Week 8: Lecture A

Fuzzing Science

Monday, February 26, 2024

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUU




Recap: Key Dates

Feb. 26 Sign up final project team cs.utah.edu/~snagy/courses/cs5963/schedule

Feb. 12 Feb. 14
Feb. 28 Lab 3 due Harnessing | (slides) Harnessing Il (slides)

» Readings: » Readings:

Harnessing Lab released Final Project released
Feb. 28 5-minute project proposals BN

Feb. 19 Feb. 21

No Class (President's Day) Tackling Roadblocks

M Readings:

Mar.04 & 06  No class (Spring Break) > feadings

Feb. 26 Feb. 28

Fuzzing Science Proposal Presentations

. M H » Readings: Harnessing Lab due by 11:59pm

Apr. 17 & 22 Final project presentations T RO e

Mar. 04 Mar. 06

No Class (Spring Break) No Class (Spring Break)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy



Recap: Lab 3 Overview

Assignment: write your own AFL-friendly harness for libArchive

= Read its documentation in: https://linux.die.net/man/3/libarchive
=  https://github.com/google/oss-fuzz/blob/master/projects/libarchive/libarchive fuzzer.cc

Create a harness that reads data from files
= What functions did you try?
=  What worked and what didn't?

Deliverable: a 1-3 page report detailing your findings
= Feel free to make it your own (e.g., pictures, text, etc.)
= Submit your harness code in your report
= Free to team up (max 3 students per group)
=  Submit one report per group

Linux environments are recommended
= UseaVMifyoudon't have one!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy


https://linux.die.net/man/3/libarchive
https://github.com/google/oss-fuzz/blob/master/projects/libarchive/libarchive_fuzzer.cc

Recap: Lab 3 Tips

Read libArchive’'s documentation and get inspiration from others’ code
= Understand the libArchive manpages
= Look at how others (e.g., non-fuzzing projects) use its API

Validate your results
= Measure code coverage of the libArchive codebase
= Look for increasing code coverage over time

Deadline: Wednesday, February 28th by 11:59PM
= Group assignment (up to 3 members)
= Look for teammates in-class and on Piazza
= See cs.utah.edu/~snagy/courses/cs5963/assignments.html

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy


https://www.cs.utah.edu/~snagy/courses/cs5963/assignments.html

Recap: Tackling Harnessing Roadblocks

No increase in coverage...
= AFls “new edges on” counter stays stagnant
=  Are you sure that you instrumented the library?
= If not, you will only get coverage of the harness!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy



Recap: Tackling Harnessing Roadblocks

No increase in coverage... % 10) Notes on linking
= AFls “new edges on” counter stays stagnant

Are yOU sure th at yOU instru mented the libraw? The .feature is supported only F)n Linux. Supporting BSD ma.y amount to

|f not, yOU WI |_|_ on ly get cove rage Of the harness! porting the changes made to linux-user/elfload.c and applying them to bsd-

Trouble compiling / linking? Can just use QEMU!

user/elfload.c, but | have not looked into this yet.

The instrumentation follows only the .text section of the first ELF binary

encountered in the linking process. It does not trace shared libraries. In
practice, this means two things:

« Any libraries you want to analyze must be linked statically into the
executed ELF file (this will usually be the case for closed-source apps).

« Standard C libraries and other stuff that is wasteful to instrument
should be linked dynamically - otherwise, AFL++ will have no way to
avoid peeking into them.

Setting AFL_INST_LIBS=1 can be used to circumvent the .text detection
logic and instrument every basic block encountered.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy



Recap: Tackling Harnessing Roadblocks

New coverage, but zero crashes...
= Isyour harness calling interesting functionality?
= If so, can you verify that it is calling it correctly?
= Are you fuzzing for a long enough time?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy



Recap: Tackling Harnessing Roadblocks

New coverage, but zero crashes...

= Isyour harness calling interesting functionality?

= If so, can you verify that it is calling it correctly?

= Are you fuzzing for a long enough time?

