
Stefan Nagy

Week 7: Lecture B
Tackling Roadblocks

1

Wednesday, February 21, 2024

Stefan Nagy

Recap: Key Dates
￭ Feb. 14 Final Project released

￭ Feb. 19 No class (President’s Day)

￭ Feb. 26 Sign up final project team

￭ Feb. 28 Lab 3 due

￭ Feb. 28 5-minute project proposals

￭ Mar. 04 & 06 No class (Spring Break)

￭ Apr. 17 & 22 Final project presentations

2

cs.utah.edu/~snagy/courses/cs5963/schedule

Stefan Nagy

￭ Assignment: write your own AFL-friendly harness for libArchive
￭ Read its documentation in: https://linux.die.net/man/3/libarchive
￭ https://github.com/google/oss-fuzz/blob/master/projects/libarchive/libarchive_fuzzer.cc

￭ Create a harness that reads data from files
￭ What functions did you try?
￭ What worked and what didn’t?

￭ Deliverable: a 1–3 page report detailing your findings
￭ Feel free to make it your own (e.g., pictures, text, etc.)
￭ Submit your harness code in your report
￭ Free to team up (max 3 students per group)
￭ Submit one report per group

￭ Linux environments are recommended
￭ Use a VM if you don’t have one!

3

Recap: Lab 3 Overview

https://linux.die.net/man/3/libarchive
https://github.com/google/oss-fuzz/blob/master/projects/libarchive/libarchive_fuzzer.cc

Stefan Nagy

Recap: Lab 3 Tips

￭ Read libArchive’s documentation and get inspiration from others’ code
￭ Understand the libArchive manpages
￭ Look at how others (e.g., non-fuzzing projects) use its API

￭ Validate your results
￭ Measure code coverage of the libArchive codebase
￭ Look for increasing code coverage over time

￭ Deadline: Wednesday, February 28th by 11:59PM
￭ Group assignment (up to 3 members)
￭ Look for teammates in-class and on Piazza
￭ See cs.utah.edu/~snagy/courses/cs5963/assignments.html

4

https://www.cs.utah.edu/~snagy/courses/cs5963/assignments.html

Stefan Nagy

Questions?

5

Stefan Nagy

Recap: Semester Final Project

￭ Objective: uncover new bugs in a real-world program

￭ Team up in groups of 1 – 4

￭ Select an “interesting” target program of your choice; e.g.:
￭ Popular applications
￭ Nintendo emulators
￭ Old computer games
￭ MacOS Rosetta
￭ GET CREATIVE!

￭ Figure out how to fuzz your target, find bugs, and responsibly disclose them

￭ Deliverables: a report, disclosure of bugs, and open-source your team’s fuzzer

6

Stefan Nagy

Recap: Semester Final Project

￭ Objective: uncover new bugs in a real-world program

￭ Team up in groups of 1 – 4

￭ Select an “interesting” target program of your choice; e.g.:
￭ Popular applications
￭ Nintendo emulators
￭ Old computer games
￭ MacOS Rosetta
￭ GET CREATIVE!

￭ Figure out how to fuzz your target, find bugs, and responsibly disclose them

￭ Deliverables: a report, disclosure of bugs, and open-source your team’s fuzzer

7

You have full creative liberty—get
creative and fuzz something fun!

Final presentations at semester’s end

5-minute project proposal on Feb. 28

Stefan Nagy

Recap: Semester Final Project

￭ Details also now available on course website Assignments page:

8

Stefan Nagy

Recap: Project Schedule

￭ Monday, Feb 26th: team signup due

￭ Wednesday, Feb. 28th: proposal day
￭ Instructions: a 5-minute presentation that

motivates your project
￭ Goal: practice the art of “the pitch”

￭ Get feedback from your peers
￭ Follow Heilmeier’s Catechism!

￭ Mar. 27th: in-class project workday

￭ Apr. 17th & 22nd: final presentations
￭ 15–20 minute slide deck and discussion
￭ What you did, and why, and what results

9

Stefan Nagy

Project Team Signup

￭ Signup sheet available on course website (must use UofU gcloud account)
￭ Fill-in your project title and teammate names by 11:59PM on Monday, February 26th

10

Stefan Nagy

Questions?

11

Stefan Nagy

Evaluating Harnesses

12

Stefan Nagy

Recap: What makes a good harness?

￭ ???

13

Stefan Nagy

Recap: What makes a good harness?

￭ Speed
￭ Avoid irrelevant, wasteful code (e.g., GUIs)

￭ Coverage
￭ Execute interesting, hard-to-reach parts of code
￭ Avoid leaving blindspots (hidden bugs)

￭ Correctness
￭ Upholds program’s expected behavior
￭ Does not incur spurious effects (e.g., FP crashes)

14

Stefan Nagy

Pay attention to performance…

￭ How is speed changing over time?
￭ Beginning: usually faster

￭ Working through input validity checks
￭ Less code executing per input

15

now trying : interest 32/8
stage execs : 3996/34.4k (11.62%)
total execs : 27.4M
exec speed : 893 / second

Stefan Nagy

Pay attention to performance…

￭ How is speed changing over time?
￭ Beginning: usually faster

￭ Working through input validity checks
￭ Less code executing per input

￭ Later on: usually slower
￭ Executing more code per input

16

now trying : interest 32/8
stage execs : 3996/34.4k (11.62%)
total execs : 27.4M
exec speed : 893 / second

Fewer valid inputs

More valid inputs

Fuzzing Time

Fuzzin
g

Speed

Stefan Nagy

Don’t take speed at face value!

