Week 6: Lecture B

Harnessing Il

Wednesday, February 14, 2024

OOOOOOOOOOOOOOOOO

Recap: Key Dates

Feb. 14 Lab 2 due cs.utah.edu/~snagy/courses/cs5963/schedule
. R Feb. 12 Feb. 14
Feb. 14 F|nal Pro,ect released Harnessing | (slides) Harnessing Il
» Readings: » Readings:
Harnessing Lab released Final Project released
Feb. 19 No class (President’s Day) et S TR
Feb. 19 Feb. 21
No Class (President's Day) Tackling Roadblocks
Feb. 28 Lab 3 due > Readings:
Feb. 26 Feb. 28
. . Fuzzing Science Proposal Presentations
Feb. 28 5-minute project proposals > Readings: Harnessing Lab due by 11:59pm
Mar. 04 Mar. 06
Mar. 04 & 06 N 0 ClaSS (Sp ri ng B rea k) No Class (Spring Break) No Class (Spring Break)

Apr. 17 & 22 Final project presentations

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Recap: Lab 2 Overview

Assignment: learn how to use AddressSanitizer (ASAN)
= Read its documentation in https://clang.llvm.org/docs/AddressSanitizer.html

Replay the crashes you found in Lab 1 on an ASAN-instrumented binary
= Collect information on each crash
= What do you observe?

Deliverable: a 1-3 page report detailing your findings

= Feel free to make it your own (e.g., pictures, text, etc.)

Linux environments are recommended
= Usea VM ifyou don’t have one!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

https://clang.llvm.org/docs/AddressSanitizer.html

Recap: Lab 2 Tips

Re-run crashes on the ASAN instrumented binary
= Use Python to script collection of ASAN outputs
= Do string post-processing to collect error types, crashing source line, etc.
= Group and deduplicate crashes as you see fit

Didn't find any crashes in Lab 1?

= Try fuzzing fuzzgoat from https://github.com/fuzzstation/fuzzgoat
= Should yield lots of crashes quickly

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

https://github.com/fuzzstati0n/fuzzgoat

Lab 3: Harnessing

Assignment: write your own AFL-friendly harness for libArchive

= Read its documentation in: https://linux.die.net/man/3/libarchive
= https://github.com/google/oss-fuzz/blob/master/projects/libarchive/libarchive fuzzer.cc

Create a harness that reads data from files
= What functions did you try?
= What worked and what didn't?

Deliverable: a 1-3 page report detailing your findings
= Feel free to make it your own (e.g., pictures, text, etc.)
= Submit your harness code in your report
= Free to team up (max 3 students per group)
= Submit one report per group

Linux environments are recommended
= UseaVMifyoudon't have one!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

https://linux.die.net/man/3/libarchive
https://github.com/google/oss-fuzz/blob/master/projects/libarchive/libarchive_fuzzer.cc

Lab 3: Harnessing

Deadline: Wednesday, February 28th by 11:59PM
= Group assignment (up to 3 members)
= Look for teammates in-class and on Piazza
m See cs.utah.edu/~snagy/courses/cs5963/assignments.html

No class this coming Monday, February 19th

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

https://www.cs.utah.edu/~snagy/courses/cs5963/assignments.html

Lab 3 Tips

Read its documentation and get inspiration from others’ code

= Understand the libArchive manpages
= Look at how others (e.g., non-fuzzing projects) use its API

Validate your results

= Measure code coverage of the libArchive codebase
= Look for increasing code coverage over time

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Semester Final Project

OOOOOOOOOOOOOOOOO

Stefan Nagy

Semester Final Project

Objective: uncover new bugs in a real-world program
Team up in groups of 1-4

Select an “interesting” target program of your choice; e.g.:
= Popular applications

Nintendo emulators

Old computer games

MacOS Rosetta

GET CREATIVE!

Figure out how to fuzz your target, find bugs, and responsibly disclose them

Deliverables: a report, disclosure of bugs, and open-source your team’s fuzzer

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Semester Final Project

5-minute project proposal on Feb. 28

{

Final presentations at semester’s end

_

You have full creative liberty—get
creative and fuzz something fun!