=  You can try older APl versions with known bugs!
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

Stefan Nagy

Libarchive downloads)

sha256sums

libarchive-v3.
libarchive-v3.
libarchive-v3.
libarchive-v3.
libarchive-v3.
libarchive-v3.
libarchive-v3.
libarchive-v3.
libarchive-v3.
libarchive-v3.6.1-amd64.zip

libarchive-v3.6.0-win64.zip.asc

7.2-amd64.zip.asc
7/
7
7
7
7
6
6
6
6
6
libarchive-v3.6.0-win64.zip
5
5
5
5
5
5
5
5
4
4

.2-amd64.zip
.1-amd64.zip.zip.asc
.1-amd64.zip.zip
.0-amd64.zip.asc
.0-amd64.zip
.2—amd64.zip.asc
.2—amd64.zip
.1-amd64.zip.asc

libarchive-v3.5.3-win64.zip.asc
libarchive-v3.5.3-win64.zip
libarchive-v3.5.2-win64.zip.asc
libarchive-v3.5.2-win64.zip
libarchive-v3.5.1-win64.zip.asc
libarchive-v3.5.1-win64.zip
libarchive-v3.5.0-win64.zip.asc
libarchive-v3.5.0-win64.zip
libarchive-v3.4.3-win64.zip.asc
libarchive-v3.4.3-win64.zip
libarchive-3.7.2.zip.asc
libarchive-3.7.2.tar.xz.asc
libarchive-3.7.2.tar.xz

\l}barchive—B.7.2.tar.gz.asc ‘/




Recap: Tackling Harnessing Roadblocks

Lots crashes in very little time...
= Are they reproducible with any available oracles?
= Re-run input with bsdtar application and check!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy



Recap: Tackling Harnessing Roadblocks

Lots crashes in very little time...
= Are they reproducible with any available oracles?
= Re-run input with bsdtar application and check!
= Not a silver bullet—may cover different functions!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

|

Trial-and-error
harness refinement!

10



Recap: Project Schedule

Monday, Feb 26th: team signup due

Wednesday, Feb. 28th: proposal day The Heilmeier Catechicr
= Instructions: a 5-minute presentation that
motivates your p rojec t P " Whatare you trying to do? Articulate objectives using absolutely no jargon,
= Goal: practice the art of “the pitch” 7 Mowisitdone today and what ae the limits of current practice?
* Whatis new in your approach and why do you think it will be »
] Get feed baCk from yOU r pee rs : "  Who cares? If you are successful what diff . successful?
=  Follow Heilmeier's Catechism! |« Whararethe nge e Aerence willit maker

® How much will it cost?

® How long will it take?

Mar. 27th: in-class project workday

= Wh i
atare the mid-term and final “exams” to check for success?

Apr. 17th & 22nd: final presentations
= 15-20 minute slide deck and discussion
= What you did, and why, and what results

SCHOOL OF COMPUTING Stefan Nagy

UNIVERSITY OF UTAH

1



Recap: Project Team Signup

Signup sheet available on course website (must use UofU gcloud account)
=  Fill-in your project title and teammate names by 11:59PM on Monday, February 26th

U KAHLERT SCHOOL OF COMPUTING

Project Signup

CS 5963/6963: Applied Software Security Testing

This special topics course will dive into today’s state-of-the-art techniques for uncovering hidden security vulnerabilities in
software. Introductory fuzzing exercises will provide hands-on experience with industry-popular security tools such as AFL+ and
AddressSanitizer, culminating in a final project where you’ll work to hunt down, analyze, and report security bugs in a real-
world application or system of your choice.

This class is open to graduate students and upper-level undergraduates. It is recommended you have a solid grasp over topics
like software security, systems programming, and C/C++.

Learning Outcomes: At the end of the course, students will be able to:

« Design, implement, and deploy automated testing techniques to improve vulnerability on large and complex software systems.
« Assess the effectiveness of automated testing techniques and identify why they are well- or ill-suited to specific codebases.

« Distill testing outcomes into actionable remediation information for developers.

« Identify opportunities to adapt automated testing to emerging and/or unconventional classes of software or systems.

