
Stefan Nagy

Week 9: Lecture A
Optimization I

1

Monday, March 11, 2024

Stefan Nagy

￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
￭ Trouble compiling / linking? Can just use QEMU!

2

Lab 3 Recap: Tackling Harnessing Roadblocks

Stefan Nagy

Lab 3 Recap: Tackling Harnessing Roadblocks

￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
￭ Trouble compiling / linking? Can just use QEMU!

￭ New coverage, but zero crashes…
￭ Is your harness calling interesting functionality?
￭ If so, can you verify that it is calling it correctly?
￭ Are you fuzzing for a long enough time?

3

Stefan Nagy

Lab 3 Recap: Tackling Harnessing Roadblocks

￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
￭ Trouble compiling / linking? Can just use QEMU!

￭ New coverage, but zero crashes…
￭ Is your harness calling interesting functionality?
￭ If so, can you verify that it is calling it correctly?
￭ Are you fuzzing for a long enough time?
￭ You can try older API versions with known bugs!

4

Stefan Nagy

￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
￭ Trouble compiling / linking? Can just use QEMU!

￭ New coverage, but zero crashes…
￭ Is your harness calling interesting functionality?
￭ If so, can you verify that it is calling it correctly?
￭ Are you fuzzing for a long enough time?
￭ You can try older API versions with known bugs!

￭ Lots crashes in very little time…
￭ Are they reproducible with any available oracles?
￭ Re-run input with bsdtar application and check!

5

Lab 3 Recap: Tackling Harnessing Roadblocks

Stefan Nagy

￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
￭ Trouble compiling / linking? Can just use QEMU!

￭ New coverage, but zero crashes…
￭ Is your harness calling interesting functionality?
￭ If so, can you verify that it is calling it correctly?
￭ Are you fuzzing for a long enough time?
￭ You can try older API versions with known bugs!

￭ Lots crashes in very little time…
￭ Are they reproducible with any available oracles?
￭ Re-run input with bsdtar application and check!
￭ Not a silver bullet—may cover different functions!

6

Trial-and-error
harness refinement!

Lab 3 Recap: Tackling Harnessing Roadblocks

Stefan Nagy

Recap: Project Schedule

￭ Mar. 27th: in-class project workday

￭ Apr. 17th & 22nd: final presentations
￭ 15–20 minute slide deck and discussion
￭ What you did, and why, and what results

7

Stefan Nagy

Questions?

8

Stefan Nagy

Fuzzing Faster

9

Stefan Nagy

✓

X

Interesting!

Uninteresting

Program

10

(new code)

(no new code)

Crashes

(SEGFAULT)

Recap: Coverage-guided Fuzzing

Inputs

Execute and
Collect Feedback

(e.g., code coverage)

Stefan Nagy

✓

X

Interesting!

Uninteresting

Program

11

(new code)

(no new code)

Crashes

(SEGFAULT)

Recap: Coverage-guided Fuzzing

Inputs

Execute and
Collect Feedback

(e.g., code coverage)

total execs : 3202
exec speed : 10.7/sec (slow!)

Stefan Nagy

What affects fuzzing speed?

￭ Process execution
￭ Performed on every input

￭ Runtime instrumentation
￭ Code coverage tracing

￭ Information post-processing
￭ Data structure writing/reading
￭ Other essential computation

12

Stefan Nagy

Why is speed so important?

￭ Need to find the bugs before attackers do
￭ Time is money; bug-finders limited by time/resource budgets
￭ Race to find and fix before monthly “Patch Tuesday”

￭ People’s privacy (and lives) at stake
￭ Nation-state attackers have unlimited budgets
￭ They’re in it to win it just as much

13

Stefan Nagy

Complexity adds Overhead

￭ Fancy/slow is often less effective than crude/fast
￭ E.g., taint tracking-based fuzzing vs. good ol’ AFL
￭ Academically interesting is not always practical

14

Source: GREYONE: Data Flow Sensitive Fuzzing

Stefan Nagy

Pre-execution Optimization

15

Stefan Nagy

Test Case Minimization

￭ Test cases get larger as fuzzing continues
￭ More program execution = more overhead
￭ Need to cut-out unnecessary execution