Stefan Nagy

Semester Final Project

Details also now available on course website Assignments page:

Final Project (collected via Canvas)

Instructions: Using your skills from Labs 1-3, team up in groups of no more than four students to hunt down bugs in a
real-world application of your choice! Upon selecting a target application, your team will need to figure out how to (1)
harness it, (2) fuzz it, and (3) triage any discovered bugs. You may select any target you like (e.g., software APIs, video games,
emulators), provided that it has not been fuzzed before—or has demonstrably not yet been fuzzed effectively.

Halfway through the semester, your team will present a 5-minute project proposal to the class outlining your chosen target,
your proposed approach, and the significance of your work. At the semester's end, you will prepare and deliver a 15-minute
final presentation alongside a final report outlining your ultimate approach, findings, and any discovered bugs.

Heilmeier's Catechism will serve as the high-level rubric for your proposal, presentation, and report—so be ready to explain
why your project idea matters! But most importantly, get creative and have fun, and report any bugs you find along the way!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 12

Project Schedule

Wednesday, Feb. 28th: proposal day

= Instructions: a 5-minute presentation

that motivates your project 5 The Heilmeier Catechi
. «“ . ” ! ISMm
= Goal: practice the art of “the pitch |
p p " Whatare you trying to do? Articulate objectives using absolutel ;
= Get feedback from your peers | * Howisitdone today, andwhat are the s o curem pnes
{ mi current practice?

B} FO uOW Heilmeier’s Catechism! * Whatis new in your approach and why do you think jt ill be suc ful
It will be successful?
" Who cares? If you are successful, what difference will it make?
. . " What are the risks?
Mar. 27th: in-class project workday .+ ...

® How long will it take?

Wha id- B
tare the mid-term and final exams” to check for success?

Apr. 17th & 22nd: final presentations
= 15-20 minute slide deck and discussion
= What you did, and why, and what results

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Harnessing Recap

Stefan Nagy

15

Harnessing

Definition: making a program fuzzable

= Pass input data to a program'’s core logic
= Skip functionality we don't care about
= Drop-in integration with fuzzers (e.g., AFL)

A critical (and difficult) part of fuzzing

= Lots of domain expertise
= Automating still an open problem

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

What makes a good harness?

Speed LmesraMhExec . source
= Avoid irrelevant, wasteful code (e.g., GUIs) : g 1 "H':lt:p) |
4 {
5| x] 1 if (param)
Coverage | R
= Execute interesting, hard-to-reach parts of code f . ?mmm -
= Avoid leaving blindspots (hidden bugs) 1 g ! |
Correctness
= Upholds program’s expected behavior
= Does not incur spurious effects (e.g., FP crashes)
SCHODLOE COMPUTING Stefan Nagy 17

UNIVERSITY OF UTAH

SCHOOL OF COMPUTING

Identifying suitable targets

For libraries (e.g., libJPEG):
= Find API's “consumer” functions
= Review documentation and figure out how to call it

For applications (e.g., Adobe Reader):
= Find what directly loads data (e.g., calls fopen())
= Skip-over irrelevant setup code

UNIVERSITY OF UTAH

Stefan Nagy

18

Identifying suitable targets

For libraries (e.g., libJPEG):
= Find API's “consumer” functions
= Review documentation and figure out how to call it

For applications (e.g., Adobe Reader):
= Find what directly loads data (e.g., calls fopen())
= Skip-over irrelevant setup code

Can harnessing be automated?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

19

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Automated Harnessing

Stefan Nagy

20

Current Automated Harnessers

Single-function harnessing:
= Fuzzable: github.com/ex0dus-0x/fuzzable
= Choose targets with highest cyclomatic complexity

Harness many functions:

= Open-source:
= FUDGE: research.google/pubs/pub48314/
= FuzzGen: github.com/HexHive/FuzzGen

= Closed-source:
= Winnie (Windows): github.com/sslab-gatech/winnie
= APICraft (Mac APIs): sithub.com/occia/apicraft

= Find targets, and “stitch” together preceding control and data flow

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

https://github.com/ex0dus-0x/fuzzable
https://research.google/pubs/pub48314/
https://github.com/HexHive/FuzzGen
https://github.com/sslab-gatech/winnie
https://github.com/occia/apicraft

General Workflow

Step 1: choose your targets
= Heuristic driven

Step 2: graph construction
= Control flow graph, call graph

Step 4: type recovery
= Function arguments
= Return values

Step 4: stitch it all together

= Call functions in logical order
= Match return values with arguments

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Step 1: Target Discovery

Functions that take inputs as...