« Pinpoint testing obstacles and synthesize strategies to overcome them.

« Appreciate that testing underpins modern software quality assurance by discussing the advantages of proactive and post-
deployment software testing efforts.

SCHOOL OF COMPUTING

» Directions: fill-in your final project teammate names, and a brief title of your project

Project Title

Team Members

Project Title

Team Members

-
Project Title
Team Members
Project Title

Team Members

Project Title

Team Members

Project Title

Team Members

UNIVERSITY OF UTAH Stefan Nagy

12



Recap: Project Team Signup

Need help finalizing your project idea?
Come chat with me in office hours!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy



Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy



SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Fuzzing Science

Stefan Nagy

15



Why evaluate fuzzers?

Advance science
= “I must publish to graduate”

Validate your technique
= “My fix really does work!”

Convince others your fuzzer is best
= “I made the best fuzzer for Microswat Superclick!”

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy



How should fuzzers be evaluated?

Pick a few benchmarks

Compare against AFL

Run a few trials

Compute average coverage

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

17



OOOOOOOOOOOOOOOOO

How should fuzzers be evaluated?

Stefan Nagy

18



SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Fuzzer evaluations must be scientific

Evaluating Fuzz Testing

George Klees, Andrew Ruef, Shiyi Wei Michael Hicks
Benji Cooper University of Texas at Dallas University of Maryland
University of Maryland
ABSTRACT Why do we think fuzzers work? While inspiration for new ideas

Fuzz testing has enjoyed great success at discovering security criti-
cal bugs in real software. Recently, researchers have devoted sig-
nificant effort to devising new fuzzing techniques, strategies, and
algorithms. Such new ideas are primarily evaluated experimentally
so an important question is: What experimental setup is needed
to produce trustworthy results? We surveyed the recent research
literature and assessed the experimental evaluations carried out
by 32 fuzzing papers. We found problems in every evaluation we
considered. We then performed our own extensive experimental
evaluation using an existing fuzzer. Our results showed that the
general problems we found in existing experimental evaluations
can indeed translate to actual wrong or misleading assessments. We
conclude with some guidelines that we hope will help improve ex-
perimental evaluations of fuzz testing algorithms, making reported
results more robust.

may be drawn from mathematical analysis, fuzzers are primarily
evaluated experimentally. When a researcher develops a new fuzzer
algorithm (call it A), they must empirically demonstrate that it
provides an advantage over the status quo. To do this, they must
choose:

o a compelling baseline fuzzer B to compare against;

o a sample of target programs—the benchmark suite;

® a performance metric to measure when A and B are run on
the benchmark suite; ideally, this is the number of (possibly
exploitable) bugs identified by crashing inputs;

o a meaningful set of configuration parameters, e.g., the seed
file (or files) to start fuzzing with, and the timeout (i.e., the
duration) of a fuzzing run.

An evaluation should also account for the fundamentally random

Stefan Nagy

19



SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Evaluating Fuzz Testing

George Klees, Andrew Ruef, Shiyi Wei Michael Hicks {
Benji Cooper University of Texas at Dallas University of Maryland ]

University of Maryland
ABSTRACT Why do we think fuzzers work? While inspiration for new i¢

Fuzz testing has enjoyed great success at discovering security criti-
cal bugs in real software. Recently, researchers have devoted sig-
nificant effort to devising new fuzzing techniques, strategies, and
algorithms. Such new ideas are primarily evaluated experimentally
so an important question is: What experimental setup is needed
to produce trustworthy results? We surveyed the recent research
literature and assessed the experimental evaluations carried out
by 32 fuzzing papers. We found problems in every evaluation we
considered. We then performed our own extensive experimental
evaluation using an existing fuzzer. Our results showed that the
general problems we found in existing experimental evaluations
can indeed translate to actual wrong or misleading assessments. We
conclude with some guidelines that we hope will help improve ex-
perimental evaluations of fuzz testing algorithms, making reported
results more robust.

