
Stefan Nagy

Week 6: Lecture B
Harnessing II

1

Wednesday, February 14, 2024

Stefan Nagy

Recap: Key Dates
￭ Feb. 14 Lab 2 due

￭ Feb. 14 Final Project released

￭ Feb. 19 No class (President’s Day)

￭ Feb. 28 Lab 3 due

￭ Feb. 28 5-minute project proposals

￭ Mar. 04 & 06 No class (Spring Break)

￭ Apr. 17 & 22 Final project presentations

2

cs.utah.edu/~snagy/courses/cs5963/schedule

Stefan Nagy

Recap: Lab 2 Overview

￭ Assignment: learn how to use AddressSanitizer (ASAN)
￭ Read its documentation in https://clang.llvm.org/docs/AddressSanitizer.html

￭ Replay the crashes you found in Lab 1 on an ASAN-instrumented binary
￭ Collect information on each crash
￭ What do you observe?

￭ Deliverable: a 1–3 page report detailing your findings
￭ Feel free to make it your own (e.g., pictures, text, etc.)

￭ Linux environments are recommended
￭ Use a VM if you don’t have one!

3

https://clang.llvm.org/docs/AddressSanitizer.html

Stefan Nagy

Recap: Lab 2 Tips

￭ Re-run crashes on the ASAN instrumented binary
￭ Use Python to script collection of ASAN outputs
￭ Do string post-processing to collect error types, crashing source line, etc.
￭ Group and deduplicate crashes as you see fit

￭ Didn’t find any crashes in Lab 1?
￭ Try fuzzing fuzzgoat from https://github.com/fuzzstati0n/fuzzgoat
￭ Should yield lots of crashes quickly

4

https://github.com/fuzzstati0n/fuzzgoat

Stefan Nagy

Lab 3: Harnessing

￭ Assignment: write your own AFL-friendly harness for libArchive
￭ Read its documentation in: https://linux.die.net/man/3/libarchive
￭ https://github.com/google/oss-fuzz/blob/master/projects/libarchive/libarchive_fuzzer.cc

￭ Create a harness that reads data from files
￭ What functions did you try?
￭ What worked and what didn’t?

￭ Deliverable: a 1–3 page report detailing your findings
￭ Feel free to make it your own (e.g., pictures, text, etc.)
￭ Submit your harness code in your report
￭ Free to team up (max 3 students per group)
￭ Submit one report per group

￭ Linux environments are recommended
￭ Use a VM if you don’t have one!

5

https://linux.die.net/man/3/libarchive
https://github.com/google/oss-fuzz/blob/master/projects/libarchive/libarchive_fuzzer.cc

Stefan Nagy

Lab 3: Harnessing

￭ Deadline: Wednesday, February 28th by 11:59PM
￭ Group assignment (up to 3 members)
￭ Look for teammates in-class and on Piazza
￭ See cs.utah.edu/~snagy/courses/cs5963/assignments.html

￭ No class this coming Monday, February 19th

6

https://www.cs.utah.edu/~snagy/courses/cs5963/assignments.html

Stefan Nagy

Lab 3 Tips

￭ Read its documentation and get inspiration from others’ code
￭ Understand the libArchive manpages
￭ Look at how others (e.g., non-fuzzing projects) use its API

￭ Validate your results
￭ Measure code coverage of the libArchive codebase
￭ Look for increasing code coverage over time

7

Stefan Nagy

Questions?

8

Stefan Nagy

Semester Final Project

9

Stefan Nagy

Semester Final Project

￭ Objective: uncover new bugs in a real-world program

￭ Team up in groups of 1 – 4

￭ Select an “interesting” target program of your choice; e.g.:
￭ Popular applications
￭ Nintendo emulators
￭ Old computer games
￭ MacOS Rosetta
￭ GET CREATIVE!

