Week 9; Lecture A

Optimization |

Monday, March 11, 2024
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Lab 3 Recap: Tackling Harnessing Roadblocks

No increase in coverage... % 10) Notes on linking
= AFls “new edges on” counter stays stagnant

Are yOU sure th at yOU instru mented the library? The .feature is supported only .On Linux. Supporting BSD ma.y amount to

|f not, yOU WI |_|_ on ly get cove rage Of the harness! porting the changes made to linux-user/elfload.c and applying them to bsd-

Trouble compiling / linking? Can just use QEMU!

user/elfload.c, but | have not looked into this yet.

The instrumentation follows only the .text section of the first ELF binary

encountered in the linking process. It does not trace shared libraries. In
practice, this means two things:

« Any libraries you want to analyze must be linked statically into the
executed ELF file (this will usually be the case for closed-source apps).

« Standard C libraries and other stuff that is wasteful to instrument
should be linked dynamically - otherwise, AFL++ will have no way to
avoid peeking into them.

Setting AFL_INST_LIBS=1 can be used to circumvent the .text detection
logic and instrument every basic block encountered.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy



Lab 3 Recap: Tackling Harnessing Roadblocks

New coverage, but zero crashes...
= Isyour harness calling interesting functionality?
= If so, can you verify that it is calling it correctly?
= Are you fuzzing for a long enough time?
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New coverage, but zero crashes...

= Isyour harness calling interesting functionality?

= If so, can you verify that it is calling it correctly?

= Are you fuzzing for a long enough time?

=  You can try older APl versions with known bugs!
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Lab 3 Recap: Tackling Harnessing Roadblocks

Libarchive downloads)
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Lab 3 Recap: Tackling Harnessing Roadblocks

Lots crashes in very little time...
= Are they reproducible with any available oracles?
= Re-run input with bsdtar application and check!
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Lab 3 Recap: Tackling Harnessing Roadblocks

Trial-and-error
harness refinement! s

Lots crashes in very little time...
= Are they reproducible with any available oracles?
= Re-run input with bsdtar application and check!
= Not a silver bullet—may cover different functions!
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Recap: Project Schedule

Mar. 27th: in-class project workday
@ Y
Apr. 17th & 22nd: final presentations g

= 15-20 minute slide deck and discussion
= What you did, and why, and what results

4
THATISTANLEXCELLE N
QUESTIONIKENT
FIRST-OFTALLY:
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Questions?
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Fuzzing Faster
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Recap: Coverage-guided Fuzzing

E Interesting!
/ ’ (new code) cCrashes

®

Uninteresting (SEGFAULT)

‘ \ Execute and ' _% #W
Collect Feedback

Program (nO new COde

Inputs

(e.g., code coverage)
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Recap: Coverage-guided Fuzzing

———————————————————————————————————

total execs : 3202

exec speed : 10.7/sec (slow!)
. vy

e o m— m— —
——
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What affects fuzzing speed?

Process execution
= Performed on every input

Runtime instrumentation
= Code coverage tracing

Information post-processing

= Data structure writing/reading
= Other essential computation
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Why is speed so important?

Need to find the bugs before attackers do

= Time is money; bug-finders limited by time/resource budgets
= Race to find and fix before monthly “Patch Tuesday”

People’s privacy (and lives) at stake
= Nation-state attackers have unlimited budgets
= They're in it to win it just as much
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Complexity adds Overhead

Fancy/slow is often less effective than crude/fast

= E.g, taint tracking-based fuzzing vs. good ol’ AFL
= Academically interesting is not always practical
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Applications Version | AFL | CollAFL-br | Honggfuzz | VUzzer
libbson 1.8.0 1 1 1 0
libsndfile 1.0.28 1 2 2 1
libconfuse 322 1 2 0 0
libwebm 1.0.0.27 1 1 0 0
libsolv 24 0 0 3 2
libcaca 0.99betal9 2 4 1 0
liblas 24 1 2 0 0
libslax 20180901 3 5 0 0
libsixl v1.8.2 2 2 2 2
libxsmm release-1.10 1 1 2
Total - 21 34 18 6

Table 1: Number of vulnerabilities (accumulated in 5 runs)

Source: GREYONE: Data Flow Sensitive Fuzzing

Stefan Nagy
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Pre-execution Optimization
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Test Case Minimization

Test cases get larger as fuzzing continues

= More program execution = more overhead
= Need to cut-out unnecessary execution

Delta debugging: change, then check

= [teratively remove input bytes

= Check if code coverage changes
= |f coverage changes, undo
= Like one big jenga game
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Corpus Minimization