may be drawn from mathematical analysis, fuzzers are prima
evaluated experimentally. When a researcher develops a new fu;
algorithm (call it A), they must empirically demonstrate thz
provides an advantage over the status quo. To do this, they o
choose:

o a compelling baseline fuzzer B to compare against;

o a sample of target programs—the benchmark suite;

® a performance metric to measure when A and B are run
the benchmark suite; ideally, this is the number of (poss
exploitable) bugs identified by crashing inputs;

o a meaningful set of configuration parameters, e.g., the i
file (or files) to start fuzzing with, and the timeout (i.e.,
duration) of a fuzzing run. {

An evaluation should also account for the fundamentally rami

Stefan Nagy

Fuzzer evaluations must be scientific

Hicks Wins NSA’s Best
Scientific Cybersecurity
Paper Award

Published October 2, 2019

Michael Hicks, a professor of computer
science, helped lead a team of researchers to
{ victory in the National Security Agency’s
(NSA) 7th Annual Best Scientific

20



SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Benchmark Selection

Stefan Nagy

21



Benchmark Selection

Size matters
=  File size

Megabytes

= Complexity

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Basic blocks
Proxy for # of paths

Stefan Nagy

22



Size matters
= File size

= Megabytes
= Complexity

= Basic blocks

Benchmark Selection

Does execution mechanism speed always matter?

= Profile average time spent on target program vs. execution mechanism

Avg. Target Time / input | Avg. Execution Time / input | Prop. spent on Execution

=  Proxy for # of paths 2ms 1~10 ms 333-833%
| 300 ms 1-10 ms 0.0-32%
=TT T T T T T T T e e T T T TR .
4 o  Short-running test cases = execution speed matters more il
‘\ o Long-running test cases = execution matters less (and coverage tracing matters more)’ - ¢
— — -

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

o e e = e e e =
T e e e e e e -

= As usual, this phenomena is target-dependent

Stefan Nagy

23



Benchmark Selection

Size matters |
= Filesize Does execution mechanism speed always matter?

= Megabytes 5
= Complexity

= Profile average time spent on target program vs. execution mechanism

= Basic blocks Avg. Target Time / input | Avg. Execution Time / input | Prop. spent on Execution
=  Proxy for # of paths 2ms 1~10 ms 333-833%
| 300 ms 1-10 ms 0.0-32%
A e SO _
RGSU ltS teu. all : / o Short-running test cases = execution speed matters more - \/
. | \ o  Long-running test cases = execution matters less (and coverage tracing matters more) .
= ldeally good onallsizes = ~S--_ - ________ __ ____ -e®

= As usual, this phenomena is target-dependent

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy



Benchmark Selection

Maximize variety
= Program type
= Image parser
= Document reader
= Audio file converter
=  Program input format
= JPEG, GIF, EXIF
= PDF, DOC, XML
= MP3, WAV, OGG
= Parent library / application
= |mageMagick
= Binutils
= RARLab

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

25



Benchmark Selection

Cardinal sins of benchmark selection
=  Fuzzing programs of a single type, format
= E.g., PDF parsers
=  Fuzzing programs from a single package
= E.g., Binutils, Coreutils
= Happens far too often

Results should be generalizable
= [f not, then explain why
= If not justified, then reject

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

~* GNU Binutil Command Examples '

o readelf
o strings
°© nm

o ar

(@]

objdump
o strip
o objcopy

o addr2line

26



Other Benchmark Selection Sins

Developing a binary-only approach
=  But only evaluating open-source programs
= Finding closed-source benchmarks is hard!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

