REC only
needs to reset several dozens/hundreds of bytes in most cases.

While PM_REC can run the target program faster than SS, its
fuzzing speed can be lower. The reason is that, for every 1,000
fuzzing iterations, PM_REC downgrades to the FS mode once while
SS does not have to. optipng with AFL is such a case. The ex-
ecution of optipng under PM_REC needs a shorter time than SS
(see Figure 8). However, the fuzzing speed of PM_REC is lower than
SS (check Table 5). One may note that, when applied to AFL++, the
fuzzing speed of PM_REC falls behind SS more often. This does not
necessarily reflect the ineffectiveness of PM_REC. Instead, the SS
mode of AFL++ still contains implementation flaws, often failing to
run correctly after several hours. With AFL++, SS runs faster than
PM_REC on objdump, djpeg, exif, and optipng. However, when
fuzzing objdump and exif, SS presents zero growth of code cover-
age after 4 hours, indicating that it runs into an abnormal state.
Profiling Statistics: In the PM_REC and PM_REC_VOS fuzzingmodes,
most programs do not need re-profiling because their stability stays
95%+. The only exception is optipng, which requires re-profiling
once when running with AFL++. To understand why re-profiling is
not frequent, we compare the number of global objects collected
with profiling after 5-minute fuzzing and after 24-hour fuzzing. As
shown in Table 12, the set of global objects in most cases does not
change much in 24 hours. For 9 programs, the set remains identical.

We further measure the time needed to complete the profiling-
and-patching process and summarize the results in Table 9. It shows
that our profiling-and-patching process is efficient. The total time
cost ranges from 4 seconds to 61 seconds, depending on the fuzzing
targets. This indicates that our approach shall not interrupt the
fuzzing progress much even if frequent re-profiling is needed.
Stability Threshold:We consider fuzzing stability as the metric to
decide when to run re-profiling (with 95% as the default). Evidently,
the threshold can affect the fuzzing progress, so we further mea-
sure its impact. At the end of each 24-hour test, we use different
thresholds (95%-99%) to decide on re-profiling. We then count the
false positives (FPs) and false negatives (FNs) defined as follows:
▶ False Positive: re-profiling is done because the stability drops
below the threshold, but no new global objects are identified.
▶ False Negative: re-profiling is not done as the stability is above the
threshold, but new global objects can be identified by re-profiling.

Figure 9 shows the change of FPs/FNs with the stability threshold.
In summary, a lower threshold leads to fewer FPs (avoiding unnec-
essary re-profiling) but more FNs (missing the identification of new

9

95% 96% 97% 98% 99%
Stability threshold

0.0

0.2

0.4

0.6

0.8

1.0

of

 F
P

AFL
AFL++

(a) # of FPs

95% 96% 97% 98% 99%
Stability threshold

5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0

of

 F
N

AFL
AFL++

(b) # of FNs

Figure 9: Number of FPs & FNs given different stability thresholds. The num-
bers mean program numbers (i.e., each program is counted at most once).

global objects). A higher threshold presents an opposite trend. This
is expected as lower stability is often caused by that more global
objects have emerged and hurt the fuzzing status. Our threshold
choice, 95%, introduces zero FP but presents more FNs than higher
thresholds. We stick to 95% for three reasons. First, stability staying
over 95% is considered sufficient for greybox fuzzing [7]. Second,
the FNs introduced by 95% do not lead to severe consequences like
crashes. Third, a threshold over 95% (e.g., 96%) reduces FNs, but it
incurs more re-profiling. For example, 95% triggers re-profiling for
one program, while 96% triggers that for 3. Although the re-profiling
identifies new global objects, it does not necessarily benefit fuzzing.
On the 3 programs identified with a 96% threshold, the re-profiling
only increases the stability for 1 program, which is also covered
by a 95% threshold. To sum up, 95% represents a decent trade-off
between effectiveness and efficiency.

5.3 Profile-driven OS Abstraction
Our OS abstraction is transparent to the fuzzing tool. It can be
applied to various tools under different modes. In our evaluation,
we run it with both AFL and AFL++ in the PM and PM_REC modes
(resulting in the PM_VOS and PM_REC_VOSmodes). For simplicity, we
use VOS to refer to our OS abstraction.
Correctness Validation: A concern about VOS is that it may devi-
ate from the real system and affect the fuzzing target. Our first eval-
uation measures the correctness of our VOS in supporting fuzzing
tools. We replay each test case from our 24-hour experiments with
and without VOS under the same mode. If the test case produces
standard outputs or errors, we check whether they remain the same
with and without VOS. Further, we dump the basic blocks executed
by the test case and inspect whether VOS causes any divergence.
We pass this validation test in all cases unless random timeout or
resource exhaustion happens.
Performance Gain: The PMmode can run 13 benchmark programs,
where VOS can be applied seamlessly. As shown in Table 5, VOS
maintains the stability of PM. More importantly, it accelerates the
PMmode on all 13 programs. On average, VOS increases PM’s fuzzing
speed by 14.1%/29.6% with AFL/AFL++ (check PM v.s. PM_VOS in Ta-
ble 5). To unveil the reason for the performance gain, we extend our
study in §2.2 to include the PM_VOS and PM_REC_VOS modes. The
results in Table 8 in Appendix show that PM_VOS removes 87% of
the system calls invoked by the PM mode. Consequently, PM_VOS re-
duces 42% of the time spent by PM in the kernel space during target
program execution, as shown in Table 13. Further, the optimization
of VOS is positively affected by how many system calls are removed.

Table 6: Code coverage of different fuzzingmodes. Thenumbers are normalized
using FS as the baseline. PRV refers to PM_REC_VOS (to reduce space).

Project
AFL AFL++

Code Coverage (baseline:FS) Code Coverage (baseline:FS)
SS PM PM_VOS PM_REC PRV SS PM PM_VOS PM_REC PRV

objdump 1.01x 1.03x 1.03x 1.03x 1.07x 0.72x 1.06x 1.06x 1.06x 1.06x

readelf 1.10x 1.07x 1.10x 1.14x 1.15x 1.04x 1.05x 1.09x 1.12x 1.12x

woff2 0.88x 1.02x 1.02x 1.02x 1.02x 0.99x 1.07x 1.09x 1.10x 1.10x
qickjs 1.08x 1.08x 1.11x 1.09x 1.09x 1.08x 1.08x 1.09x 1.07x 1.09x

djpeg 1.02x 1.03x 1.04x 1.04x 1.05x 0.89x 1.04x 1.07x 1.02x 1.09x

tiff2ps 1.02x 1.02x 1.03x 1.02x 1.03x 1.05x 1.07x 1.09x 1.07x 1.08x
tiff2pdf 1.39x 1.38x 1.40x 1.40x 1.40x 1.04x 1.07x 1.08x 1.07x 1.09x
exif 0.90x 1x 1.01x 1.01x 1.02x 0.86x 1.01x 1.01x 1.01x 1.01x
mjs 1x 1.01x 1.01x 1.01x 1.01x 1.07x 1.08x 1.09x — —
flvmeta 1x 1x 1x 1.01x 1.01x 1x 1x 1x 1x 1x
openssl 0.87x 0.89x 0.89x 1x 1.11x 1.10x 1.11x 1.15x 1.11x 1.11x
bash 0.91x 0.75x 0.75x 1.13x 1.23x 0.83x 0.62x 0.66x 1x 1.03x
jq 1x 1x 1x 1.01x 1.02x 1x 1x 1x 1.02x 1.02x
unrtf ✗ ✗ ✗ 1.01x 1.01x 1x ✗ ✗ 1.01x 1.02x
tcpdump 1x ✗ ✗ 1.03x 1.05x 0.47x ✗ ✗ 1.04x 1.04x
mutool 1.02x ✗ ✗ 1.02x 1.06x 1.05x ✗ ✗ 1.11x 1.49x
xmllint 1.21x ✗ ✗ 1.25x 1.25x 1.01x ✗ ✗ 1.06x 1.06x
tidyhtml 1x ✗ ✗ 1.01x 1.03x 1.04x ✗ ✗ 1.04x 1.05x
optipng 0.99x ✗ ✗ 1.05x 1.05x 1.10x ✗ ✗ 1.02x 1.05x

libxslt 1.05x ✗ ✗ 1.08x 1.08x 1.04x ✗ ✗ 1.04x 1.12x

Consider djpeg as an example. As presented in Table 8, PM_VOS re-
moves system calls more intensively for djpeg (431.0→16.6 per
test case), leading to a more effective reduction of kernel execution
time (see Table 13) and a faster fuzzing speed (see Table 5).

