
Stefan Nagy

Week 9: Lecture B
Optimization II

1

Wednesday, March 5, 2025

Stefan Nagy

Recap: Key Dates
￭ Jan. 15 Select one paper to present

￭ Jan. 20 No class (MLK Jr. Day)

￭ Jan. 29 Lab 1 due

￭ Feb. 05 Lab 2 due

￭ Feb. 17 No class (President’s Day)

￭ Feb 19 Lab 3 due (deadline extended)

￭ Feb. 26 5-minute project pitches

￭ Mar. 10 & 12 No class (Spring Break)

￭ Apr. 16 & 21 Final project presentations

2

cs.utah.edu/~snagy/courses/cs5963/schedule

Stefan Nagy

Questions?

3

Stefan Nagy

Fuzzing (even) Faster

4

Stefan Nagy

✓

X

Interesting!

Uninteresting

Program

5

(new code)

(no new code)

Crashes

(SEGFAULT)

Recap: Coverage-guided Fuzzing

Inputs

Execute and
Collect Feedback

(e.g., code coverage)

Stefan Nagy

What affects fuzzing speed?

￭ Process execution
￭ Performed on every input

￭ Runtime instrumentation
￭ Code coverage tracing

￭ Information post-processing
￭ Data structure writing/reading
￭ Other essential computation

6

Stefan Nagy

What affects fuzzing speed?

￭ Process execution
￭ Performed on every input

￭ Runtime instrumentation
￭ Code coverage tracing

￭ Information post-processing
￭ Data structure writing/reading
￭ Other essential computation

7

Stefan Nagy

What is execution?

￭ Double-clicking a shortcut on your desktop

￭ Tapping an app icon on your smartphone

￭ “Hey Siri, play Midnights on Spotify”

8

Stefan Nagy

What really is execution?

￭ Load a program image into memory
￭ Data
￭ Instructions

￭ Initialize its process state
￭ Stack
￭ Heap
￭ Registers
￭ Other data

￭ Transfer control to it and execute it
￭ Clean things up when done

9

https://www.bogotobogo.com/Linux/linux_process_and_signals.php

Stefan Nagy

How does execution impact fuzzing?

￭ Many execution mechanisms to choose from
￭ Process creation
￭ Forkserver-based process cloning
￭ In-memory process looping
￭ Kernel-based snapshotting

￭ Fundamentally different behaviors
￭ Time spent within the target program
￭ Underlying OS-level machinery
￭ Post-execution cleanup steps
￭ Support for arbitrary programs

10

Stefan Nagy

Fuzzing Execution Mechanisms

11

Stefan Nagy

In the early days…

￭ Process Creation:
1. Load target image into child process

2. Initialize child and begin executing it

3. On exit:
￭ Free child’s resources
￭ Wait for next test case
￭ Return to step 1

12

Stefan Nagy

Trade-offs

￭ Easily the most portable mechanism
￭ Every OS has its primitives for this

￭ POSIX: ???

13

Stefan Nagy

Trade-offs

￭ Easily the most portable mechanism
￭ Every OS has its primitives for this

￭ POSIX: fork() + exec()
￭ Windows: ???

14

Stefan Nagy

Trade-offs

￭ Easily the most portable mechanism
￭ Every OS has its primitives for this

￭ POSIX: fork() + exec()
￭ Windows: CreateProcess()

15

Stefan Nagy

Trade-offs

￭ Easily the most portable mechanism
￭ Every OS has its primitives for this

￭ POSIX: fork() + exec()
￭ Windows: CreateProcess()

￭ By far fuzzing’s slowest execution
￭ Repeatedly covers program startup code

￭ E.g., Library initialization
￭ Lots of underlying OS machinery

￭ Process ID assignment
￭ Updating kernel structures
￭ And more!

16

Stefan Nagy

Not all primitives are alike

￭ Windows: CreateProcess()
￭ Initialize process completely from scratch

￭ Expensive when done per test case
￭ Higher cost from other kernel operations

￭ Why? No one knows (closed-source)

17

Source: “WINNIE: Fuzzing Windows Applications with Harness Synthesis and Fast Cloning”

Stefan Nagy

Not all primitives are alike

￭ Windows: CreateProcess()
￭ Initialize process completely from scratch

￭ Expensive when done per test case
￭ Higher cost from other kernel operations

￭ Why? No one knows (closed-source)

￭ POSIX: fork() + exec()
￭ Faster from copy-on-write process cloning

￭ Child cheaply inherits copy of parent

18

Source: “WINNIE: Fuzzing Windows Applications with Harness Synthesis and Fast Cloning”

Stefan Nagy

Not all primitives are alike

￭ Windows: CreateProcess()
￭ Initialize process completely from scratch

￭ Expensive when done per test case
￭ Higher cost from other kernel operations

￭ Why? No one knows (closed-source)

￭ POSIX: fork() + exec()
￭ Faster from copy-on-write process cloning

￭ Child cheaply inherits copy of parent
￭ Somehow really slow on MacOS

￭ Why? No one knows (closed-source)

19

Source: “WINNIE: Fuzzing Windows Applications with Harness Synthesis and Fast Cloning”

Stefan Nagy

Can we skip target initialization entirely?