￭ Delta debugging: change, then check
￭ Iteratively remove input bytes
￭ Check if code coverage changes

￭ If coverage changes, undo
￭ Like one big jenga game

16

Stefan Nagy

Corpus Minimization

￭ Test case corpus grows as fuzzing continues
￭ Lots of test cases reach new edge, hit count coverage
￭ Many test cases have overlapping code coverage
￭ Fuzzer will struggle to pick the “best” one

￭ Corpus minimization: condense your corpus
￭ I.e., smallest set that covers all edges seen so far
￭ AFL: also minimize file size and execution time

17

Source: https://securityboulevard.com/2021/10/generating-a-tiny-corpus-with-greedy-set-cover-minimization/

Stefan Nagy

Trade-offs

￭ Complicated for highly-structured inputs
￭ E.g., JPEG images versus ELF executables
￭ Byte-level changes won’t work on the latter
￭ Grammar-level mutations require more machinery

￭ Complicated by code coverage granularity
￭ E.g., edges versus hit counts
￭ Finer-grained info is harder to condense
￭ Still an unsolved research problem

18

Stefan Nagy

Post-execution Optimization

19

Stefan Nagy

Storing Information

￭ Must store information in data structures
￭ E.g., bitmaps for code coverage traces
￭ E.g., ASTs for dynamically-learned grammars

￭ Data structure design affects fuzzing speed
￭ Memory footprint
￭ Cost of reads/writes

20

trace
bitmap

global
bitmap

New coverage?

✓

Stefan Nagy

Trade-offs

￭ Best case: small enough to fit in L2 cache
￭ But, smaller size sacrifices information storage

21

Source: BigMap: Future-proofing Fuzzers with Efficient Large Maps

Stefan Nagy

Intra-execution Optimization

22

Stefan Nagy

Recap: AFL’s Edge Coverage

￭ Edge coverage via hashed basic block tuples

23

cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location ⊕ prev_location]++;
prev_location = cur_location >> 1;

Stefan Nagy

Recap: AFL’s Edge Coverage

￭ Edge coverage via hashed basic block tuples
￭ Each basic block assigned a random ID at compile-time

24

cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location ⊕ prev_location]++;
prev_location = cur_location >> 1;

Stefan Nagy

Recap: AFL’s Edge Coverage

￭ Edge coverage via hashed basic block tuples
￭ Each basic block assigned a random ID at compile-time

￭ Edge hash: current basic block ID is XOR’d to previous basic block’s

25

cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location ⊕ prev_location]++;
prev_location = cur_location >> 1;

Stefan Nagy

Recap: AFL’s Edge Coverage

￭ Edge coverage via hashed basic block tuples
￭ Each basic block assigned a random ID at compile-time

￭ Edge hash: current basic block ID is XOR’d to previous basic block’s
￭ Edge-specific hit counter incremented by one for each exercising

26

cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location ⊕ prev_location]++;
prev_location = cur_location >> 1;

Stefan Nagy

Recap: AFL’s Edge Coverage

￭ Edge coverage via hashed basic block tuples
￭ Each basic block assigned a random ID at compile-time

￭ Edge hash: current basic block ID is XOR’d to previous basic block’s
￭ Edge-specific hit counter incremented by one for each exercising

￭ Right shift current block to preserve edge directionality (because XOR is commutative)
￭ Enables A→B to be seen as distinct from B→A; also A→A from B→B

27

cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location ⊕ prev_location]++;
prev_location = cur_location >> 1;

Stefan Nagy

Instrumenters: How Instrumentation is Added

28

Compiler

Binary (static)

Binary (dynamic)

Stefan Nagy

￭ Open-source: compiler instrumentation
￭ Bake-in instrumentation code at compile-time
￭ Efficient and correct

￭ Closed-source: dynamic binary translation
￭ Instrument program as it is executing
￭ Generally correct but inefficient

￭ Closed-source: static binary rewriting
￭ Instrument program before it executes
￭ Generally incorrect but efficient

29

Instrumenters: How Instrumentation is Added

Stefan Nagy

￭ Open-source: compiler instrumentation
￭ Bake-in instrumentation code at compile-time
￭ Efficient and correct

￭ Closed-source: dynamic binary translation
￭ Instrument program as it is executing
￭ Generally correct but inefficient

