Week 7: Lecture B

Tackling Roadblocks

Wednesday, February 21, 2024

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUU

Recap: Key Dates

Feb. 14 Final Project released cs.utah.edu/~snagy/courses/cs5963/schedule
. ’ Feb. 12 Feb. 14
Feb. 19 N OC laSS (P resi d e nt S Day) H:rneds.sing 1 (slides) :I:n?sing 1l (slides)
» Readings: eadings:
Harnessing Lab released Final Project released
Feb. 26 Sign up final project team Titna bt R Fisifion
;ibé::ss (President's Day) :'::klzlllg Roadblocks
Feb. 28 Lab 3 due > Resdnos
Feb. 26 Feb. 28
Fuzzing Science Proposal Presentations
Feb. 28 5-minute project proposals R P R TS
Mar. 04 Mar. 06
Mar. 04 & 06 N 0 ClaSS (Sp ri ng B rea k) No Class (Spring Break) No Class (Spring Break)

Apr. 17 & 22 Final project presentations

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Recap: Lab 3 Overview

Assignment: write your own AFL-friendly harness for libArchive

= Read its documentation in: https://linux.die.net/man/3/libarchive
= https://github.com/google/oss-fuzz/blob/master/projects/libarchive/libarchive fuzzer.cc

Create a harness that reads data from files
= What functions did you try?
= What worked and what didn't?

Deliverable: a 1-3 page report detailing your findings
= Feel free to make it your own (e.g., pictures, text, etc.)
= Submit your harness code in your report
= Free to team up (max 3 students per group)
= Submit one report per group

Linux environments are recommended
= UseaVMifyoudon't have one!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

https://linux.die.net/man/3/libarchive
https://github.com/google/oss-fuzz/blob/master/projects/libarchive/libarchive_fuzzer.cc

Recap: Lab 3 Tips

Read libArchive’'s documentation and get inspiration from others’ code
= Understand the libArchive manpages
= Look at how others (e.g., non-fuzzing projects) use its API

Validate your results
= Measure code coverage of the libArchive codebase
= Look for increasing code coverage over time

Deadline: Wednesday, February 28th by 11:59PM
= Group assignment (up to 3 members)
= Look for teammates in-class and on Piazza
= See cs.utah.edu/~snagy/courses/cs5963/assignments.html

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

https://www.cs.utah.edu/~snagy/courses/cs5963/assignments.html

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Recap: Semester Final Project

Objective: uncover new bugs in a real-world program
Team up in groups of 1-4

Select an “interesting” target program of your choice; e.g.:
= Popular applications

Nintendo emulators

Old computer games

MacOS Rosetta

GET CREATIVE!

Figure out how to fuzz your target, find bugs, and responsibly disclose them

Deliverables: a report, disclosure of bugs, and open-source your team’s fuzzer

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Recap: Semester Final Project

5-minute project proposal on Feb. 28

Final presentations at semester’s end

{

_

LB B o o B B e

You have full creative liberty—get
creative and fuzz something fun!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Recap: Semester Final Project

Details also now available on course website Assignments page:

Final Project (collected via Canvas)

Instructions: Using your skills from Labs 1-3, team up in groups of no more than four students to hunt down bugs in a
real-world application of your choice! Upon selecting a target application, your team will need to figure out how to (1)
harness it, (2) fuzz it, and (3) triage any discovered bugs. You may select any target you like (e.g., software APIs, video games,
emulators), provided that it has not been fuzzed before—or has demonstrably not yet been fuzzed effectively.

Halfway through the semester, your team will present a 5-minute project proposal to the class outlining your chosen target,
your proposed approach, and the significance of your work. At the semester's end, you will prepare and deliver a 15-minute
final presentation alongside a final report outlining your ultimate approach, findings, and any discovered bugs.

Heilmeier's Catechism will serve as the high-level rubric for your proposal, presentation, and report—so be ready to explain
why your project idea matters! But most importantly, get creative and have fun, and report any bugs you find along the way!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Recap: Project Schedule

Monday, Feb 26th: team signup due

Wednesday, Feb. 28th: proposal day The Heilmeier Catechicr
= Instructions: a 5-minute presentation that
motivates your p rojec t P " Whatare you trying to do? Articulate objectives using absolutely no jargon,
= Goal: practice the art of “the pitch” 7 Mowisitdone today and what ae the limits of current practice?
* Whatis new in your approach and why do you think it will be »
] Get feed baCk from yOU r pee rs : " Who cares? If you are successful what diff . successful?
= Follow Heilmeier's Catechism! |« Whararethe nge e Aerence willit maker

® How much will it cost?

® How long will it take?

Mar. 27th: in-class project workday

= Wh i
atare the mid-term and final “exams” to check for success?