Test case corpus grows as fuzzing continues
= Lots of test cases reach new edge, hit count coverage o @S0
= Many test cases have overlapping code coverage S 1 gz
= Fuzzer will struggle to pick the “best” one ° ° o
Corpus minimization: condense your corpus o 5|0 | | ©

= |e., smallest set that covers all edges seen so far
= AFL: also minimize file size and execution time

Source: https://securityboulevard.com/2021/10/generating-a-tiny-corpus-with-greedy-set-cover-minimization/
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Trade-offs

Complicated for highly-structured inputs
= E.g., JPEG images versus ELF executables
= Byte-level changes won’t work on the latter
= Grammar-level mutations require more machinery

Complicated by code coverage granularity
= E.g., edges versus hit counts
= Finer-grained info is harder to condense
= Still an unsolved research problem
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Post-execution Optimization

Stefan Nagy
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Storing Information

Must store information in data structures
= E.g., bitmaps for code coverage traces

= E.g., ASTs for dynamically-learned grammars

global
bitmap
||

Data structure design affects fuzzing speed
= Memory footprint
= Cost of reads/writes
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Trade-offs

Best case: small enough to fit in L2 cache
= But, smaller size sacrifices information storage

100 3
No. of keys W Execution M Map Classify @ Map Compare [MapReset B MapHash ®Others
90 1 —r— 5k
80 4 —4— 10k 25
—— 20k

;\3 701 —— 50k 2
o 60 —e— 100k _
L w
o —— 200k 3
o <]
il — 500k £1s
2 40 —*— 1M £
] 1
© 30

201 05

10

0
64k 128k 256k 512k 1M 2M aM 8M 16M 32M 64k | 2M | 8M | 64k | 2M | 8M | 64k | 2M | 8M | 64k | 2M | 8M | 64k | 2M | 8M | 64k | 2M | 8M
Bitmap Size libpng sqlite3 gvn bloaty openssl| php
Source: BigMap: Future-proofing Fuzzers with Efficient Large Maps
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Intra-execution Optimization

Stefan Nagy
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Recap: AFL's Edge Coverage
Edge coverage via hashed basic block tuples

cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location © prev_location]++;
prev_location = cur_location >> 1;

N
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Recap: AFL's Edge Coverage

Edge coverage via hashed basic block tuples
= Each basic block assigned a random ID at compile-time

cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location © prev_location]++;
prev_location = cur_location >> 1;

N
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Recap: AFL's Edge Coverage
Edge coverage via hashed basic block tuples

» cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location @ prev_location]++;
prev_location = cur_location >> 1;

g ——————

= Edge hash: current basic block ID is XOR'd to previous basic block’s
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Recap: AFL's Edge Coverage
Edge coverage via hashed basic block tuples

cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location © prev_location]++;
prev_location = cur_location >> 1;

g ——————

= Edge hash: current basic block ID is XOR'd to previous basic block’s
= Edge-specific hit counter incremented by one for each exercising
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Recap: AFL's Edge Coverage
Edge coverage via hashed basic block tuples

cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location © prev_location]++;
prev_location = cur_location >> 1;

g ——————

=  Right shift current block to preserve edge directionality (because XOR is commutative)
= Enables A-»B to be seen as distinct from B=>A; also AA from B=B
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Instrumenters: How Instrumentation is Added

Compiler

Binary (dynamic)
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Instrumenters: How Instrumentation is Added

Open-source: compiler instrumentation
= Bake-in instrumentation code at compile-time
= Efficient and correct

Closed-source: dynamic binary translation
= Instrument program as it is executing
= Generally correct but inefficient

Closed-source: static binary rewriting

= Instrument program before it executes
= Generally incorrect but efficient
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Instrumenters: How Instrumentation is Added

Open-source: compiler instrumentation

Bake-in instrumentation code at compile-time
and

Closed-source: dynamic binary translation

Instrument program as it is executing
Generally but inefficient

Closed-source: static binary rewriting

Instrument program before it executes
Generally incorrect but
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Key pillars of fuzzing
instrumentation speed:

p

.