￭ Faster may mean…
￭ ???

17

Stefan Nagy

Don’t take speed at face value!

￭ Faster may mean…
￭ Successfully omitting irrelevant code

￭ E.g., GUI setup routines we don’t care about
￭ Especially critical for harnessing binaries

￭ Erroneously overlooking necessary code
￭ E.g., input parsing routines and/or checks
￭ Need to understand what the API expects

18

Stefan Nagy

Don’t take speed at face value!

￭ Slower may mean…
￭ ???

19

Stefan Nagy

Don’t take speed at face value!

￭ Slower may mean…
￭ More time spent iterating loops

￭ Too few iterations can miss some bugs
￭ Not every loop should be maximized
￭ Still an open research problem

￭ Your harness is covering too much
￭ Focus testing on specific attack vectors
￭ Many harnesses instead of a huge one

20

Stefan Nagy

Measure and plot your code coverage!

￭ Critical to understanding your harness
￭ Changes in edges covered
￭ Changes in edge hit counts
￭ Source code visualizations

￭ Useful coverage tools
￭ github.com/mrash/afl-cov
￭ github.com/gcovr/gcovr
￭ github.com/andreafioraldi/afl-qemu-cov
￭ github.com/eqv/aflq_fast_cov
￭ Python scripting with Matplotlib

21

https://github.com/mrash/afl-cov
https://github.com/gcovr/gcovr
https://github.com/andreafioraldi/afl-qemu-cov
https://github.com/eqv/aflq_fast_cov

Stefan Nagy

What does your code coverage tell you?

￭ Edge coverage:
￭ Strictly increases with time

￭ Ideally increases the whole time

￭ Always look at multiple trials
￭ Studies show at least 5 trials

￭ All fuzzers eventually plateau

￭ Random mutation only gets so far
￭ Early plateaus indicate you are stuck
￭ Potentially missing critical code

22

Fuzzing Time

Edges

Covered

Fuzzing Time

Edges

Covered

Stefan Nagy

What does your code coverage tell you?

￭ Hit counts:
￭ Higher = more cycle iterations

￭ Deeper loop exploration
￭ More recursion

￭ Examine relative changes
￭ E.g., comparing two harnesses

23

[1] [3] [4,7]

[8,15] [16,31] [32,127] [128+]

[2][1] [3][2] [4,7]
[8,15] [32,127][16,31] [128+]

Stefan Nagy

What does your code coverage tell you?

￭ Source line coverage (e.g., gcov)
￭ Costs more time to generate reports
￭ Provides you more information
￭ Does not support binaries

24

Stefan Nagy

Are you fuzzing for long enough?

￭ Early plateaus can be misleading
￭ Look for sustained plateaus

￭ Likewise, high coverage early on can be misleading
￭ Want to see sustained growth over time

25

Fuzzing Time

Edges

Covered
2 hr 10 hr

Stefan Nagy

Is your execution timeout large enough?

￭ Timeout: maximum duration of any execution
￭ When exceeded, terminates execution

￭ … and marks test case as a “hang”

￭ AFL’s default is very small (mere milliseconds)
￭ AFL prefers short-running test cases
￭ Too low of a timeout = excessive hangs

￭ Missed code coverage
￭ Need to readjust for your target

26

40ms

100ms

Stefan Nagy

Are plateaus fuzzer-dependent?

￭ Try different input generation techniques
￭ Relying on random mutation is not advisable

￭ Not good at solving magic bytes

￭ Lots of options in the AFL universe
￭ Grammars, concolic exec, etc.
￭ Other code coverage metrics
￭ No single technique is the best

27

Source: https://www.fuzzbench.com/reports/paper/Main%20Experiment/index.html

Stefan Nagy

Evaluate your crashes…

￭ Replay all fuzzer-found crashes
￭ Use tools like AddressSanitizer, DrMemory, etc.
￭ If a test case crashes your harness…

￭ It should crash the original program too!

￭ Identify false-positive crashes
￭ I.e., crashes that occur only in your harness

￭ Indicates you are missing critical code
￭ Pay attention to what tools tell you (e.g., ASAN)

￭ Source lines (in your harness or API), etc.

28

== ASAN: heap-use-after-free on address
0x61900000047f at pc 0x00000040a52c bp
0x7fff9200dbf0 sp 0x7fff9200dbe0
READ size 1 at 0x61900000047f thread T0
 #0 0x40a52b in src/main.cpp:30
 #1 0x40e088 in std_function.h:297
 #2 0x40d605 in std_function.h:687
 #3 0x40b8d5 in src/main.cpp:130
 #4 0x7f9a498ff412 in libc-start.c:308

Stefan Nagy

Leverage available oracles!

￭ A library’s provided front-end programs
￭ Often are very large applications

￭ E.g., objdump for Binutils
￭ E.g., bsdtar for libArchive

￭ Can serve as a ground-truth correct API usage

￭ Differential testing
￭ Compare against similar programs

￭ E.g., Foxit PDF vs. Adobe Reader
￭ Do they spit-out similar messages?

￭ E.g., “this file is definitely invalid for reason X”
￭ Better yet: do they crash too?

29

Stefan Nagy

Harnessing is a trial-and-error art…

Don’t give up!
Collect data, investigate, and refine!

30

Stefan Nagy

Questions?

31