Apr. 17th & 22nd: final presentations
= 15-20 minute slide deck and discussion
= What you did, and why, and what results

SCHOOL OF COMPUTING Stefan Nagy

UNIVERSITY OF UTAH

Project Team Signup

Signup sheet available on course website (must use UofU gcloud account)
= Fill-in your project title and teammate names by 11:59PM on Monday, February 26th

U KAHLERT SCHOOL OF COMPUTING

Project Signup

CS 5963/6963: Applied Software Security Testing

This special topics course will dive into today’s state-of-the-art techniques for uncovering hidden security vulnerabilities in
software. Introductory fuzzing exercises will provide hands-on experience with industry-popular security tools such as AFL+ and
AddressSanitizer, culminating in a final project where you’ll work to hunt down, analyze, and report security bugs in a real-
world application or system of your choice.

This class is open to graduate students and upper-level undergraduates. It is recommended you have a solid grasp over topics
like software security, systems programming, and C/C++.

Learning Outcomes: At the end of the course, students will be able to:

« Design, implement, and deploy automated testing techniques to improve vulnerability on large and complex software systems.
« Assess the effectiveness of automated testing techniques and identify why they are well- or ill-suited to specific codebases.

« Distill testing outcomes into actionable remediation information for developers.

« Identify opportunities to adapt automated testing to emerging and/or unconventional classes of software or systems.

« Pinpoint testing obstacles and synthesize strategies to overcome them.

« Appreciate that testing underpins modern software quality assurance by discussing the advantages of proactive and post-
deployment software testing efforts.

SCHOOL OF COMPUTING

» Directions: fill-in your final project teammate names, and a brief title of your project

Project Title

Team Members
e
Project Title

Team Members

Project Title

Team Members

Project Title

Team Members

Project Title

Team Members

Project Title

Team Members

UNIVERSITY OF UTAH Stefan Nagy 10

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

OOOOOOOOOOOOOOOOO

Evaluating Harnesses

Stefan Nagy

12

?27?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Recap: What makes a good harness?

Stefan Nagy

13

Recap: What makes a good harness?

Speed LmesraMhExec . source
= Avoid irrelevant, wasteful code (e.g., GUIs) : g 1 "H':lt:p) |
4 {
s
Coverage | R
= Execute interesting, hard-to-reach parts of code § . ?SErmm -
= Avoid leaving blindspots (hidden bugs) 1 g ! |
Correctness
= Upholds program’s expected behavior
= Does not incur spurious effects (e.g., FP crashes)
SCHOOL OF COMPUTING Stefan Nagy 14

UNIVERSITY OF UTAH

Pay attention to performance...

How is speed changing over time?
= Beginning: usually faster
= Working through input validity checks
= Less code executing per input

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

e e

now +ryin3 :

9+aae execs :
total execs -
exec speed :

interest 32/8
399G/34.4k (1G2%)
27.4M

893 / second

_-

15

Pay attention to performance...

How is speed changing over time?

= Beginning: usually faster
= Working through input validity checks
= Less code executing per input

= Later on: usually slower
= Executing more code per input

’-——\

e e
N

now +ryin@ : interest 32/8
9+age execs - 399G/34 4k (1G2%)
total execs - 27.4M

exec «;Peed : 893 / second

7 -\
<<\>»L"L\<\¢°¢> II ‘\ AN More valid inputs
52 -
K / FewervalidinPqus \._—-\‘_,"\/ = T I
[>

Fuzzing Time

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

_-

16

Don't take speed at face value!

= Faster may mean...

= ?7?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

17

Don’t take speed at face value!

Faster may mean...
= Successfully omitting irrelevant code
= E.g., GUI setup routines we don’t care about
= Especially critical for harnessing binaries

= Erroneously overlooking necessary code
= E.g., input parsing routines and/or checks

= Need to understand what the APl expects

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

18

Don't take speed at face value!

Slower may mean...

= ?7?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

19

Don’t take speed at face value!

Slower may mean...
= More time spent iterating loops
= Too few iterations can miss some bugs
= Not every loop should be maximized
= Still an open research problem

= Your harness is covering too much
= Focus testing on specific attack vectors
= Many harnesses instead of a huge one

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

20

Measure and plot your code coverage!

= Critical to understanding your harness
= Changes in edges covered
= Changes in edge hit counts
= Source code visualizations

= Useful coverage tools
= github.com/mrash/afl-cov
= github.com/gcovr/gcovr
= github.com/andreafioraldi/afl-gemu-cov
= github.com/eqgv/aflg fast cov
= Python scripting with Matplotlib

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

21

https://github.com/mrash/afl-cov
https://github.com/gcovr/gcovr
https://github.com/andreafioraldi/afl-qemu-cov
https://github.com/eqv/aflq_fast_cov

What does your code coverage tell you?