The PM_REC mode can support all our benchmark programs.
We evaluate VOS under this mode and add the results in Table 5.
As expected, the VOS maintains the stability of the fuzzing tools.
Efficiency-wise, the VOS brings a 20.2%/29.6% increase in fuzzing
speed to the PM_RECmodewhen applied toAFL/AFL++. As unveiled
in Table 8, the increase in execution speed is similarly attributed to
the reduction of system calls.

5.4 Benefits to Code Coverage
This evaluation measures how our optimizations can benefit grey-
box fuzzing tools. In the first part, we assess the contribution of our
optimizations to code coverage. We count the number of control
flow edges—without hit counts—covered by different modes in 24
hours. Table 6 presents the code coverage at the end of 24 hours.
Due to the space limit, we focus on discussing the scenarios where
both optimizations are deployed (i.e., PM_REC_VOS), considering FS,
SS, and PM as the baselines.

Zooming into Table 6, we can see that PM_REC_VOS outperforms
FS, SS, and PM in code coverage. When applied to AFL, PM_REC_VOS
consistently achieves the highest code coverage. PM_REC_VOS av-
eragely covers 8.8%, 5.3%, and 8.4% more code than FS, SS, and
PM, respectively. The reason for the high code coverage is more
than just fuzzing speed. As shown in Table 5, PM_VOS runs faster
than PM_REC_VOS. However, in many cases (e.g., objdump, readelf,
tiff2ps, openssl, bash), PM_REC_VOS presents higher code cover-
age. This is because PM_REC_VOS achieves higher stability via its
state recovery (see Table 5). In turn, stability alone cannot turn into
code coverage. FS and SS provide higher stability than PM_REC_VOS
but often cover less code. In short, the combined fuzzing speed and
stability of PM_REC_VOS enable it to produce higher code coverage.

The situation with AFL++ is similar. PM_REC_VOS covers 9.0%,
17.4%, and 7.7% more code than FS, SS, and PM on average. Similarly,

10

Table 7: Results of bug-finding evaluation with MAGMA. The numbers stand for the average time-to-trigger of the corresponding bug. Under the same setting, the
fuzzing mode producing the shortest time-to-trigger is highlighted with filled color. A lighter color is used when more modes produce the shortest time-to-trigger.
“-” means the bug is not triggered by any instance in 24 hours, “✗” shows that the corresponding mode crashes, and “NA” means we did not run that mode (php and
sqlite3 do not provide standalone apps for fuzzing; on libpng, our state recovery did not identify new global variables for the fuzzing driver).

Project Bug ID
Standalone App Driver

AFL AFL++ AFL AFL++
FS PM PM_VOS PM_REC PM_REC_VOS FS PM PM_VOS PM_REC PM_REC_VOS PM PM_REC PM PM_REC

libxml2

XML017 [AAH041] 5m ✗ ✗ 32s 28s 11m ✗ ✗ 32s 30s 15s 15s 1m 48s
XML009 [AAH032] 21h ✗ ✗ 12h 9h 14h ✗ ✗ 44m 40m 7h 6h 7h 4h
XML003 [AAH026] - ✗ ✗ - - - ✗ ✗ - - - - 21h 21h
XML001 [AAH024] - ✗ ✗ - - - ✗ ✗ - - - - 8h 4h

libpng

PNG007 [AAH008] - - - - - - - - - - 20h NA 1h NA
PNG006 [AAH007] 11m 2m 1m 2m 1m 3m 1m 51s 2m 1m - NA - NA
PNG003 [AAH003] - - - - - - - - - - 15s NA 15s NA
PNG001 [AAH001] - - - - - - - - - - - NA 19h NA

libtiff

TIF014 [AAH022] - 17h 12h 20h 7h 15h 6h 1h 5h 3h 16h 14h 6h 3h
TIF012 [AAH020] 23h 13h 5h 13h 5h 4h 3h 1h 2h 1h 2h 3h 1h 30m
TIF009 [AAH017] 22h 15h 11h 13h 10h 10h 6h 4h 2h 1h - - - -
TIF008 [AAH016] - - - - - - - - - - - - 20h 17h
TIF007 [AAH015] 5h 6h 3h 4h 3h 24m 14m 1m 15m 3m 54m 26m 10m 2m
TIF006 [AAH014] 21h 21h 12h 21h 20h 23h 19h 18h 18h 14h - - - -
TIF002 [AAH010] - - - - - - - - - - - - - 18h

poppler

PDF021 [JCH212] - - - - - - 21h 21h 19h 21h - - - -
PDF019 [JCH210] - - - - - - 20h 20h 20h 19h - - - -
PDF016 [JCH207] 3m 1m 1m 2m 1m 4m 3m 58s 1m 58s 1h 42m 10m 10m
PDF011 [JCH201] - - - - 15h 23h 23h 21h 23h 20h - - 20h 20h
PDF010 [AAH052] 4h 3h 2h 3h 3h - 19h 13h 18h 11h 6h 6h - 21h
PDF003 [AAH045] - - - - - - 20h 20h 22h 17h - - - -

openssl

SSL020 [MAE115] 14h - - 14h 11h 18h 23h 18h 14h 14h 12h 8h 23h 20h
SSL009 [MAE104] - - - - 19h - - - 21h 20h 1m 2m 20s 20s
SSL002 [AAH056] 8m 7m 7m 5m 5m 8m 10m 9m 6m 6m 1m 1m 30s 30s
SSL001 [AAH055] - - - - - 21h 23h 21h 21h 21h - - - 19h

php
PHP011 [MAE016] NA NA NA NA NA NA NA NA NA NA 12m 11m 13m 12m
PHP009 [MAE014] NA NA NA NA NA NA NA NA NA NA 14m 14m 3h 50m
PHP004 [MAE008] NA NA NA NA NA NA NA NA NA NA 7m 9m 3h 1h

sqlite3
SQL018 [JCH232] NA NA NA NA NA NA NA NA NA NA 20h 14h 13h 10h
SQL014 [JCH228] NA NA NA NA NA NA NA NA NA NA 18h 18h 16h 16h
SQL002 [JCH215] NA NA NA NA NA NA NA NA NA NA 11h 7h 53m 45m

the high code coverage is due to PM_REC_VOS’s combined fuzzing
speed and stability: (i) PM_VOS has a higher fuzzing speed but lower
code coverage on readelf, jq, and bash; (ii) FS and SS have higher
stability but can barely compete with PM_REC_VOS in code coverage.

5.5 Benefits to Bug Finding
Benchmark Programs:During the evaluation, we observe crashes
in bash, mjs, optipng, and tidyhtml. We replay the crashes us-
ing a clean binary with libraries statically linked and AddressSan-
itizer [77] enabled. All the crashes trigger a segmentation fault
before ASan starts or incur an ASan abortion, showing no false
positives. We triage the crashes based on ASan output and manu-
ally analyze the results. We identify 9 unique bugs, which all have
been reported to the developers. Table 14 summarizes the number
of unique crashes and bugs triggered by different fuzzing modes
(aggregated from all 10 runs). The PM_REC_VOS mode leads other
modes on both crash and bug numbers. More importantly, all bugs
discovered by other modes are also triggered by PM_REC_VOS.
MAGMA:We further run a bug-finding evaluation onMAGMA [59].
We consider all seven projects from the official publication, for
which reference results are available [34]. The fuzzing targets
of MAGMA come in standalone applications and fuzzing drivers
with the libFuzzer entry point. Our evaluation covers both forms.
We find that pngtest, an application of libpng, is not included
in MAGMA but can lead to many MAGMA bugs. Thus, we add

pngtest to our evaluation, producing 22 targets in total. We com-
pile each target with AddressSanitizer (ASan) [77] and UndefinedBe-
haviorSanitizer (UBSan) [36] enabled, following the setting of OSS-
Fuzz [33]. We disable the LeakSanitizer by setting ASAN_OPTIONS=
detect_leaks=0 because, otherwise, the persistent mode of AFL
and AFL++ cannot run. We focus on UBSan’s signed-/unsigned
-integer-overflow checks because its checks on memory, such
as array-bounds, are already covered by ASan. The other UBSan
checks, such as shift, incur many false positives [48]. We run all
fuzzing targets with the six modes described in §5.1. The snapshot
mode fails to run as its restore operations on ASan’s shadow mem-
ory trigger timeouts even if we use an excessive limit. Thus, we
exclude the snapshot mode. Further, the fuzzing drivers run in the
persistent mode, so we exclude them from the fork server mode.
Finally, the fuzzing drivers do not incur system calls. Hence, we
omit the VOS modes when testing them. We run each test 10 times
for 24 hours and reuse the scripts [4] from MAGMA to count the
bugs and measure the average time-to-trigger. The script defaults
one week (168 hours) as the time-to-trigger to an instance not trig-
gering a bug. Since our evaluations only run 24 hours, we change
the default value to 24 hours.