￭ Figure out how to fuzz your target, find bugs, and responsibly disclose them

￭ Deliverables: a report, disclosure of bugs, and open-source your team’s fuzzer

10

Stefan Nagy

Semester Final Project

￭ Objective: uncover new bugs in a real-world program

￭ Team up in groups of 1 – 4

￭ Select an “interesting” target program of your choice; e.g.:
￭ Popular applications
￭ Nintendo emulators
￭ Old computer games
￭ MacOS Rosetta
￭ GET CREATIVE!

￭ Figure out how to fuzz your target, find bugs, and responsibly disclose them

￭ Deliverables: a report, disclosure of bugs, and open-source your team’s fuzzer

11

You have full creative liberty—get
creative and fuzz something fun!

Final presentations at semester’s end

5-minute project proposal on Feb. 28

Stefan Nagy

Semester Final Project

￭ Details also now available on course website Assignments page:

12

Stefan Nagy

Project Schedule

￭ Wednesday, Feb. 28th: proposal day
￭ Instructions: a 5-minute presentation

that motivates your project
￭ Goal: practice the art of “the pitch”

￭ Get feedback from your peers
￭ Follow Heilmeier’s Catechism!

￭ Mar. 27th: in-class project workday

￭ Apr. 17th & 22nd: final presentations
￭ 15–20 minute slide deck and discussion
￭ What you did, and why, and what results

13

Stefan Nagy

Questions?

14

Stefan Nagy

Harnessing Recap

15

Stefan Nagy

Harnessing

￭ Definition: making a program fuzzable
￭ Pass input data to a program’s core logic
￭ Skip functionality we don’t care about
￭ Drop-in integration with fuzzers (e.g., AFL)

￭ A critical (and difficult) part of fuzzing
￭ Lots of domain expertise
￭ Automating still an open problem

16

archive_read_open (…)

archive_read_data (…)

IF file header valid…

Stefan Nagy

What makes a good harness?

￭ Speed
￭ Avoid irrelevant, wasteful code (e.g., GUIs)

￭ Coverage
￭ Execute interesting, hard-to-reach parts of code
￭ Avoid leaving blindspots (hidden bugs)

￭ Correctness
￭ Upholds program’s expected behavior
￭ Does not incur spurious effects (e.g., FP crashes)

17

Stefan Nagy

Identifying suitable targets

￭ For libraries (e.g., libJPEG):
￭ Find API’s “consumer” functions
￭ Review documentation and figure out how to call it

￭ For applications (e.g., Adobe Reader):
￭ Find what directly loads data (e.g., calls fopen())
￭ Skip-over irrelevant setup code

18

Stefan Nagy

Identifying suitable targets

￭ For libraries (e.g., libJPEG):
￭ Find API’s “consumer” functions
￭ Review documentation and figure out how to call it

￭ For applications (e.g., Adobe Reader):
￭ Find what directly loads data (e.g., calls fopen())
￭ Skip-over irrelevant setup code

￭ Can harnessing be automated?

19

Stefan Nagy

Automated Harnessing

20

Stefan Nagy

Current Automated Harnessers

￭ Single-function harnessing:
￭ Fuzzable: github.com/ex0dus-0x/fuzzable
￭ Choose targets with highest cyclomatic complexity

￭ Harness many functions:
￭ Open-source:

￭ FUDGE: research.google/pubs/pub48314/
￭ FuzzGen: github.com/HexHive/FuzzGen

￭ Closed-source:
￭ Winnie (Windows): github.com/sslab-gatech/winnie
￭ APICraft (Mac APIs): github.com/occia/apicraft

￭ Find targets, and “stitch” together preceding control and data flow

21

https://github.com/ex0dus-0x/fuzzable
https://research.google/pubs/pub48314/
https://github.com/HexHive/FuzzGen
https://github.com/sslab-gatech/winnie
https://github.com/occia/apicraft