........ ” >
Edge coverage: A et ST
= Strictly increases with time . A 2 -
= Ideally increases the whole time gé%z@é le
! e,
= Always look at multiple trials L.
= Studies show at least 5 trials Fuzzing Time
= All fuzzers eventually plateau A
= Random mutation only gets so far o PR pppp——

= Potentially missing critical code

e
= Early plateaus indicate you are stuck %&j@,@d o=
7
s

Fuzzing Time

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

What does your code coverage tell you?

Hit counts:
= Higher = more cycle iterations
= Deeper loop exploration
= More recursion

= Examine relative changes
= E.g., comparing two harnesses

[16,31]

[32,127] [[128+]

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Relative Max Consecutive lterations Per Loop

1.0 1.0 1.0 1.0 1.0 4.06 1.0
vyl 1.09 1.0 1.1 1.0 ﬂ 3.18
1.07 1.0 358 3.0 138 168 1.05
228 438 425 i1 8.1 1.33
1.49 ESSEEN277N 1.07 1.07 1.5

220l 1.6 1.0 1.0 Rz 2.0 1.0
1062 21 135

2.88

1.0 225
559 el
0 1 2 3 4 5 6 7

What does your code coverage tell you?

Source line coverage (e.g., gcov)
= Costs more time to generate reports
= Provides you more information
= Does not support binaries

Line Coverage <

75.3 %
100.0 %

64 /85
102/102

88.9 %

8o5% 17/19 (SN N
100.0 % 31/31 88.9 % 8/9
]

100.0 % 51/51 88.9% 8/9

100.0 %

24/24 88.9 % 8/9

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

...

Line data Source code

1 . #include <stdio.h>

2 1 : int main()

3 ;

4 i int i, j, rows;

5 2

6 1 G printf("Enter number of rows: ");
7 15 scanf("%d",&rows);

8]

9 s for(i=1; i<=rows; ++i)
10 :

11 44 : for(j=1; j<=i; ++j)
12 .

13 :

14 : //// LCOV_EXCL _LINE

15 36 printf("* ");
16

17 3

18 : //// LCOV_EXCL_LINE

19 Bis printf("\n");

20

21 1 return 0;

22

24

Are you fuzzing for long enough?

Early plateaus can be misleading
= Look for sustained plateaus

Likewise, high coverage early on can be misleading
= Want to see sustained growth over time

f"'__"
’—_’
-
A Kg
o= m mm mm mm = = e ’I

& g
%Ge‘ec 7 ’
o / 2 hr

_ ‘ —>

Fuzzing Time

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

25

Is your execution timeout large enough?

Timeout: maximum duration of any execution —

= When exceeded, terminates execution
= ...and marks test case as a “hang”

= AFLs default is very small (mere milliseconds)
= AFL prefers short-running test cases 40ms 1
= Too low of a timeout = excessive hangs
Missed code coverage
= Need to readjust for your target

700ms

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Are plateaus fuzzer-dependent?

aflfast

lafintel
fairfuzz
libfuzzer

mopt

Try different input generation techniques =~ —
= Relying on random mutation is not advisable | [iy
= Not good at solving magic bytes |
Songaturs
= Lots of options in the AFL universe -
= Grammars, concolic exec, etc. | ansmon
= Other code coverage metrics L e VA
= Nosingle technique isthebest — — — _ _ _ :
=~ - 7’

e -

Source: https://www.fuzzbench.com/reports/paper/Main%20Experiment/index.html

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

27

Evaluate your crashes...

Replay all fuzzer-found crashes
= Use tools like AddressSanitizer, DrMemory, etc.
= |f a test case crashes your harness...
= It should crash the original program too!

|dentify false-positive crashes
= |.e., crashes that occur only in your harness
= Indicates you are missing critical code
= Pay attention to what tools tell you (e.g., ASAN)
= Source lines (in your harness or API), etc.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

== ASAN: heap-use-after-free on address
0x61900000047f at pc 0x00000040a52c bp
0x7£f££9200dbf0 sp 0x7£££9200dbel
READ size 1 at 0x61900000047f thread TO
#0 0x40a52b in src/main.cpp:30
#1 0x40e088 in std function.h:297
#2 0x40d605 in std function.h:687
#3 0x40b8d5 in src/main.cpp:130
#4 0x7f£9a498ff412 in libc-start.c:308

28

Leverage available oracles!

A library's provided front-end programs
= Often are very large applications
= E.g., objdump for Binutils
= E.g., bsdtar for libArchive
= Can serve as a ground-truth correct API usage

Differential testing
= Compare against similar programs
= E.g., Foxit PDF vs. Adobe Reader
= Do they spit-out similar messages?
= E.g., “this file is definitely invalid for reason X"
= Better yet: do they crash too?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

29

Harnessing is a trial-and-error art...

Don't give up!
Collect data, investigate, and refine!

OOOOOOOOOOOOOOOOO Stefan Nagy

30

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