27



Other Benchmark Selection Sins

D eve l O p i n g a b i n a _o n l a ro a C h :  Application OS  Binary Size Blocks P*C Sym Opt
ry y p p : BlFreeArchiver L bl 4.1M 150,138 D 4 4
. : Bl1FreeArchiver L blmanager 19.3M 290,628 D v v
= But only evaluating open-source programs | BinyNija L binaryninja 344M 9860 D v v
L. . | BurnInTest L bit_cmd_line 26M 73229 D X ¥V
=  Finding closed-source benchmarks is hard! | BuminTest L bitgui 34M 107897 D X v
! Coherent PDF L smpdf 3.9M 61,204 D 4 v
. IDA Free L ida64 4.5M 173,551 I X v
IDA Pro L idat64 1.8M 82,869 I X v
LzTurbo L 1zturbo 314K 13,361 D X v
NConvert L nconvert 2.6M 111,652 D X v
NVIDIA CUDA L nvdisasm 19M 46,190 D X v
Object2VR L object2vr 8.1M 239,089 D v v
PNGOUT L pngout 89K 4,017 D X v
RARLab L rar 566K 25,287 D X v
RARLab L unrar 311K 13,384 D X v
RealVNC L VNC-Viewer 7.9M 338,581 D X v
VivaDesigner L VivaDesigner 289M 1,097,993 D X v
VueScan L vuescan 15.4M 396,555 D X v
Everything w Everything 2.2M 115,980 D 4 X
Imagine w Imagine64 15K 99 D X X
NirSoft w AppNetworkCounter 122K 4,091 D X X
OcenAudio w ocenaudio 6.1IM 178,339 D X X
USBDView w USBDeview 185K 7,367 D X X
SCHOOL OF COMPUTING Stefan Nagy 28

UNIVERSITY OF UTAH



Other Benchmark Selection Sins

. [ ] 1
- # | Application OS  Binary Size Blocks P*C Sym Opt !
Developing a binary-only approach = e T
. - Bl1FreeArchiver L blmanager 19.3M 290,628 D v v
=  But only evaluating open-source programs | | BiarNija L binaryninja 34M 9860 D vV
. . . BurnInTest L bit_cmd_line 2.6M 73,229 D X v
=  Finding closed-source benchmarks is hard! 1 | BummTes L bitgui 34M 10787 D X v
Coherent PDF L smpdf 3.9M 61,204 D 4 v
I | DAFwe L ida64 4sM 1735l 1 X v
J | AP L idat64 18M 8280 I X ¥
— e - — 1 LzTurbo L 1zturbo 314K 13,361 D X v
= == —-— em oW
- = \ NConvert L nconvert 2.6M 111,652 D X v
NVIDIACUDA L nvdisasm 19M 46190 D X ¥
‘ | Object2VR L object2vr 8.1IM 239,089 D v v
PNGOUT L pngout 89K 4,017 D Xx v
................................................................................................................... | RARLab L rar 566K 25,287 D X v
ZAFL vs. AFL-Dyninst ZAFL vs. AFL-QEMU | | RaRe D ewer ey gllces o A
Binary rel. rel. rel. rel. rel. rel. I VivaDesigner L VivaDesigner 289M 1097993 D X v
crash total queue crash total queue VueScan L vuescan 154M 396555 D X v
1dat64 L000 0789 2332 | X 1657 L1192 | | | previe LA A AN
magine
nconvert 3.538 0.708 48.140 1.095 1.910 1.303 .| | NisSoft W AppNetworkCounter ~ 122K 4,091 D X X
nvdisasm 1.111 0.757 1.484 1.111 0.578 1.252 i OcenAudio W ocenaudio 6.IM 178339 D X X
pngout 1476 5842 1380 | 1476 3419 1023 = |_USBDView W USBDcview L R N N
unrar X 0838 6112 | 2000 1284 1249 .
Mean Rel. Increase | +55% +16%  +326% | +38% +52% +20%
Mean MWU Score | 0.036 0.041 0.009 0.082 0.021 0.045
SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 29



Other Benchmark Selection Sins

Relying on synthetic benchmark corpora
= E.g., SPEC2000, LAVA-M
= Often limited in their semantics
= LAVA-M: only magic-byte bugs
= Many reviewers hate this
= | am more forgiving
= Best served as a “preliminary” data point

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy



OOOOOOOOOOOOOOOOO

Competitor Selection

Stefan Nagy

31



Choosing worthy competitors...

Many different fuzzers today
= Random fuzzing
= Grammar fuzzing
= Token-level fuzzing
= Rare branch targeting
= Invariant-guided fuzzing
= Sub-instruction profiling

= Which should you choose?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

32



Choose the state of the art!