Table 7 shows our evaluation results. Given standalone apps, our
optimizations together (i.e., PM_REC_VOS) benefitAFL andAFL++ in
two ways. First, they help trigger more bugs. PM_REC_VOS triggers
14/18 bugs when applied to AFL/AFL++, while FS only triggers

11

11/14 bugs and PM only triggers 9/15 bugs. Further, all the bugs
triggered by FS and PM are covered by PM_REC_VOS. Second, our
optimizations enable AFL and AFL++ to find bugs quicker. Com-
pared to FS/PM, PM_REC_VOS triggers every bug faster. The average
speedup is 3.71x/1.66x with AFL and 6.43x/2.11x with AFL++. Fun-
damentally, this is because our optimizations enable both FS-level
stability and PM-level execution speed, as shown in Table 10.

Given fuzzing drivers, our state recovery alone (i.e., PM_REC) also
benefits AFL and AFL++. When applied to AFL++, PM_REC finds 3
more bugs than PM. Furthermore, PM_REC consistently finds bugs
faster than PM, leading to a 1.71x speedup. When applied to AFL,
PM_REC does not discover more bugs but similarly reduces the time-
to-trigger. Except for 3 cases (TIF012, SSL009, PHP004), PM_REC
finds the bugs quicker than PM. The average speedup is 1.15x. The
better effectiveness and efficiency are attributed to the improve-
ment brought by PM_REC to the fuzzing stability by resetting affected
global objects, as per Table 10. We believe the differences are due
to the extra global variables REC resets. Resetting global variables
benefits fuzzing in two ways. ➀ It improves the fuzzing stability, as
shown in Table 10.➁ It reduces invalid/incorrect fuzzing executions.
Consider PHP009 as an example. The fuzzing driver for this bug uses
a global variable last_resource_number. It should be reset to 0
on each new test case. Otherwise, the code at https://github.com/php/php-
src/blob/bc39abe8c3c492e29bc5d60ca58442040bbf063b/Zend/zend_extensions.c#L260
will be affected, leading to incorrect and (thus) invalid executions.
However, the driver never resets last_resource_number (see
https://github.com/php/php-src/blob/bc39abe8c3c492e29bc5d60ca58442040bbf063b/sapi/
fuzzer/fuzzer-exif.c). The built-in resetting logic lies in the initialization
function, which is only executed once in the persistent mode. As a
result of not handling last_resource_number and other similar
cases, executions in the PM mode often become invalid and waste
fuzzing cycles, eventually slowing down the discovery of the bug.

Compared to the reference results [34], our evaluation presents
more visible differences on XML009 (with AFL++ on apps and dri-
vers), TIF014 (with AFL on apps), PDF010 (with AFL++ on apps and
drivers), and SSL001 (with AFL on apps and drivers). In those cases,
AFL and AFL++ in our experiments run slower. The primary reason
is we enabled sanitizers, which slowed the execution. Besides, some
other reasons may also have contributed. ➀ With sanitizers, the
targets run slower. More seeds may time out during the dry-run
phase and get removed, and the fuzzer may pick different timeout
thresholds. ➁ We used AFL++ 4.01c as required by our implementa-
tion, while MAGMA used 3.14a; ➂ We keep AFL++’s deterministic
mutations to reduce randomness, but it is disabled in MAGMA. ➃
We used different hardware.

During the evaluation, ASan also detected a non-MAGMA bug
in libtiff (fixed by [55]). To trigger the bug in 24 hours, one of
our optimizations is mandated. We further checked and confirmed
all other crashes are caused by MAGAM bugs, showing that our
optimizations did not bring false positives when coupled with ASan.

6 DISCUSSION
Compatibility with Sanitizers: Sanitizers, such as ASan [77] and
MemorySanitizer (MSan) [81], are critical to successful bug finding.
An interesting question is whether our state recovery can co-exist
with popular sanitizers. In principle, we follow the samemechanism
as libFuzzer [78]: continuously running a piece of code on different

test cases without restoring sanitizer metadata. Thus, we share the
same level of sanitizer compatibility as libFuzzer.

Both libFuzzer and our state recovery can co-exist with ASan.
We do not interfere with memory allocation and deallocation. Thus,
the shadow memory—metadata of ASan—stays consistent with the
memory layout. libFuzzer and our approach also do not affect
MSan. We only affect global objects, which are created with default
initialization and thus, excluded by MSan [81]. Nevertheless, MSan
has two intrinsic issues when applied to fuzzing. First, it can incur
false positives from un-instrumented dependencies [33]. Second,
MSan is incompatible with ASan due to conflicts on the heap [10].
Compilers like Clang disallow ASan and MSan at the same time.

libFuzzer and our approach can impact LSan. We continuously
execute the fuzzing target without cleanup operations (e.g., con-
structors registered by the program). Thus, allocated memory may
not get recycled and trigger false LSan alarms. To avoid the false
alarms, we must add the cleanup operations into the fuzzing loop.
Side Effects of VOS:Our VOS replaces partial functionality of the na-
tive OS. This may cause two side effects [58]. First, the VOS and the
native OS can conflict when they have interleaving operations. For
instance, VOS opens a file but misses stat operations on it. Those
operations will be sent to the native OS, which will eventually fail
as the native OS has no context. Our approach involves two mech-
anisms for mitigation: (i) we hook the low-level POSIX interfaces,
which are more unified and easier to be identified comprehensively,
and (ii) our profiling gives an estimation of the operations on the file,
helping us inspect whether VOS can capture all expected operations.

Second, the VOS can have different behaviors from the OS. This
will likely happen as VOS is heavily simplified, which is, however,
OK if VOS preserves the behaviors of the target program. To this
end, we follow the POSIX standard to implement the interfaces. As
shown in §5.3, our implementation can preserve desired behaviors.
In more complex scenarios such as multi-threaded execution, VOS
can affect the target program differently from the OS as we may
enforce different locks or incur disparate latencies. However, this
is expected as such disparity also exists in real systems.

7 RELATEDWORK
Algorithm Optimization for Fuzzing: Algorithm optimization is
a major focus of improving greybox fuzzing. §2.1 has discussed algo-
rithm optimizations via scheduling and mutations of test cases [40,
47, 48, 67, 68, 71, 72, 80, 87?]. Another perspective is to explore
more effective feedback. AFL [86] considers code branches as feed-
back, which is refined by Steelix [65], CollAFL [56], and PTrix [49]
to incorporate extra control-flow information. More aggressively,
TaintScope [82], Vuzzer [72], GREYONE [57], REDQUEEN [40], and
Angora [46] exploit feedback informed by data flow.
System Optimization for Fuzzing: Going beyond algorithm op-
timizations, past research has also extended efforts to improve the
system design of grey-box fuzzing tools. Xu et al. [84] and NYX [75]
replace heavy child-process spawning with lightweight snapshot
recovery when executing different test cases. Xu et al. [84] further
develop new OS primitives to mitigate the contention in the file
system. These new primitives speed up the execution of the target
programs and reduce the time needed for each round of fuzzing.