￭ Idea: fork at a pre-initialized state
￭ After library initialization
￭ After GUI initialization
￭ After program-specific startup code
￭ At the program’s main()

￭ 2014: AFL’s fork-server is born
￭ By far the most popular execution

mechanism used in fuzzing since

20

Stefan Nagy

Forkserver-based Process Cloning

￭ General workflow:
1. Load target by calling fork() + exec()

2. Hook a post-initialization target routine
￭ E.g., init() or main()

3. From here, call fork() + exec() again
￭ Child begins executing directly

from our hooked target routine
￭ Never repeat initialization again

4. On exit, kill child process and repeat

21

Stefan Nagy

Trade-offs

￭ Skipping initialization over 100x faster
￭ Far more lightweight than process creation
￭ Easy deployable via basic instrumentation

￭ Both compilers and binary alteration

22

Stefan Nagy

Trade-offs

￭ Skipping initialization over 100x faster
￭ Far more lightweight than process creation
￭ Easy deployable via basic instrumentation

￭ Both compilers and binary alteration

￭ Restricted to POSIX systems only
￭ Windows has no copy-on-write primitives
￭ Stuck with Linux and MacOS

￭ Yet MacOS is absurdly slow

23

Stefan Nagy

What if we just never exited the target?

￭ In-memory looping (“persistent” mode):
1. Load target by calling fork() + exec()

2. Execute the core function you want to test
￭ E.g., main()
￭ E.g., LLVMFuzzerTestOneInput()

3. Loop back to the function and repeat
￭ One loop iteration per test case
￭ Never exit the program

24

Stefan Nagy

Trade-offs

￭ Over 100x faster than forkserver-based cloning
￭ Avoids the cleanup cost of process teardown
￭ Avoids memory duplication cost of forking

25

Stefan Nagy

Trade-offs

￭ Over 100x faster than forkserver-based cloning
￭ Avoids the cleanup cost of process teardown
￭ Avoids memory duplication cost of forking

￭ No cleanup leads to corrupted process state
￭ Failure to reset global variables, heap memory, etc.
￭ Effects: spurious and false positive crashes, leaks

26

Stefan Nagy

Trade-offs

￭ Over 100x faster than forkserver-based cloning
￭ Avoids the cleanup cost of process teardown
￭ Avoids memory duplication cost of forking

￭ No cleanup leads to corrupted process state
￭ Failure to reset global variables, heap memory, etc.
￭ Effects: spurious and false positive crashes, leaks

￭ Requires significant reconnaissance of target
￭ For binaries, must choose exact addresses to loop on
￭ Becomes a harnessing problem

27

Stefan Nagy

Why don’t we just write better primitives?

￭ Kernel-based Process Snapshotting:
0. Rewrite kernel with our faster primitives

1. Load target process into memory

2. Invoke our snapshot() to save its state
￭ Global state
￭ Register state
￭ Stack and heap state

3. Loop (same as in-memory looping)

4. Before preparing for next test case,
recover target to our snapshotted state

28

Stefan Nagy

Trade-offs

￭ Among the fastest execution mechanisms
￭ Comparable speed to in-memory looping
￭ Without corruption of process state

29

Stefan Nagy

Trade-offs

￭ Among the fastest execution mechanisms
￭ Comparable speed to in-memory looping
￭ Without corruption of process state

￭ Achievable only by modifying the kernel
￭ Cannot be ported to closed-source kernels

￭ Good luck convincing Microsoft and Apple…
￭ As of now, completely restricted to Linux

30

Stefan Nagy

Other Considerations

31

Stefan Nagy

Does execution mechanism speed always matter?

￭ Profile average time spent on target program vs. execution mechanism

￭ Short-running test cases = execution speed matters more
￭ Long-running test cases = execution matters less (and coverage tracing matters more)

￭ As usual, this phenomena is target-dependent

32

Avg. Target Time / input Avg. Execution Time / input Prop. spent on Execution

2 ms 1—10 ms 33.3—83.3%

300 ms 1—10 ms 0.0—3.2%

Stefan Nagy

Anti-virus software (and other bloatware)

￭ Fuzzing can be slowed by default-on services and apps
￭ Turn them off!

33

https://www.bitsnbites.eu/benchmarking-os-primitives/

Stefan Nagy

Squeezing a few more execs/sec

￭ Use a RAM disk for even faster speeds
￭ Eliminates fragmentation
￭ Linux: tempfs or ramfs

￭ Find ways to pass avoid file input/output
￭ Target must support reading of “streamed” data
￭ libFuzzer exclusively operates this way

￭ Must stitch together the requisite API calls

34

Stefan Nagy

Questions?

35