= File names or paths
= File descriptors

= Buffered data

= Pointers

Approaches:

N

FILE *fp = fopen("filename", "rb");

int *arr = (int*) calloc(4096, sizeof(int));

int ret = foo (arr, &callback, &fp);

= Static identification: scan the program
and mine interesting patterns

= Dynamic tracing: look for patterns when
tracing program on some inputs

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Source: WINNIE: Fuzzing Windows Applications with Harness Synthesis and Fast Cloning

Stefan Nagy

23

Challenges

Static identification:
= Open-source: slower as program size grows
= Closed-source: can be derailed by errors

angr 4.6.1.4
BAP 0.9.9
ByteWeight 0.9.9
Dyninst 9.1.0
Hopper 3.11.5
IDA Pro 6.7
Jakstab 0.8.4

X ao

* O

SPEC (C) —
SPEC (C++) = ="~

Dynamic tracing:
= Largely a press-and-click manual task
= Only as good as what you capture
= Not every input invokes interesting functions

Source: An In-Depth Analysis of Disassembly on Full-Scale x86/x64 Binaries

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Step 2: Control-flow Graph

Collect intra- and inter-procedural CFGs:

Enter main Enter p
= Intraprocedural: control flow in one function - Y . v
= a<?9
= Jumps v
= Local gotos Call p() O\
=0 y =
u LOO pS r:=Return p(x)
v au” j
. X i=r return a;
= Interprocedural: transfers between functions v v
] Calls Call p(x + 10) Exit p
| Non-local gotos z:=Return p(x+10) \J
v
= Returns T
X1t main
= Merge across all application components
SCHOOL OF COMPUTING

Source: https://groups.seas.harvard.edu/courses/cs252/2011sp/slides/Lec05-Interprocedural.pdf
UNIVERSITY OF UTAH

Stefan Nagy

Challenges

Recovery of indirect edges
= Indirect jumps and calls, returns

= Undecidable problem (even for open-source)
= Best guess: over-approximated set
based on some level of alias analysis

The usual closed-source hurdles
= Function boundary recovery
= Instruction recovery

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

26

Step 3: Type Recovery

Recover function prototypes _emm T T~
s \
= Arguments 7/
" Ret ’ @saw(W) | |
eturn types ; A foo(@) X
: I
' @ bar(A) '
. ar(A
Self-encoded in source code || ¥ baz(@) , \‘
= Meticulously extracted from binaries \ I
\ sit($)]
\ /
\
N @ see(¥) e
~ ~
~ -

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 27

Challenges

Type recovery is hard for closed-source
= Best case: have symbol metadata intact
Worst case: metadata completely stripped
= Task becomes really analysis intensive
= Generally reliant on lots of heuristics

Pointers are hard to analyze
= Pointers to functions vs. data
= Meticulous memory inspection
= Current tools see mixed results

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

€T] Office

<2 Dropbox

am Windows ios
macOS

28

Step 4: Stitching

Connect the dots to form the harness
= Call functions in a logical order
= Must reach the function you care about
= Match return values and function arguments

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

29

Challenges

Some arguments shouldn’t be fuzzed

= Must preserve argument dependencies
= Requires intensive data-flow analysis

Must recover input validity checks
= Allowable ranges, status values
= Conditional APl dependencies
= “Callback” functions passed as args
= Default back to human expert

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

' void *memcpy(void *dest,

const void *src,

if (v == ARC_FATAL) { exit(); }

_-

30

Evaluating Candidate Harnesses

Potentially large solution space

= E.g., over-approximated indirect edges
= Need to whittle-down to final candidates

Apply differential testing
= On basic fuzzing input seeds
= Developer-provided smoke tests
= Coverage over time

Make human expert have final say

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

A foo(,)

\

@ bar(A)

\

¥ baz(@®)

*
o

o\

sit(@) @ see(@)
@ saw(®)

31

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