12

https://github.com/php/php-src/blob/bc39abe8c3c492e29bc5d60ca58442040bbf063b/Zend/zend_extensions.c#L260
https://github.com/php/php-src/blob/bc39abe8c3c492e29bc5d60ca58442040bbf063b/Zend/zend_extensions.c#L260
https://github.com/php/php-src/blob/bc39abe8c3c492e29bc5d60ca58442040bbf063b/sapi/fuzzer/fuzzer-exif.c
https://github.com/php/php-src/blob/bc39abe8c3c492e29bc5d60ca58442040bbf063b/sapi/fuzzer/fuzzer-exif.c

Other research in this line investigates more efficient approaches
to gather feedback from the target programs. PTrix [49], Hong-
gfuzz [16], and kAFL [76] take advantage of Intel PT [19] to ef-
ficiently collect control-flow-based feedback from the target pro-
gram. UnTracer [70], instead of tracing every round of execution,
instruments the target programs such that only new code is traced.
RetroWrite [51] proposes static binary rewriting to trace code cover-
age in binary-only targets without heavy dynamic instrumentation.
Profile-driven Optimization: Our optimizations are based on
dynamic analysis of some test cases. A closely related area is profile-
guided optimization (PGO) [5] in the programming language com-
munity. Past PGO research has explored using profiles to improve
pointer analysis for loop optimization [39, 83], detect data local-
ity [60] or customize heap allocators [74] for reducing cache misses,
and predict control flow frequency for improving function inline [44,
83]. Compared to PGO, we are more ambitious: we aim to eliminate
the related operations or replace them with a minimized version.
OS Abstraction: Some symbolic executors also abstract OS in-
teractions. For instance, KLEE [43] and CLOUD9 [50, 62] include
components to simulate POSIX interfaces [6, 11]. However, those
components are less suited for fuzzing optimizations. First, they
intend to symbolize interactions with the OS, which can run even
slower than the native version. Second, they are not informed by
profiling results like ours. Thus, they only handle OS interactions
specified by users, routing all the remaining to the native kernel.

8 CONCLUSION
This paper presents an empirical study that unveils how system-
level designs of mainstream greybox fuzzing tools impact the exe-
cution speed. Following the study, this paper introduces two profile-
driven optimizations to improve the system designs toward higher
efficiency. The evaluations show the effectiveness of the proposed
approach, illustrating the promise of profile-driven optimizations.

9 ACKNOWLEDGMENTS
We thank the anonymous reviewers and Marcel Busch, our shep-
herd, for their valuable comments. This work was supported by
NSF award CNS-2213727. Any opinions, findings, and conclusions
or recommendations expressed herein are those of the authors and
do not necessarily reflect the views of the US government or NSF.

REFERENCES
[1] https://github.com/AFLplusplus/AFLplusplus/tree/stable/utils/socket_fuzzing.

(Accessed on 01/19/2023).
[2] github.com/zardus/preeny. (Accessed on 01/19/2023).
[3] github.com/AFLplusplus/AFL-Snapshot-LKM. (Accessed on 01/19/2023).
[4] github.com/HexHive/magma/blob/v1.2/tools/report_df/main.py. (Accessed on

01/19/2023).
[5] en.wikipedia.org/wiki/Profile-guided_optimization. (Accessed on 01/19/2023).
[6] github.com/klee/klee/tree/master/runtime/POSIX. (Accessed on 01/19/2023).
[7] Afl. afl-1.readthedocs.io/en/latest/user_guide.html. (Accessed on 01/19/2023).
[8] Afl++ persistent mode. https://github.com/AFLplusplus/AFLplusplus/blob/stable/

instrumentation/README.persistent_mode.md. (Accessed on 01/19/2023).
[9] Bash. tinyurl.com/bashtestcase. (Accessed on 01/19/2023).
[10] C and c++ error checking. tinyurl.com/asanmsan. (Accessed on 01/19/2023).
[11] Cloud9 posix. github.com/dslab-epfl/cloud9/tree/master/runtime/POSIX. (Ac-

cessed on 01/19/2023).
[12] Elf. https://tinyurl.com/elftestcase. (Accessed on 01/19/2023).
[13] Exif. https://github.com/ianare/exif-samples. (Accessed on 01/19/2023).
[14] Flvmeta. https://tinyurl.com/flxmetatest. (Accessed on 01/19/2023).
[15] Funchook. https://github.com/kubo/funchook. (Accessed on 01/19/2023).

[16] Honggfuzz. http://honggfuzz.com. (Accessed on 01/19/2023).
[17] Html. https://tinyurl.com/htmltestcase. (Accessed on 01/19/2023).
[18] Http. github.com/curl/curl-fuzzer/tree/master/corpora/curl_fuzzer_http. (Ac-

cessed on 01/19/2023).
[19] Intel pt. https://tinyurl.com/intelptdoc. (Accessed on 01/19/2023).
[20] Jq. https://tinyurl.com/jqtestcase. (Accessed on 01/19/2023).
[21] Js. github.com/cesanta/mjs/raw/master/tests/test_1.js. (Accessed on 01/19/2023).
[22] libfuzzer. https://llvm.org/docs/LibFuzzer.html. (Accessed on 01/19/2023).
[23] libpcap fuzzing driver on pcap_next_ex. https://github.com/the-tcpdump-group/

libpcap/blob/master/testprogs/fuzz/fuzz_pcap.c. (Accessed on 01/19/2023).
[24] libpcap fuzzing driver on pcap_setfilter. https://github.com/the-tcpdump-group/

libpcap/blob/master/testprogs/fuzz/fuzz_filter.c#L22. (Accessed on 01/19/2023).
[25] Linux system call table. https://thevivekpandey.github.io/posts/2017-09-25-linux-

system-calls.html. (Accessed on 01/19/2023).
[26] llvm_mode persistent mode. https://github.com/AFLplusplus/AFLplusplus/blob/

stable/instrumentation/README.persistent_mode.md. (Accessed on 01/19/2023).
[27] New in afl: persistent mode. https://lcamtuf.blogspot.com/2015/06/new-in-afl-

persistent-mode.html. (Accessed on 01/19/2023).
[28] New os primitives specialized for fuzzing. https://github.com/sslab-gatech/perf-

fuzz. (Accessed on 01/19/2023).
[29] Optipng. https://tinyurl.com/pngtestcase. (Accessed on 01/19/2023).
[30] Pcap. https://tinyurl.com/pcaptest. (Accessed on 01/19/2023).
[31] Posix apis. https://tinyurl.com/posixapi. (Accessed on 01/19/2023).
[32] Quickjs. https://github.com/bellard/quickjs/raw/master/examples/hello.js. (Ac-

cessed on 01/19/2023).
[33] Setting up a new project. https://google.github.io/oss-fuzz/getting-started/new-

project-guide/#sanitizers. (Accessed on 01/19/2023).
[34] Survival report. https://hexhive.epfl.ch/magma/reports/sample_2/. (Accessed on

01/19/2023).
[35] Tiff. lcamtuf.coredump.cx/afl/demo/afl_testcases.tgz. (Accessed on 01/19/2023).
[36] Ubsan. https://tinyurl.com/undefsan. (Accessed on 01/19/2023).
[37] Unrtf. https://tinyurl.com/unrtftest. (Accessed on 01/19/2023).
[38] Woff2. https://tinyurl.com/woff2test. (Accessed on 01/19/2023).
[39] Péricles Alves, Fabian Gruber, Johannes Doerfert, Alexandros Lamprineas, Tobias

Grosser, Fabrice Rastello, and Fernando Magno Quintão Pereira. Runtime pointer
disambiguation. In Proceedings of the 2015 ACM SIGPLAN OOPSLA, 2015.

[40] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. REDQUEEN: Fuzzing with Input-to-State Correspondence. In
Network and Distributed System Security Symposium, NDSS, 2018.

[41] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. Directed Greybox Fuzzing. In ACM SIGSAC Conference on Computer and
Communications Security, CCS, 2017.

[42] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-based
Greybox Fuzzing As Markov Chain. In ACM SIGSAC Conference on Computer
and Communications Security, CCS, 2016.

[43] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and au-
tomatic generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX Conference on Operating Systems Design and Imple-
mentation, pages 209–224. USENIX Association, 2008.

[44] Dehao Chen, Tipp Moseley, and David Xinliang Li. Autofdo: Automatic feedback-
directed optimization for warehouse-scale applications. In IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO), 2016.

[45] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,
and Yang Liu. Hawkeye: Towards a Desired Directed Grey-box Fuzzer. In ACM
SIGSAC Conference on Computer and Communications Security, CCS, 2018.

