Week 9: Lecture B

Optimization I

Wednesday, March 5, 2025

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUU

Recap: Key Dates

cs.utah.edu/~snagy/courses/cs5963/schedule

Part 2: Fuzzing Enhancements

Monday Meeting

Wednesday Meeting

Mar. 03 Mar. 05
Optimization | Optimization Il
» Readings: » Readings:
Mar. 10 Mar. 12

No Class (Spring Break)

No Class (Spring Break)

Mar. 17 Mar. 19
Hybrid Fuzzing | Hybrid Fuzzing Il
» Readings: » Readings:
Mar. 24 Mar. 26
Directed Fuzzing A In-class Project Workday
» Readings:

Part 3: New Frontiers in Fuzzing

Monday Meeting

Wednesday Meeting

Mar. 31 Apr. 02
Kernel Fuzzing LLM-assisted Fuzzing
» Readings: » Readings:

Apr. 07 Apr. 09

Compiler Fuzzing Hardware Fuzzing
» Readings: » Readings:

.
Mar. 10 & 12 No class (Spring Break)

Fuzzing Configurable Software A Final Presentations (Day 1)
» Readings:

Apr. 21 Apr. 23

A Final Presentations (Day 2)

No Class (Reading Day)

Apr. 16 & 21 Final project presentations

A Final Reports due Tuesday by 11:59pm via Canvas

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Fuzzing (even) Faster

OOOOOOOOOOOOOOOOO

Stefan Nagy

Recap: Coverage-guided Fuzzing

—

Inputs

‘ \ Execute and '

Collect Feedback
(e.g., code coverage)

Program

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Interesting!

(new code) cCrashes

®

(SEGFAULT)

Uninteresting

Eind |

(no new code)

What affects fuzzing speed?

Process execution
= Performed on every input

Runtime instrumentation
= Code coverage tracing

Information post-processing

= Data structure writing/reading
= Other essential computation

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

What affects fuzzing speed?

.- - e e_—_——_— - .

I'= Process execution \

b . %

N = Performed on every input J
. - L R Y — - -~

_— o = =

Runtime instrumentation
Code coverage tracing

Information post-processing

Data structure writing/reading
Other essential computation

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

What is execution?

Double-clicking a shortcut on your desktop

Tapping an app icon on your smartphone

“Hey Siri, play Midnights on Spotify”

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

What really is execution?

Load a program image into memory | application stored on disk |
= Data
= Instructions | - L |

'\ disk i
Initialize its process state | | |
1 execute loaded into memory :
= Stack | T :
+ application becomes process |

= Heap . and it has state

= Registers i |

= Qther data - instructions

Transfer control to it and execute it e stack i
memory

= Clean things up when done

https://www.bogotobogo.com/Linux/linux_process_and_signals.php

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

How does execution impact fuzzing?

Many execution mechanisms to choose from
= Process creation
= Forkserver-based process cloning
= In-memory process looping
= Kernel-based snapshotting

Fundamentally different behaviors
= Time spent within the target program
= Underlying OS-level machinery
= Post-execution cleanup steps
= Support for arbitrary programs

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

10

OOOOOOOOOOOOOOOOO

Fuzzing Execution Mechanisms

Stefan Nagy

1

In the early days...

Process Creation: ...

. . . | @ EXECUTE
1. Load target image into child process P~ \ :
@LOAD Child :
2. Initialize child and begin executing it " Fuzzer INIT
N \ A
3. Onexit: .EXE Body
= Free child’s resources Target \ 4
= Wait for next test case A Return ;
= Return to step 1 © EXIT \ o

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Trade-offs

Easily the most portable mechanism

= Every OS has its primitives for this
= POSIX: ???

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

13

Trade-offs

Easily the most portable mechanism
= Every OS has its primitives for this
= POSIX: fork() +exec()
= Windows: ???