Use faster instrumentation

~

J

p

Use less instrumentation

~
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Faster Instrumentation

Stefan Nagy
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Binary Instrumentation

Dynamic binary translation

= |dea: translate basic blocks to host ISA Q E M U

1
Running :
Program \

=)

Execution
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Binary Instrumentation

Dynamic binary translation

= |dea: translate basic blocks to host ISA Q E M U

Translation
(e.g., x86>ARM)

1
Running :
Program \

=)
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Binary Instrumentation

Dynamic binary translation

= |dea: translate basic blocks to host ISA d E M U

Running
Program
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. Instrument
Translation (e.g., code cov)

(e.g, x86>ARM) then execute

Stefan Nagy

34



Binary Instrumentation

Dynamic binary translation
= |dea: translate basic blocks to host ISA

Running '
Program \
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Translation
(e.g., x86>ARM)
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Binary Instrumentation

Dynamic binary translation
= |Idea: translate basic blocks to host ISA

= Primary expense comes from translation
= Performed on every piece of code
= Re-translate already seen code
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Binary Instrumentation

Dynamic binary translation
= |Idea: translate basic blocks to host ISA

= Primary expense comes from translation
= Performed on every piece of code
= Re-translate already seen code

=  Solution: make already-seen code cached
= Avoid re-translating as much as possible

= Problem: still really slow even with caching!
= Upwards of 600% slower than compilers!
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Faster Binary Instrumentation

Our solution (ZAFL): design static rewriters to match compilers
= Achieves compiler-level speeds for closed-source targets

Original
Binary

L

—

Output
Binary

Static Rewriting Component'""‘-a__.'

Binary Rewriter

Build Binary
Representation

ZAX Transform & Inst. Phases

Orlgmal IH )

IR Data Struct

<

Reconstitute
Output Binary

< Modified IR

P1: Control-Flow Opts. P2: Control-Flow Analysis

ﬁ‘")ﬁ

+ ) e

Specify Optimizations O
Optimized Control-flow Graph

Specify Analyses O
Extract Meta-characteristics

v
P3: Inst. Point Selection

Meta-characteristic Data O
Location Selection
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ZAFL's Design Decisions

Dynamic Binary Translation Static Binary Rewriting

4

\
. | Guest Code !
! L] . Decode - Code
| ( Decode & Lift ) ! & Lift Instrument & Optimize IR Gen
l Y { .
h rb
' main,” (instrument ) | wov rbp, rsp
| . . di, 0x100
 loop . RS (" Optimize R ) | -> o puts ->
: ,’/ Y ! mov eax, O
: > ( Code Gen. ) : pop rbp QQ
i | Code Cache < | : ret
! )

Perform all tasks prior to runtime
Analogous to compiler (e.g., LLVM IR)

Analyze / instrument during runtime
Repeatedly pay translation cost
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ZAFL's Design Decisions

Trampolined Invocation Inlined Invocation

Original , Original Instrumented
Instrumentation
push rbp push rbp push rbp
mov rbp, rsp - -* payload: mov rbp, rsp mov rbp, rsp
mov edi, 0x100 ~ - mov ecx, _PI:‘eV mov edi) 0x100 m0\l/1ed1;: 0x100
call puts Trace TR G call puts rcnzv ez;l Se
mov eax, © el di mov eax, © mov ediJ 7
mov edi, 7 Return mo¥ —prev, edi pop rbp mov ecx, _prev
call payload ”| '€ ret xor ecx, edi
g Trace

pop rbp - shr edi
ret - - mov _prev, edi

‘1 pop rbp

ret

Weave new instructions with original
Preferred mechanism of compilers

Transfer to / from “payload” function
Repeatedly pay flow redirection cost
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ZAFL's Design Decisions

ret

Track liveness to prioritize dead regs
Critical to compiler code optimization

Transfer to / from “payload” function
Repeatedly pay flow redirection cost

° 1 o
Liveness Unaware | Liveness Aware
o Instrumented : L
Original p— | Original Instrumented
mov rbp, rsp
push rbp mov edi, @x100 ! push rbp rpnz\s,hrgbp rs
mov rbp, rsp call puts 1 mov rbp, rsp P, rsp
mov edi, ©x100 mov eax, © 1 mov edi, ©x100 fél:\{ledlj%SOXl@O
call puts * za:: :g)l( } Save Regs 1 call puts i erJ 0
mov eax, © mov edi, 7 ! mov eax, @ mov edi, 7
pop rbp mov ecx, _prev | pop rbp mov ecx, _prev
B} di i
i . o T
mov _prev, edi I mov _prev, edi
pop ecx = ’
bop edi } Restore Regs I 50 o
pop rbp I ret
|
I
|
|
|
I
|
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ZAFL's Performance

Our solution (ZAFL): design static rewriters to match compilers

= Achieves compiler-level speeds for closed-source targets
Finds vulnerabilities faster than other binary tracers