[46] Peng Chen and Hao Chen. Angora: efficient fuzzing by principled search. In
IEEE Symposium on Security and Privacy, Oakland, 2018.

[47] Peng Chen, Jianzhong Liu, and Hao Chen. Matryoshka: Fuzzing Deeply Nested
Branches. In ACM SIGSAC CCS, 2019.

[48] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang,
Taowei, and Long Lu. SAVIOR: Towards Bug-Driven Hybrid Testing. In IEEE
Symposium on Security and Privacy, Oakland, 2020. arXiv: 1906.07327.

[49] Yaohui Chen, Dongliang Mu, Jun Xu, Zhichuang Sun, Wenbo Shen, Xinyu Xing,
Long Lu, and Bing Mao. PTrix: Efficient Hardware-Assisted Fuzzing for COTS
Binary. In ACM ASIA Conference on Computer and Communications Security,
ASIACCS, 2019. arXiv: 1905.10499.

[50] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, and George
Candea. Cloud9: A software testing service. ACM SIGOPS Operating Systems
Review, 43(4):5–10, 2010.

[51] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. RetroWrite:
Statically Instrumenting COTS Binaries for Fuzzing and Sanitization. In IEEE
Symposium on Security and Privacy, Oakland, 2020.

[52] Dor1s. Testcase of pdf. https://github.com/google/AFL/blob/master/testcases/
others/pdf/small.pdf. (Accessed on 01/19/2023).

[53] Dor1s. Testcase of xml. https://github.com/google/AFL/tree/master/testcases/
others/xml. (Accessed on 01/19/2023).

[54] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. AFL++: Com-
bining Incremental Steps of Fuzzing Research. In USENIX WOOT, 2020.

13

https://github.com/AFLplusplus/AFLplusplus/tree/stable/utils/socket_fuzzing
github.com/zardus/preeny
github.com/AFLplusplus/AFL-Snapshot-LKM
github.com/HexHive/magma/blob/v1.2/tools/report_df/main.py
en.wikipedia.org/wiki/Profile-guided_optimization
github.com/klee/klee/tree/master/runtime/POSIX
afl-1.readthedocs.io/en/latest/user_guide.html
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.persistent_mode.md
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.persistent_mode.md
tinyurl.com/bashtestcase
tinyurl.com/asanmsan
github.com/dslab-epfl/cloud9/tree/master/runtime/POSIX
https://tinyurl.com/elftestcase
 https://github.com/ianare/exif-samples
https://tinyurl.com/flxmetatest
https://github.com/kubo/funchook
http://honggfuzz.com
https://tinyurl.com/htmltestcase
github.com/curl/curl-fuzzer/tree/master/corpora/curl_fuzzer_http
https://tinyurl.com/intelptdoc
https://tinyurl.com/jqtestcase
github.com/cesanta/mjs/raw/master/tests/test_1.js
https://llvm.org/docs/LibFuzzer.html
https://github.com/the-tcpdump-group/libpcap/blob/master/testprogs/fuzz/fuzz_pcap.c
https://github.com/the-tcpdump-group/libpcap/blob/master/testprogs/fuzz/fuzz_pcap.c
https://github.com/the-tcpdump-group/libpcap/blob/master/testprogs/fuzz/fuzz_filter.c#L22
https://github.com/the-tcpdump-group/libpcap/blob/master/testprogs/fuzz/fuzz_filter.c#L22
https://thevivekpandey.github.io/posts/2017-09-25-linux-system-calls.html
https://thevivekpandey.github.io/posts/2017-09-25-linux-system-calls.html
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.persistent_mode.md
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.persistent_mode.md
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
https://github.com/sslab-gatech/perf-fuzz
https://github.com/sslab-gatech/perf-fuzz
https://tinyurl.com/pngtestcase
https://tinyurl.com/pcaptest
https://tinyurl.com/posixapi
 https://github.com/bellard/quickjs/raw/master/examples/hello.js
https://google.github.io/oss-fuzz/getting-started/new-project-guide/#sanitizers
https://google.github.io/oss-fuzz/getting-started/new-project-guide/#sanitizers
https://hexhive.epfl.ch/magma/reports/sample_2/
lcamtuf.coredump.cx/afl/demo/afl_testcases.tgz
https://tinyurl.com/undefsan
https://tinyurl.com/unrtftest
https://tinyurl.com/woff2test
https://github.com/google/AFL/blob/master/testcases/others/pdf/small.pdf
https://github.com/google/AFL/blob/master/testcases/others/pdf/small.pdf
https://github.com/google/AFL/tree/master/testcases/others/xml
https://github.com/google/AFL/tree/master/testcases/others/xml

[55] fixheaptiffcp. Libtiff fix. https://gitlab.com/libtiff/libtiff/-/commit/
88d79a45a31c74cba98c697892fed5f7db8b963a. (Accessed on 01/19/2023).

[56] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen. CollAFL: Path Sensitive
Fuzzing. In IEEE Symposium on Security and Privacy, Oakland, 2018.

[57] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, Dong Wu,
and Zuoning Chen. {GREYONE}: Data flow sensitive fuzzing. In 29th USENIX
Security Symposium (USENIX Security 20), pages 2577–2594, 2020.

[58] Tal Garfinkel. Traps and pitfalls: Practical problems in system call interposition
based security tools. In NDSS, 2003.

[59] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. Magma: A ground-truth
fuzzing benchmark. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 4(3):1–29, 2020.

[60] Tanvir Ahmed Khan, Ian Neal, Gilles Pokam, Barzan Mozafari, and Baris Kasikci.
Dmon: Efficient detection and correction of data locality problems using selec-
tive profiling. In 15th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 21), pages 163–181, 2021.

[61] Petros Koutoupis. The linux ram disk. LiNUX+ magzine, pages 36–39, 2009.
[62] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. Effi-

cient state merging in symbolic execution. Acm Sigplan Notices, 2012.
[63] Caroline Lemieux and Koushik Sen. FairFuzz: A Targeted Mutation Strategy for

Increasing Greybox Fuzz Testing Coverage. InACM/IEEE International Conference
on Automated Software Engineering, ASE, 2018.

[64] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey. Cybersecurity, 2018.
[65] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,

and Alwen Tiu. Steelix: Program-state Based Binary Fuzzing. In ACM Joint
Meeting on Foundations of Software Engineering, ESEC/FSE, 2017.

[66] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang.
Fuzzing: State of the art. IEEE Transactions on Reliability, 67(3):1199–1218, 2018.

[67] Chenyang Lv, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. MOPT: Optimize Mutation Scheduling for Fuzzers. In USENIX
Security Symposium, USENIX, 2019.

[68] Chenyang Lyu, Shouling Ji, Xuhong Zhang, Hong Liang, Binbin Zhao, Kangjie Lu,
and Raheem Beyah. Ems: History-driven mutation for coverage-based fuzzing.
In Annual Network and Distributed System Security Symposium, 2022.

[69] Valentin JM Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J Schwartz, and Maverick Woo. The art, science, and engineering
of fuzzing: A survey. IEEE Transactions on Software Engineering, 2019.

[70] Stefan Nagy andMatthew Hicks. Full-speed Fuzzing: Reducing Fuzzing Overhead
through Coverage-guided Tracing. In IEEE S&P, 2019.

[71] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-Fuzz: fuzzing by program
transformation. In IEEE Symposium on Security and Privacy, Oakland, 2018.

[72] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. VUzzer: Application-aware Evolutionary Fuzzing. In Network
and Distributed System Security Symposium, NDSS, 2017.

[73] Robert Ricci, Eric Eide, and CloudLab Team. Introducing cloudlab: Scientific
infrastructure for advancing cloud architectures and applications. the magazine
of USENIX & SAGE, 39(6):36–38, 2014.

[74] Joe Savage and Timothy M Jones. Halo: Post-link heap-layout optimisation. In
Proceedings of the 18th ACM/IEEE International Symposium on Code Generation
and Optimization, pages 94–106, 2020.

[75] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, SimonWörner, and Thorsten
Holz. Nyx: Greybox hypervisor fuzzing using fast snapshots and affine types. In
30th USENIX Security Symposium, 2021.

[76] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels. In
USENIX Security Symposium, USENIX, 2017.

[77] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. Addresssanitizer: A fast address sanity checker. In 2012 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 12), pages 309–318, 2012.

[78] Kosta Serebryany. Continuous fuzzing with libfuzzer and addresssanitizer. In
2016 IEEE Cybersecurity Development (SecDev), pages 157–157. IEEE, 2016.

[79] Kostya Serebryany. OSS-Fuzz - Google’s continuous fuzzing service for open
source software. In USENIX Security Symposium, USENIX, 2017.

[80] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray, and Suman
Jana. NEUZZ: Efficient Fuzzing with Neural Program Smoothing. In IEEE
Symposium on Security and Privacy, Oakland, 2019.

[81] Evgeniy Stepanov and Konstantin Serebryany. Memorysanitizer: fast detector of
uninitialized memory use in c++. In 2015 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), pages 46–55. IEEE, 2015.

[82] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A Checksum-Aware Directed
Fuzzing Tool for Automatic Software Vulnerability Detection. In IEEE Symposium
on Security and Privacy, Oakland, 2010.

[83] Bob Wilson, Diego Novillo, and Chandler Carruth. Pgo and llvm status and
current work. https://llvm.org/devmtg/2013-11/slides/Carruth-PGO.pdf, 2013.

[84] Wen Xu, Sanidhya Kashyap, ChangwooMin, and Taesoo Kim. Designing NewOp-
erating Primitives to Improve Fuzzing Performance. In ACM SIGSAC Conference
on Computer and Communications Security, CCS, 2017.

[85] Wei You, Xueqiang Wang, Shiqing Ma, Jianjun Huang, Xiangyu Zhang, XiaoFeng
Wang, and Bin Liang. ProFuzzer: On-the-fly Input Type Probing for Better
Zero-day Vulnerability Discovery. In IEEE S&P, 2019.

[86] Michal Zalewski. American fuzzy lop. http://lcamtuf.coredump.cx/afl, 2014.
[87] Kunpeng Zhang, Xi Xiao, Xiaogang Zhu, Ruoxi Sun, Minhui Xue, and ShengWen.

Path transitions tell more: Optimizing fuzzing schedules via runtime program
states. In 44th IEEE/ACM International Conference on Software Engineering, 2022.

[88] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. Fuzzing: a survey
for roadmap. ACM Computing Surveys (CSUR), 2022.

Table 8: Average number of system calls invoked by the target program to han-
dle one test case. File: {open, read, write, close, access, stat, seek,
fcntl, unlink, readlink, rename, dir, cmd, dup, ioctl}; Proc: {mmap,
munmap, brk, protect, shm}; Mem: {pipe, exec, pid, sid, wait, clone,
rlimit, sysinfo, rt_sigaction, prctl, exit}.
Program Syscall Group FS_FSTMP SS PM PM_VOS PM_REC REC_VOS

objdump

File 116.7 (91.3%) 118.3 (90.6%) 51.8 (88.3%) 9.4 (57.6%) 79.8 (91.8%) 9.9 (57.6%)
Proc 4.0 (3.1%) 2.0 (1.5%) 1.0 (1.7%) 1.0 (6.2%) 1.9 (2.2%) 2.0 (11.6%)
Mem 4.1 (3.2%) 3.1 (2.4%) 0.1 (0.1%) 0.1 (0.1%) 0.1 (0.1%) 0.1 (0.2%)

Other 3.1 (2.4%) 7.2 (5.5%) 5.9 (9.9%) 5.9 (36.1%) 5.2 (5.9%) 5.2 (30.2%)

readelf

File 97.6 (91.4%) 106.5 (90.5%) 69.1 (91.8%) 9.1 (59.6%) 77.0 (92.6%) 10.3 (62.6%)
Proc 3.0 (2.8%) 1.0 (0.8%) 1.0 (1.3%) 1.0 (6.5%) 1.0 (1.2%) 1.0 (6.1%)
Mem 3.0 (2.8%) 3.0 (2.6%) 0.1 (0.1%) 0.1 (0.3%) 0.1 (0.1%) 0.1 (0.3%)

Other 3.1 (2.9%) 7.1 (6.1%) 5.1 (6.8%) 5.1 (31.0%) 5.1 (6.2%) 5.1 (31.0%)

unrtf

File 135.5 (86.4%) 132.6 (85.1%) – – 118.6 (91.5%) 17.4 (60.6%)
Proc 3.0 (1.9%) 1.0 (0.6%) – – 1.0 (0.8%) 1.0 (3.5%)
Mem 15.2 (9.7%) 15.2 (9.7%) – – 4.8 (3.7%) 5.0 (17.5%)

Other 3.1 (1.9%) 7.1 (4.6%) – – 5.2 (4.0%) 5.2 (18.3%)

woff2

File 18.5 (74.5%) 16.5 (66.4%) 16.5 (72.8%) 9.5 (60.4%) 16.5 (72.8%) 9.5 (6.0%)
Proc 3.0 (12.1%) 1.0 (4.0%) 1.0 (4.4%) 1.0 (6.4%) 1.0 (4.4%) 1.0 (6.4%)
Mem 0.2 (0.8%) 0.2 (0.8%) 0.1 (0.1%) 0.1 (0.3%) 0.1 (0.1%) 0.1 (0.3%)

Other 3.1 (12.6%) 7.1 (28.7%) 5.1 (22.7%) 5.1 (32.8%) 5.1 (22.6%) 5.1 (32.8%)

qickjs

File 22.7 (70.8%) 20.5 (66.5%) 20.5 (76.2%) 9.1 (59.2%) 20.5 (76.2%) 9.1 (59.2%)
Proc 3.0 (9.4%) 1.0 (3.2%) 1.0 (3.7%) 1.0 (6.5%) 1.0 (3.7%) 1.0 (6.5%)
Mem 2.2 (6.9%) 2.2 (7.2%) 0.2 (0.9%) 0.1 (0.9%) 0.3 (1.0%) 0.1 (0.9%)

Other 4.1 (12.9%) 7.1 (2.3%) 5.1 (19.1%) 5.1 (33.4%) 5.1 (19.1%) 5.1 (33.3%)

djpeg

File 426.8 (97.8%) 426.8 (98.0%) 423.7 (98.3%) 9.3 (55.8%) 427.3 (98.3%) 9.3 (55.8%)
Proc 3.0 (0.7%) 2.0 (0.5%) 1.0 (0.2%) 1.0 (6.1%) 1.0 (0.2%) 1.0 (6.1%)
Mem 3.4 (0.8%) 3.4 (0.8%) 0.9 (0.2%) 0.9 (5.4%) 0.9 (0.2%) 0.9 (5.4%)

Other 3.1 (0.7%) 3.1 (0.7%) 5.4 (1.3%) 5.4 (32.7%) 5.4 (1.3%) 5.4 (32.7%)

tiff2ps

File 68.7 (85.9%) 65.9 (83.0%) 59.6 (87.5%) 9.2 (55.3%) 59.6 (87.5%) 9.9 (57.1%)
Proc 3.9 (4.9%) 1.9 (2.5%) 1.0 (1.5%) 1.0 (6.0%) 1.0 (1.5%) 1.0 (5.8%)
Mem 4.1 (5.2%) 4.1 (5.2%) 2.1 (3.1%) 1.1 (6.2%) 2.1 (3.0%) 1.1 (6.0%)

Other 3.1 (3.9%) 7.4 (9.3%) 5.4 (7.9%) 5.4 (32.5%) 5.4 (8.0%) 5.4 (31.1%)

tcpdump

File 33.9 (63.9%) 31.7 (57.8%) – – 24.2 (55.8%) 11.4 (37.3%)
Proc 9.0 (17.0%) 8.0 (14.6%) – – 8.0 (18.4%) 8.0 (26.1%)
Mem 2.0 (3.8%) 2.0 (3.7%) – – 0.1 (0.1%) 0.1 (0.2%)

Other 8.1 (15.3%) 13.1 (23.9%) – – 11.2 (25.7%) 11.2 (36.4%)

mutool

File 91.5 (85.6%) 88.6 (84.4%) – – 82.7 (92.6%) 14.1 (69.4%)
Proc 3.0 (2.8%) 1.0 (0.9%) – – 1.0 (1.1%) 1.0 (4.9%)
Mem 8.3 (7.7%) 8.3 (7.9%) – – 0.4 (0.5%) 0.1 (0.4%)

Other 4.1 (3.9%) 7.1 (6.8%) – – 5.1 (5.8%) 5.1 (25.3%)

xmllint

File 135.2 (93.0%) 133.0 (91.6%) – – 105.2 (92.7%) 17.3 (67.8%)
Proc 3.0 (2.1%) 1.0 (1.0%) – – 1.0 (1.0%) 1.0 (3.9%)
Mem 4.0 (2.7%) 4.1 (2.8%) – – 2.0 (1.8%) 2.0 (7.9%)

Other 3.1 (2.2%) 7.1 (4.9%) – – 5.2 (4.6%) 5.2 (20.4%)

tidyhtml

File 2187.7 (99.5%) 2185.9 (99.5%) – – 2184.9 (99.6%) 10.2 (58.4%)
Proc 3.0 (0.1%) 1.0 (0.1%) – – 1.0 (0.1%) 1.0 (5.7%)
Mem 4.0 (0.2%) 4.0 (0.2%) – – 2.0 (0.1%) 1.1 (6.5%)

Other 3.1 (0.1%) 7.1 (0.3%) – – 5.1 (0.2%) 5.1 (29.3%)

optipng

File 41.2 (83.3%) 39.2 (82.6%) – – 39.2 (86.3%) 9.3 (58.8%)
Proc 3.0 (6.1%) 1.0 (2.1%) – – 1.0 (2.2%) 1.0 (6.3%)
Mem 2.1 (4.3%) 0.1 (0.2%) – – 0.1 (0.2%) 0.4 (2.5%)

Other 3.1 (6.3%) 7.1 (15.0%) – – 5.1 (11.3%) 5.1 (32.4%)

Table 9: Time needed for profiling-and-patching. Analysis means the dynamic
analysis in the profiling phase. Rebuild refers to patching the target program.

Program # of Testcases Analysis Rebuild Total
AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++

objdump 449 671 6s 5s 10s 10s 16s 15s
readelf 716 1,705 6s 5s 10s 9s 16s 15s
unrtf 357 371 6s 5s 12s 2s 18s 7s
woff2 456 529 6s 8s 11s 6s 17s 14s
qickjs 879 1,255 6s 6s 5s 5s 11s 11s
djpeg 536 688 3s 3s 1s 1s 4s 4s
tiff2ps 593 737 3s 1s 1s 5s 4s 6s
tcpdump 365 545 12s 11s 41s 50s 53s 61s
mutool 569 1,117 14s 13s 22s 16s 26s 29s
xmllint 789 1,582 17s 12s 22s 24s 39s 36s
tidyhtml 1,721 1,828 10s 12s 5s 5s 15s 17s
optipng 328 525 3s 4s 3s 3s 6s 7s
tiff2pdf 588 862 10s 9s 1s 10s 11s 19s
libxslt 1,382 1,300 27s 32s 22s 25s 49s 57s
openssl 208 228 23s 25s 16s 18s 39s 43s
bash 614 1,157 20s 21s 25s 28s 45s 49s
exif 406 499 12s 10s 12s 15s 24s 25s
mjs 806 896 5s 8s 10s 12s 15s 20s
flvmeta 120 173 11s 15s 21s 22s 33s 37s
jq 283 295 15s 17s 18s 22s 33s 39s

14

https://gitlab.com/libtiff/libtiff/-/commit/88d79a45a31c74cba98c697892fed5f7db8b963a
https://gitlab.com/libtiff/libtiff/-/commit/88d79a45a31c74cba98c697892fed5f7db8b963a
https://llvm.org/devmtg/2013-11/slides/Carruth-PGO.pdf
http://lcamtuf.coredump.cx/afl

Table 10: Statistic results of MAGMA evaluation. ✗ indicates the fuzzing tool failed to run that mode. “# of GV” means the number of global variables identified by
our state recovery (the numbers are the same for AFL and AFL++). Fuzzing Speed is measured by the number of test cases processed in 24 hours and normalized
using FS as the baseline. For example, PM’s result is calculated by dividing the execution speed of PM by that of FS. Stability lower than 90% is highlighted in purple.

M
od

e

Project Programs # of GV
AFL AFL++

Stability (%) Fuzzing Speed (baseline:FS) Stability (%) Fuzzing Speed (baseline:FS)
FS PM PM_VOS PM_REC PM_REC_VOS PM PM_VOS PM_REC PM_REC_VOS FS PM PM_VOS PM_REC PM_REC_VOS PM PM_VOS PM_REC PM_REC_VOS

D
ri
ve

r

libxml2 xml_read_memory 36 - 97.1 - 99.8 - 1x - 0.84x - - 97.9 - 99.0 - 1x - 0.98x -
libpng png_read_fuzzer 0 - 99.1 - - - 1x - - - - 99.1 - - - 1x - - -
libtiff tiff_read_rgba 4 - 99.7 - 99.8 - 1x - 0.98x - - 99.7 - 99.7 - 1x - 0.98x -
poppler pdf_fuzzer 29 - 99.7 - 99.7 - 1x - 1.07x - - 99.6 - 99.9 - 1x - 0.90x -

openssl

asn1_driver 132 - 88.4 - 96.5 - 1x - 0.86x - - 97.5 - 96.2 - 1x - 0.71x -
asn1parse_driver 56 - 77.4 - 99.8 - 1x - 1.31x - - 74.7 - 99.1 - 1x - 1.33x -
bignum_driver 50 - 98.9 - 99.4 - 1x - 1.16x - - 98.3 - 99.0 - 1x - 1.38x -
server_driver 142 - 90.9 - 97.2 - 1x - 0.89x - - 91.1 - 96.1 - 1x - 0.74x -
client_driver 139 - 86.2 - 95.0 - 1x - 0.51x - - 86.8 - 95.0 - 1x - 0.62x -
x509_driver 111 - 83.3 - 95.6 - 1x - 0.62x - - 82.7 - 95.4 - 1x - 0.49x -

php php_exif 363 - 94.7 - 99.4 - 1x - 0.51x - - 95.3 - 99.4 - 1x - 0.75x -
sqlite3 sqlite3_fuzz 21 - 97.1 - 97.4 - 1x - 1.03x - - 98.2 - 98.4 - 1x - 0.73x -

St
an

da
lo
ne

A
pp

libxml2 xmllint 51 99.9 ✗ ✗ 99.9 99.9 ✗ ✗ 2.63x 2.69x 99.9 ✗ ✗ 99.9 99.9 ✗ ✗ 4.74x 6.69x
libpng pngtest 12 99.8 98.7 98.7 99.8 99.8 1.33x 2.15x 1.30x 1.70x 99.8 99.8 99.8 99.8 99.8 4.06x 4.77x 3.66x 4.31x
libtiff tiffcp 13 99.9 99.5 99.5 99.8 99.8 3.95x 5.95x 3.44x 5.34x 99.9 98.0 98.0 99.1 99.1 3.61x 4.61x 3.51x 4.11x

poppler pdftoppm 28 99.9 97.3 97.3 99.8 99.8 1.52x 1.78x 1.55x 1.57x 99.9 95.5 95.5 99.8 99.8 1.16x 1.19x 1.55x 1.65x
pdfimages 17 99.9 98.7 98.7 99.9 99.9 1.67x 1.92x 1.86x 2.01x 99.9 97.9 97.9 99.8 99.8 1.30x 1.71x 1.41x 1.67x

openssl

asn1 132 99.9 30.6 30.1 96.3 96.3 1.74x 1.82x 1.54x 1.59x 99.9 33.5 33.4 99.1 99.1 1.63x 1.68x 1.49x 1.57x
asn1parse 56 99.9 55.6 55.8 99.3 99.3 1.94x 3.03x 1.74x 1.82x 99.9 55.9 55.8 99.1 99.1 1.99x 2.08x 2.38x 2.55x
bignum 50 99.9 77.1 76.8 99.2 99.2 1.87x 2.17x 1.65x 2.09x 99.9 74.4 74.4 99.0 99.0 1.74x 3.27x 1.86x 2.00x
server 142 99.9 ✗ ✗ 96.1 96.2 ✗ ✗ 1.42x 1.47x 99.9 ✗ ✗ 96.2 96.2 ✗ ✗ 1.21x 1.22x
client 139 99.9 ✗ ✗ 95.0 95.0 ✗ ✗ 1.77x 1.81x 99.9 ✗ ✗ 95.1 95.1 ✗ ✗ 1.72x 1.73x
x509 111 99.9 38.0 38.1 99.2 99.2 2.87x 3.41x 2.78x 3.08x 99.9 37.2 37.2 95.4 95.4 4.15x 4.62x 2.23x 2.48x

Table 11: Average number of page faults incurred by the target program to
handle one test case (using AFL as the fuzzing tool).

Program FS_FSTMP SS PM PM_VOS PM_REC REC_VOS
objdump 131.1 38.3 0.1 0.1 0.7 1.2
readelf 90.8 16.2 0.2 1.4 0.2 1.4
woff2 185.1 112.4 9.9 10.1 9.9 10.1
qickjs 116.9 32.3 6.9 3.1 6.8 3.2
djpeg 112.4 106.5 5.3 6.4 5.3 6.4
tiff2ps 88.3 23.5 5.7 4.7 5.6 4.7
unrtf 97.3 ✗ ✗ ✗ 12.7 13.7

tcpdump 90.5 31.9 ✗ ✗ 0.7 1.9
mutool 343.7 223.1 ✗ ✗ 4.4 14.8
xmllint 98.6 20.9 ✗ ✗ 2.2 2.2
tidyhtml 89.5 23.4 ✗ ✗ 1.2 1.4
optipng 72.2 12.4 ✗ ✗ 0.6 1.7

1 int main (int argc, char ∗∗argv){
2 int c; ...
3 /∗ loop we insert to enable persistent mode∗/
4 while (__AFL_LOOP(10000)) {
5 take_snapshot();
6 /∗ beginning of main function ∗/ ...
7 xmalloc_set_program_name (program_name);
8 ... /∗ end of main function ∗/
9 restore_snapshot();
10 }
11 return exit_status;
12 }

Figure 10: Enabling persistent mode for objdump. In the snapshot mode or
variable recovery mode, code is inserted to snapshot/restore the memory or
data objects at the beginning (line 5)/end (line 9) of a loop iteration.

1 static type1 defaultEntityLoader = NULL; // a global pointer
2 int main(int argc, char ∗∗argv){
3 xmllintExternalEntityLoader();
4 defaultEntityLoader = xmllintExternalEntityLoader; //set up

defaultEntityLoader'' in first iteration
5 }
6 type2 xmllintExternalEntityLoader() {
7 if (defaultEntityLoader != NULL) { // False in first iteration; True

in follow−up iterations
8 defaultEntityLoader(...); //After first iteration,

xmllintExternalEntityLoader is called recursively
9 }
10 }

Figure 11: Why persistent mode fails to run libxml2. defaultEntityLoader
is initialized as NULL (line 1). In the first iteration, it will be assigned to
function xmllintExternalEntityLoader (line 4), thus becoming non-NULL.
In the second iteration, when xmllintExternalEntityLoader is called (line
3), the condition at line 9 will be true. Thus, defaultEntityLoader (pointing
to the function xmllintExternalEntityLoader itself) will be called at line 8.
This will lead to endless calls to xmllintExternalEntityLoader

Table 12: Number of objects identified by profiling: 5-minute profiling v.s.
24-hour profiling v.s. all global objects. Each cell is formatted as [X(Y, Z)] (X:
of objects; Y: # of memory pages of the objects; Z: total size of the objects.

Program 5 min 24 hour All
AFL AFL++ AFL AFL++ –

objdump 51(6, 6.1K) 51(6, 6.1K) 56(5, 9.4K) 55(7, 9.4K) 219(10, 25.0K)
readelf 64(5, 10.4K) 64(5, 10.4K) 75(6, 10.7K) 86(8, 11.5K) 284(16, 25.4K)
unrtf 39(4, 756) 39(4, 756) 42(4, 202.7K) 42(4, 202.7K) 107(7, 209.8K)
woff2 3(1, 496) 3(1, 496) 3(1, 496) 3(1, 496) 11(1, 1.6K)
qickjs 3(3, 56) 3(3, 56) 3(3, 56) 3(3, 56) 22(3,392)
djpeg 3(1, 20) 3(1, 20) 3(1, 20) 3(1, 20) 9(1, 256)
tiff2ps 21(3, 104) 21(3, 104) 21(3, 104) 21(3, 104) 53(4, 704)
tcpdump 34(16, 836.7K) 35(15, 830.0K) 78(28, 1.1M) 78(28, 1.1M) 593(46, 1.4M)
mutool 19(6, 4.6K) 19(6, 4.6K) 37(13, 5.6K) 37(13, 5.6K) 472(61, 209.5K)
xmllint 27(6, 1.1K) 27(6, 1.1K) 27(6, 1.1K) 27(6, 1.1K) 253(10, 56.2K)
tidyhtml 9(5, 6.4K) 9(5, 6.4K) 9(5, 6.4K) 9(5, 6.4K) 41(12, 81.6K)
optipng 21(2, 592) 16(2, 504) 24(2, 560) 20(2, 532) 80(4, 65.4K)
tiff2pdf 1(1, 4) 1(1, 4) 1(1, 4) 1(1, 4) 16(1, 692)
libxslt 35(3, 1.6K) 35(3, 1.6K) 35(3, 1.6K) 35(3, 1.6K) 161(3, 6.2K)
openssl 110(13, 8.8K) 110(13, 8.8K) 121(13, 8.8K) 121(13, 8.8K) 330(24, 24.3K)
bash 88(10, 3.2K) 88(10, 3.2K) 203(14, 7.9K) 203(14, 7.9K) 1238(19, 78.7K)
exif 3(1, 64) 3(1, 64) 3(1, 64) 3(1, 64) 10(1, 304)
mjs 6(1, 448) 0 6(1, 448) 0 14(1, 692)
flvmeta 3(1, 860) 3(1, 860) 3(1, 860) 3(1, 860) 7(1, 1.1K)
jq 6(1, 40) 6(1, 40) 10(1, 56) 10(1, 56) 58(2, 17.8K)

Table 13: Percentage of time spent in kernel during target execution (on AFL).

Program PM PM_VOS PM_REC PM_REC_VOS

objdump 18.6% 13.9% 26.1% 14.2%
readelf 26.9% 12.9% 24.1% 10.9%
woff2 15.1% 11.9% 12.9% 11.9%
qickjs 4.1% 3.4% 4.8% 4.1%
djpeg 15.4% 5.6% 16.0% 4.6%
tiff2ps 24.9% 12.9% 24.0% 10.9%
unrtf ✗ ✗ 10.8% 8.8%

tcpdump ✗ ✗ 29.1% 23.7%
mutool ✗ ✗ 7.9% 4.9%
xmllint ✗ ✗ 33.5% 26.5%
tidyhtml ✗ ✗ 22.6% 3.5%
optipng ✗ ✗ 15.6% 9.5%

Table 14: Unique crashes and bugs triggered by different fuzzing modes.

Program Type FS SS PM PM_VOS PM_REC PM_REC_VOS
AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++

bash crash 9 421 0 273 0 0 0 0 0 837 7 1,391
bug 1 4 0 3 0 0 0 0 0 5 2 5

mjs crash 134 22 100 102 204 130 107 116 107 – 177 –
bug 1 2 1 2 5 2 2 2 2 – 5 –

optipng crash 0 0 0 4 ✗ ✗ ✗ ✗ 0 1 0 3
bug 0 0 0 1 ✗ ✗ ✗ ✗ 0 1 0 1

tidyhtml crash 41 0 44 4 ✗ ✗ ✗ ✗ 82 1 52 3
bug 1 0 1 1 ✗ ✗ ✗ ✗ 1 1 1 1

15

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Greybox Fuzzing
	2.2 Motivating Study
	2.3 Optimization Opportunities

	3 Profile-driven System Optimizations
	3.1 Approach Overview
	3.2 Profile-driven State Recovery
	3.3 Profile-driven OS Abstraction

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Profile-driven State Recovery
	5.3 Profile-driven OS Abstraction
	5.4 Benefits to Code Coverage
	5.5 Benefits to Bug Finding

	6 Discussion
	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References