￭ Closed-source: static binary rewriting
￭ Instrument program before it executes
￭ Generally incorrect but efficient

30

Use less instrumentation

Use faster instrumentation

Key pillars of fuzzing
instrumentation speed:

Instrumenters: How Instrumentation is Added

Stefan Nagy

Faster Instrumentation

31

Stefan Nagy

Binary Instrumentation

32

Running
Program

B1

B2

B3

B4

Execution

￭ Dynamic binary translation
￭ Idea: translate basic blocks to host ISA

Stefan Nagy 33

Running
Program

B1

B2

B3

B4

Execution

Translation
(e.g., x86→ARM)

B1

￭ Dynamic binary translation
￭ Idea: translate basic blocks to host ISA

Binary Instrumentation

Stefan Nagy

Binary Instrumentation

￭ Dynamic binary translation
￭ Idea: translate basic blocks to host ISA

34

Running
Program

B1

B2

B3

B4

Execution

Translation
(e.g., x86→ARM)

B1

Instrument
(e.g., code cov)

B1 I+

then execute

Stefan Nagy

Binary Instrumentation

35

Running
Program

B1

B2

B3

B4

Execution

Translation
(e.g., x86→ARM)

B1

B2

B3

B4

Instrument
(e.g., code cov)

B1

B2

B3

B4

I

I

I

I

+

+

+

+

then execute

￭ Dynamic binary translation
￭ Idea: translate basic blocks to host ISA

Stefan Nagy

Binary Instrumentation

￭ Dynamic binary translation
￭ Idea: translate basic blocks to host ISA

￭ Primary expense comes from translation
￭ Performed on every piece of code
￭ Re-translate already seen code

36

Stefan Nagy

Binary Instrumentation

￭ Dynamic binary translation
￭ Idea: translate basic blocks to host ISA

￭ Primary expense comes from translation
￭ Performed on every piece of code
￭ Re-translate already seen code

￭ Solution: make already-seen code cached
￭ Avoid re-translating as much as possible

￭ Problem: still really slow even with caching!
￭ Upwards of 600% slower than compilers!

37

Stefan Nagy

Faster Binary Instrumentation

￭ Our solution (ZAFL): design static rewriters to match compilers
￭ Achieves compiler-level speeds for closed-source targets

38

Stefan Nagy 39

Dynamic Binary Translation Static Binary Rewriting

￭ Perform all tasks prior to runtime
￭ Analogous to compiler (e.g., LLVM IR)

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
pop rbp
ret

Decode
& Lift

Instrument & Optimize IR Code
Gen.

￭ Analyze / instrument during runtime
￭ Repeatedly pay translation cost

ZAFL’s Design Decisions

Stefan Nagy 40

Trampolined Invocation

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
mov edi, 7
call payload
pop rbp
ret

payload:
 mov ecx, _prev
 xor ecx, edi
 shr edi
 mov _prev, edi
 ret

Trace

Return

Original
Instrumentation

Inlined Invocation

￭ Weave new instructions with original
￭ Preferred mechanism of compilers

￭ Transfer to / from “payload” function
￭ Repeatedly pay flow redirection cost

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
pop rbp
ret

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
mov edi, 7
mov ecx, _prev
xor ecx, edi
shr edi
mov _prev, edi
pop rbp
ret

Trace

Original Instrumented

ZAFL’s Design Decisions

Stefan Nagy 41

Liveness Unaware Liveness Aware

￭ Track liveness to prioritize dead regs
￭ Critical to compiler code optimization

￭ Transfer to / from “payload” function
￭ Repeatedly pay flow redirection cost

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
pop rbp
ret

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
mov edi, 7
mov ecx, _prev
xor ecx, edi
shr edi
mov _prev, edi
pop rbp
ret

Trace

Original Instrumented
push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
push edi
push ecx
mov edi, 7
mov ecx, _prev
xor ecx, edi
shr edi
mov _prev, edi
pop ecx
pop edi
pop rbp
ret

Restore Regs

Save Regs

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
pop rbp
ret

Original
Instrumented

ZAFL’s Design Decisions

Stefan Nagy

￭ Our solution (ZAFL): design static rewriters to match compilers
￭ Achieves compiler-level speeds for closed-source targets