«p— AFL-Dyninst =@= AFL-QEMU

ZAFL

Vulnerability Type Executable Dyninst QEMU ZAFL
Heap Overflow nconvert Can'tfind 18.3 hrs 12.7 hrs
Heap Overflow unrar Can'tfind 123 hrs  9.04 hrs
Use-After-Free pngout 126 hrs  6.26 hrs  1.93 hrs
Use-After-Free pngout 935 hrs  4.67hrs 144 hrs
Heap Overflow IDA Pro 23.7 hrs  Can'tfind 2.30 hrs

ZAFL's Mean Relative Decrease  -660% -113%
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o
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4 0.8
Prop. Test Cases / 24-hours
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Hardware-assisted Tracing

Collect coverage via fast CPU mechanisms

= E.g, Intel Processor Trace, ARM Coresight
= An emerging feature used in binary fuzzing

Trade-offs:
= Attains speeds similar to compiler instrumentation
= Only usable (and effective) on specific hardware
= ARM Coresight is way slower than Intel PT
= Cannot instrument programs to do other things
= E.g., hooking and logging CMP instructions
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Instrumentation Culling

Save overhead by instrumenting less of the program
= Crude approach: instrument code at random
= Smart approach: instrument leaf nodes of dominator tree
= A dominates B iff every path to B first intersects A
=  Cuts down about 30-50% of basic blocks

______________________________________________________________

() )

(a) CFG (b) dominator tree of (a)
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Instrumentation Optimization

Downgrade from edge to block-based instrumentation

= Save a few instructions (i.e., from computing edge hashes)
= Saved for basic blocks with single predecessors

f cur_location = <COMPILE_TIME_RANDOM>;
' Shared_mem [cur_location ® prev_location]++;
. prev_location = cur_location >> 1;

\

____________________________________________________________

Shared_mem [PreDeterminedIID]++;

/ST T T T T TN
~—
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Why trace every single test case?

Equivalent to checking each straw to find one needle
= Cost adds up from instrumentation’s instruction footprint
= 3-5additional instructions per basic block
= More instructions from post-processing coverage
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Why trace every single test case?

Less than 1% of all inputs reach new code coverage

= The other 99.9% are discarded right after tracing
= Wasted resources!

Y ‘ — bsdtar
é - cert-basic
;, 0.8 — N GJSONn
g 0.6 — dipeg
S — pdftohtml
% 0.4 — readelf Less than
o sfconvert one per
§ 0.2 tcpdump 10,000
o
g 0900 10! 102 103 10°
Total Inputs Processed
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Coverage-guided Tracing

Idea: restrict tracing to only when new coverage is guaranteed
= Guaranteed how? By using interrupts!
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Coverage-guided Tracing

Idea: restrict tracing to only when new coverage is guaranteed
= Guaranteed how? By using interrupts!

Hit interrupt:

perform full trace &
remove all interrupts

Basic block

interrupt Interrupts

cleared

s
o
s 18 )e) o @)

Stefan Nagy
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Coverage-guided Tracing

Idea: restrict tracing to only when new coverage is guaranteed
= Guaranteed how? By using interrupts!

Hit interrupt: I
perform full trace &
remove all interrupts |

N

Basic block <

interrupt & J \ Interrupts

cleared

. 1
b S
D )

o

/[ - /£ ’
BESES s | @

No interrupt hit =
no new coverage

Stefan Nagy
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Coverage-guided Tracing

Implementation: UnTracer EEN AFLQEMU mEE AFL-Dyninst W UnTracer
= Averages just 0.3% overhead

P -
N Wb O

= Coverage-guided fuzzing at the
speed of black-box fuzzing

-
o -

Relative Mean Execution Overhead
©

8
= Caveats? 7

6

5

4

3

2

: IERVERCER YRR R ¥ v

, “HETNEETTE NN SR
< O o S N N X Q

oﬁb@ @"Q?\ c.}?o &Qz 559&& &,bbz r & QQ&\}*‘
¢ Benchmark < @ b
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Coverage-guided Tracing

Implementation: UnTracer EEN AFLQEMU mEE AFL-Dyninst W UnTracer
= Averages just 0.3% overhead

P -
N Wb O

= Coverage-guided fuzzing at the
speed of black-box fuzzing

-
o -

Relative Mean Execution Overhead
©

8
= Caveats? 7
o 6
= Only basic block coverage 5
= No edges or hit counts! 4

3 i

: INCERVERVER YRR VR. Y VR i

, “HETNEETTE NN SR

& - Q N\ &
& épro‘f s (@@ @o@ ° oQoo“‘Q

¢ Benchmark
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Questions?
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