Stefan Nagy

General Workflow

￭ Step 1: choose your targets
￭ Heuristic driven

￭ Step 2: graph construction
￭ Control flow graph, call graph

￭ Step 4: type recovery
￭ Function arguments
￭ Return values

￭ Step 4: stitch it all together
￭ Call functions in logical order
￭ Match return values with arguments

22

Stefan Nagy

Step 1: Target Discovery

￭ Functions that take inputs as…
￭ File names or paths
￭ File descriptors
￭ Buffered data
￭ Pointers

￭ Approaches:
￭ Static identification: scan the program

and mine interesting patterns
￭ Dynamic tracing: look for patterns when

tracing program on some inputs

23

FILE *fp = fopen("filename", "rb");

int *arr = (int*) calloc(4096, sizeof(int));

int ret = foo (arr, &callback, &fp);

Source: WINNIE: Fuzzing Windows Applications with Harness Synthesis and Fast Cloning

Stefan Nagy

Challenges

￭ Static identification:
￭ Open-source: slower as program size grows
￭ Closed-source: can be derailed by errors

￭ Dynamic tracing:
￭ Largely a press-and-click manual task
￭ Only as good as what you capture

￭ Not every input invokes interesting functions

24

Source: An In-Depth Analysis of Disassembly on Full-Scale x86/x64 Binaries

Stefan Nagy

Step 2: Control-flow Graph

￭ Collect intra- and inter-procedural CFGs:
￭ Intraprocedural: control flow in one function

￭ Jumps
￭ Local gotos
￭ Loops

￭ Interprocedural: transfers between functions
￭ Calls
￭ Non-local gotos
￭ Returns

￭ Merge across all application components

25

Source: https://groups.seas.harvard.edu/courses/cs252/2011sp/slides/Lec05-Interprocedural.pdf

Stefan Nagy

Challenges

￭ Recovery of indirect edges
￭ Indirect jumps and calls, returns

￭ Undecidable problem (even for open-source)
￭ Best guess: over-approximated set

based on some level of alias analysis

￭ The usual closed-source hurdles
￭ Function boundary recovery
￭ Instruction recovery
￭ …

26

Stefan Nagy

Step 3: Type Recovery

￭ Recover function prototypes
￭ Arguments
￭ Return types

￭ Self-encoded in source code
￭ Meticulously extracted from binaries

27

 saw()

 bar()
 baz()

 foo()

 see()

 sit()

Stefan Nagy

Challenges

￭ Type recovery is hard for closed-source
￭ Best case: have symbol metadata intact

Worst case: metadata completely stripped
￭ Task becomes really analysis intensive
￭ Generally reliant on lots of heuristics

￭ Pointers are hard to analyze
￭ Pointers to functions vs. data

￭ Meticulous memory inspection
￭ Current tools see mixed results

28

Stefan Nagy

Step 4: Stitching

￭ Connect the dots to form the harness
￭ Call functions in a logical order
￭ Must reach the function you care about
￭ Match return values and function arguments

29

 sit()

 bar()

 baz()

 foo()

 saw()

 see()

Stefan Nagy

Challenges

￭ Some arguments shouldn’t be fuzzed
￭ Must preserve argument dependencies
￭ Requires intensive data-flow analysis

￭ Must recover input validity checks
￭ Allowable ranges, status values
￭ Conditional API dependencies
￭ “Callback” functions passed as args
￭ Default back to human expert

30

void *memcpy(void *dest,

const void *src,

size_t n);

if (v == ARC_FATAL) { exit(); }

Stefan Nagy

Evaluating Candidate Harnesses

￭ Potentially large solution space
￭ E.g., over-approximated indirect edges
￭ Need to whittle-down to final candidates

￭ Apply differential testing
￭ On basic fuzzing input seeds
￭ Developer-provided smoke tests
￭ Coverage over time

￭ Make human expert have final say

31

 sit()

 bar()

 baz()

 foo()

 saw()

 see()

Stefan Nagy

Questions?

32