￭ Finds vulnerabilities faster than other binary tracers

42

unrar
Vulnerability Type Executable Dyninst QEMU ZAFL

Heap Overflow nconvert Can’t find 18.3 hrs 12.7 hrs
Heap Overflow unrar Can’t find 12.3 hrs 9.04 hrs
Use-After-Free pngout 12.6 hrs 6.26 hrs 1.93 hrs
Use-After-Free pngout 9.35 hrs 4.67 hrs 1.44 hrs
Heap Overflow IDA Pro 23.7 hrs Can’t find 2.30 hrs

ZAFL’s Mean Relative Decrease -660% -113%

ZAFL’s Performance

Stefan Nagy

Hardware-assisted Tracing

￭ Collect coverage via fast CPU mechanisms
￭ E.g., Intel Processor Trace, ARM Coresight
￭ An emerging feature used in binary fuzzing

￭ Trade-offs:
￭ Attains speeds similar to compiler instrumentation
￭ Only usable (and effective) on specific hardware

￭ ARM Coresight is way slower than Intel PT
￭ Cannot instrument programs to do other things

￭ E.g., hooking and logging CMP instructions

43

Stefan Nagy

Less Instrumentation

44

Stefan Nagy

Instrumentation Culling

￭ Save overhead by instrumenting less of the program
￭ Crude approach: instrument code at random
￭ Smart approach: instrument leaf nodes of dominator tree

￭ A dominates B iff every path to B first intersects A
￭ Cuts down about 30–50% of basic blocks

45

Stefan Nagy

Instrumentation Optimization

￭ Downgrade from edge to block-based instrumentation
￭ Save a few instructions (i.e., from computing edge hashes)
￭ Saved for basic blocks with single predecessors

46

cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location ⊕ prev_location]++;
prev_location = cur_location >> 1;

Shared_mem [PreDeterminedIID]++;

Stefan Nagy

Why trace every single test case?

￭ Equivalent to checking each straw to find one needle
￭ Cost adds up from instrumentation’s instruction footprint

￭ 3–5 additional instructions per basic block
￭ More instructions from post-processing coverage

47

Stefan Nagy

Why trace every single test case?

￭ Less than 1% of all inputs reach new code coverage
￭ The other 99.9% are discarded right after tracing
￭ Wasted resources!

48

R
at

e
o

f
C

o
ve

ra
ge

-I
n

cr
ea

si
n

g
In

p
u

ts

Total Inputs Processed

Less than
one per
10,000

Stefan Nagy

Coverage-guided Tracing

￭ Idea: restrict tracing to only when new coverage is guaranteed
￭ Guaranteed how? By using interrupts!

49

C

A

CB

D

GFE

Stefan Nagy

Coverage-guided Tracing

￭ Idea: restrict tracing to only when new coverage is guaranteed
￭ Guaranteed how? By using interrupts!

50

Interrupts
cleared

Basic block
interruptC

A

CB

D

GFE

A

CB

D

GFE

Hit interrupt:
perform full trace &

remove all interrupts

Stefan Nagy

Coverage-guided Tracing

￭ Idea: restrict tracing to only when new coverage is guaranteed
￭ Guaranteed how? By using interrupts!

51

No interrupt hit =
no new coverage

Interrupts
cleared

Basic block
interruptC

A

CB

D

GFE

A

CB

D

GFE

Hit interrupt:
perform full trace &

remove all interrupts

Stefan Nagy

Coverage-guided Tracing

￭ Implementation: UnTracer
￭ Averages just 0.3% overhead

￭ Coverage-guided fuzzing at the
speed of black-box fuzzing

￭ Caveats?

52
R

el
at

iv
e

M
ea

n
 E

xe
cu

ti
o

n
 O

ve
rh

ea
d

Benchmark

Stefan Nagy

Coverage-guided Tracing

￭ Implementation: UnTracer
￭ Averages just 0.3% overhead

￭ Coverage-guided fuzzing at the
speed of black-box fuzzing

￭ Caveats?
￭ Only basic block coverage
￭ No edges or hit counts!

53
R

el
at

iv
e

M
ea

n
 E

xe
cu

ti
o

n
 O

ve
rh

ea
d

Benchmark

Stefan Nagy

Questions?

54