Pick the best conventional fuzzers
= E.g., AFL, AFL++, libFuzzer

Include the latest and greatest fuzzers

= Are you building a better grammar fuzzer?
= Compare to other grammar fuzzers!
= E.g., Gramatron, Nautilus
= Are you building a fast binary instrumenter?
= Compare other binary instrumenters!
= E.g., ZAFL, AFL-QEMU, AFL-Dyninst
=  Up to you to stay up to date on the literature

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

33



Implementation differences matter!

Build your fuzzer off a common platform
= AFL is today’s most popular platform
=  Most fuzzers derived from AFL
= Every change matters
= E.g., speed, queue strategy, mutation

Leave core fuzzer design as a control

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy



Ablation Studies

Did you implement a ton of new features?

= Lots of levers to pull, knobs to twist
= E.g., coverage granularity, execution timeout

Compare results with & without each
= Ablation studies make for better science
= Is anidea the sum of its parts?
= Oris one feature most critical?
= Better yet: publish one key idea at a time

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy



Cardinal sins of competitor selection...

Choosing old, obsolete fuzzers
=  Contribution sold as better than it is
= Automatic reject!

Omitting relevant state-of-the-art
= Usually a major revision
= Reevaluate with what reviewers want
= Reviewers need to know what to suggest

Throwing five things at the wall
= Many of these papers get accepted as-is
= Bad science; we need ablation studies!
= Paper must be carefully read and dissected

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy



SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Experiment Setup

Stefan Nagy

37



450

Seed Selection Matters

FFmpeg (empty seed)

T

400 | —

afl
aflfast
aflnaive

350 +

300

250 +

200

150

100

50

-

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

0 10000 20000 30000 40000 50000

Time (seconds)

60000

70000 80000 90000

Source: Evaluating Fuzz Testing

Stefan Nagy

38



450

400

350

300

250

200

150

100

50

Seed Selection Matters

FFmpeg (empty seed)

FFmpeg (1 random MP4)

T T

— afl
— aflfast

— aflnaive

r r T T 5000 T T
— afl ~
— aflfast SBT
. L2
— aflnaive 2 20001
i
T 3000 |
| 3
L
w
Q
¥ —
1 ©
5 2000 f
i 1000 |
C I n L L L L L 0 T
10000 20000 30000 40000 50000 60000 70000 80000 90000 0 10000 20000

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

Time (seconds)

Source: Evaluating Fuzz Testing

Stefan Nagy

30000

40000 50000
Time (seconds)

60000 70000 80000

90000

39



Trial Duration

Early plateaus can be misleading
= Look for sustained plateaus

Likewise, high coverage early on can be misleading
= Want to see sustained growth over time

f"'__"
’—_’
-
A Kg
o= m mm mm mm = = e »I

o’ -
%69@6 7 J
o / 2 hr

_ ' —>

Fuzzing Time

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

40



SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Trial Duration

16 nm (3 sampled ELFs)

— afl
14| — aflfast .

12+

10|

Crashes found

0 . L i L L L L L L
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Time (seconds)

Figure 4: nm with three sampled seeds. At 6 hours: AFLFast
is superior to AFL with p < 10713, At 24 hours: AFL is supe-
rior to AFLFast with p = 0.000105.

Source: Evaluating Fuzz Testing

Stefan Nagy

41



Recommended Setup

Seeds of varying contents
= E.g., empty, well-formed, etc.

Trial length of 24+ hours

= The bare minimum
= Longer is better

At least 5 trials per benchmark
= One trial is not representative

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy



Ensuring Fairness

Maintain same setup across all fuzzers
= Same seeds, number of trials, duration, etc.
= If a trial fails, re-run until all 5 trials completed

Begin fuzzers at same starting time

- = = = -w
o ™ = e
s
A /
-I e E— E— +
Q/@QOQ/%@ f—/’ 7 — =
\\Qﬁe Y 4 — - b
(_,0 / R -
/' 2 hr (-
- > —_
“Training” Time Experiment Start