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

14

Trade-offs

Easily the most portable mechanism
= Every OS has its primitives for this
= POSIX: fork() +exec()
= Windows: CreateProcess()

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

15

Trade-offs

Easily the most portable mechanism
= Every OS has its primitives for this
= POSIX: fork() +exec()
= Windows: CreateProcess()

By far fuzzing's slowest execution

= Repeatedly covers program startup code
= E.g., Library initialization
= Lots of underlying OS machinery
= Process ID assignment
= Updating kernel structures
= And more!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

16

Windows: CreateProcess()

L Fork() CreateProcess
= |nitialize process completely from scratch :
= Expensive when done per test case - Supports PE files? 4
= Higher cost from other kernel operations gop);on-wcll'lte? 9;‘9
= Why? No one knows (closed-source) peed (exec/sec) : |
M\ \
Source: “WINNIE: Fuzzing Windows Applications with Harness Synthesis and Fast Cloning”
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

Not all primitives are alike

Stefan Nagy

17

Not all primitives are alike

Windows: CreateProcess() Fork() CreateProcess Linux

= [Initialize process completely from scratch :
= Expensive when done per test case - Supports PE files? v X

= Higher cost from other kernel operations Copy-on-Write? A v
= Why? No one knows (closed-source) Speed (exec/sec) 91.9 4907.5

POSIX: fork () + exec()

= Faster from copy-on-write process cloning
= Child cheaply inherits copy of parent

Source: “WINNIE: Fuzzing Windows Applications with Harness Synthesis and Fast Cloning”

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Not all primitives are alike

Windows: CreateProcess() Fork() CreateProcess Linux

= [Initialize process completely from scratch :
= Expensive when done per test case - Supports PE files? 4 X

= Higher cost from other kernel operations Copy-on-Write? A v
= Why? No one knows (closed-source) Speed (exec/sec) 91.9 4907.5

POSIX: fork () + exec()

= Faster from copy-on-write process cloning
= Child cheaply inherits copy of parent
= Somehow really slow on MacOS
= Why? No one knows (closed-source)

Source: “WINNIE: Fuzzing Windows Applications with Harness Synthesis and Fast Cloning”

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Can we skip target initialization entirely?

Idea: fork at a pre-initialized state
= After library initialization
= After GUI initialization
= After program-specific startup code
= At the program’s main()

2014: AFL's fork-server is born
= By far the most popular execution
mechanism used in fuzzing since

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Fuzzing random programs without execve()

The most common way to fuzz data parsing libraries is to find
a simple binary that exercises the interesting functionality,
and then simply keep executing it over and over again - of
course, with slightly different, randomly mutated inputs in
each run. In such a setup, testing for evident memory
corruption bugs in the library can be as simple as doing
waitpid() on the child process and checking if it ever dies
with SIGSEGV, SIGABRT, or something equivalent.

20

Forkserver-based Process Cloning

General workflow:
1. Load target by calling fork() + exec()

2. Hook a post-initialization target routine
= Eg,init() ormain()

Fuzzer

AN
.EXE

Target

3. From here, call fork() + exec() again
= Child begins executing directly
from our hooked target routine
= Never repeat initialization again

4. On exit, kill child process and repeat

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Trade-offs

Skipping initialization over 100x faster
= Far more lightweight than process creation
= Easy deployable via basic instrumentation

= Both compilers and binary alteration

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

22

Trade-offs

Skipping initialization over 100x faster
= Far more lightweight than process creation
= Easy deployable via basic instrumentation

= Both compilers and binary alteration

Restricted to POSIX systems only
= Windows has no copy-on-write primitives
= Stuck with Linux and MacOS
= Yet MacOS is absurdly slow

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

23

In-memory looping (“persistent” mode):

What if we just never exited the target?

1. Load target by calling fork() + exec()

2. Execute the core function you want to test

E.g., main()

E.g., LLVMFuzzerTestOneInput()

3. Loop back to the function and repeat
One loop iteration per test case

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Never exit the program

Stefan Nagy

@ LOAD
: I 4
/ Fuzzer) "
N e
| EE
Target
N -

Persistent

» INIT

Return

LOOP &
EXECUTE

24

Trade-offs

Over 100x faster than forkserver-based cloning

= Avoids the cleanup cost of process teardown
= Avoids memory duplication cost of forking

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

25

Trade-offs

Over 100x faster than forkserver-based cloning

= Avoids the cleanup cost of process teardown
= Avoids memory duplication cost of forking

No cleanup leads to corrupted process state

= Failure to reset global variables, heap memory, etc.
= Effects: spurious and false positive crashes, leaks

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

26

Trade-offs

Over 100x faster than forkserver-based cloning

= Avoids the cleanup cost of process teardown
= Avoids memory duplication cost of forking

No cleanup leads to corrupted process state

= Failure to reset global variables, heap memory, etc.
= Effects: spurious and false positive crashes, leaks

Requires significant reconnaissance of target
= For binaries, must choose exact addresses to loop on
= Becomes a harnessing problem

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Why don’t we just write better primitives?

Kernel-based Process Snapshotting: Persistent)
0. Rewrite kernel with our faster primitives @ LOAD ® SAVE
1. Load target process into memory ") e -)' ST‘ATE
. / Fuzzer \ 1 eLOOP & I
, g 1 Y EXECUTE ’
2. Invoke our snapshot() to save its state N ===
= Global state .EXE \ 4 f-\
= Register state Target Body <€ o
= Stack and heap state AN ¥ ¥ gf_:_f_;
)) Return :
3. Loop (same as in-memory looping) : O Y,

4. Before preparing for next test case,
recover target to our snapshotted state

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Trade-offs

Among the fastest execution mechanisms

= Comparable speed to in-memory looping
= Without corruption of process state

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

29

Trade-offs

Among the fastest execution mechanisms

= Comparable speed to in-memory looping
= Without corruption of process state

Achievable only by modifying the kernel
= Cannot be ported to closed-source kernels
= Good luck convincing Microsoft and Apple...
= As of now, completely restricted to Linux

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

30

OOOOOOOOOOOOOOOOO

Other Considerations

Stefan Nagy

31

Does execution mechanism speed always matter?

Profile average time spent on target program vs. execution mechanism

Avg. Target Time / input | Avg. Execution Time / input | Prop. spent on Execution
2ms 1—10 ms 33.3—83.3%

300 ms 1—10 ms 0.0—3.2%

= Short-running test cases = execution speed matters more
= Long-running test cases = execution matters less (and coverage tracing matters more)

As usual, this phenomena is target-dependent

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Anti-virus software (and other bloatware)

Fuzzing can be slowed by default-on services and apps

= Turn them off!

Launch program

. Linux-i7x8]23.4 .
| Linu-AMDx8 §36.0 Win-AMDx8*, which is the same system as Win-fz
. Linuxi7xa 1450 - AMD ' 5:
P | | N ::Sb:; r\r/]wtlh most.perform.ance l?ogging .
. Win-AMDxg* [N 458.0 « ' . pletely disabled ('nC'Udlng

. RaspperyP! SN 5010 Windows Defender and search indexing)
b e e exing) R .f

| Win-AMDxS [E—— 757.0 < , v '
: Win-i7x4 [2250.0
0.0 5000 10000 1500.0 20000 2500.0 30000 3500.0

Time [ps] - Less is better

https://www.bitsnbites.eu/benchmarking-os-primitives/

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

The best results on Windows were achieved by

33

Squeezing a few more execs/sec

Use a RAM disk for even faster speeds

= Eliminates fragmentation
= Linux: tempfs or ramfs

Find ways to pass avoid file input/output
= Target must support reading of “streamed” data
= libFuzzer exclusively operates this way

= Must stitch together the requisite API calls

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