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

43



OOOOOOOOOOOOOOOOO

Experiment Procedure

Stefan Nagy

A



Results Processing

What metrics do we value most?
= Code coverage
= Easy to measure
= Bugs and vulnerabilities found
= Hard to measure
= Zero-day vulnerabilities found
= Alongtime to produce
= Bad reviewers ask for this

Project-specific metrics
= Results that prove a point or back up a claim

= E.g, queue size, time spent on execution, etc.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

/®

Common Vulnerabilities and Exposures

45



Bugs and Vulnerabilities

Finding brand-new bugs is challenging
. Identifier Category Binary
= Many common fuzzing targets are well-fuzzed
= Looks bad to pick random, unknown programs CVE-2011-4517 heap overflow jasper
. GitHub issue #58-1 stack overflow mjs
. . GitHub issue #58-2 stack overflow mjs
Synthetlc bug benChmark corpora . GitHub issue #58-3 stack overflow mjs
= E.g., Magma, LAVA-M . GitHub issue #58-4 stack overflow mjs
= Various caveats (e.g.’ realism) 1 G1tH1.1b issue #136 stack f)verﬂow mjs
Bugzilla #3392519 null pointer deref nasm
. CVE-2018-8881 heap overflow nasm
Known bugs in older program versions  CVE-2017-17814 use-after-free nas
. . CVE-2017-10686 use-after-free nasm
= E.g., fuzzing TCPDump 4.9.1 - Bugzilla #3392423 illegal address nasm
. CVE-2008-5824 heap overflow sfconvert |

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 46



Bug-finding Metrics

Number of bugs found

=  Proxy for general bug-finding ability

= Don'tjust report AFL's “unique crashes”—you must deduplicate them!
Time-to-exposure on known bugs

= Helpful—especially if your focus is on accelerating fuzzing speed

Error Type Location AFL-Dyninst AFL-QEMU ZAFL
heap overflow nconvert X 18.3 hrs 12.7 hrs
stack overflow unrar X 12.3 hrs 9.04 hrs
heap overflow pngout 12.6 hrs 6.26 hrs 1.93 hrs
use-after-free pngout 9.35 hrs 4.67 hrs 1.44 hrs
heap overread libida64.so 23.7 hrs X 2.30 hrs
Z AFL Mean Rel. Decrease -660% -113%

;Table 7: Mean time-to-discovery of closed-source binary bugs found foré

AFL-Dyninst, AFL-QEMU, and ZAFL over 5 x24-hour fuzzing trials. X =

' bug is not reached in any trials for that instrumenter configuration.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

47



Zero-day Vulnerabilities

Requires you to triage and report bugs
= You must fuzz the program’s latest version
= Follow responsible disclosure practices
= Let developer request a CVE identifier
= See “Bugs & Triage II"” lecture from class

“You didn’t find new bugs... REJECT!”

= Aterrible trend in academic fuzzing
= Happening less (from what | can tell)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

48



Summary Statistics

Are your results statistically significant?

= Arithmetic mean doesn't tell the story
= Too coarse-grained of a comparison

The Mann-Whitney U test

= p-value above 0.05 = not statistically significant
= Your 2x improvement doesn’t matter

= p-value less than 0.05 = statistically significant
= Great job!

= The gold standard of fuzzing evaluations today

= QOther: Vargha and Delaney’s A-12 test
= “Magnitude” of an improvement

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

49



Statistical Significance

T Base A B C
1700 A _
T Base

1650 -
Q A 2.58e-26 0.0022 | 6.96e-5
® 1600 -
£ 8 B 5.72e-23 0194
3 -
% 1550 A C 5.61e-22
© 1500 - — . ——

1450 A

Baseline (No Dict) Dict A Dict B Dict C

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

50



Statistical Significance

T Base A B C
1700 A L
—— Base

_1650-
§ A 2.58e-26 0.0022 @ 6.96e-5
® 1600 -
£ 8 B 572023 0194
3 S
% 1550 A C 5.61e-22
2
© 1500 - — i —

1450 -

Baseline (No Dict)  Dict A Dict B Dict C
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy



Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy



