
Stefan Nagy

Week 6: Lecture A
Harnessing I

1

Monday, February 12, 2024

Stefan Nagy

Recap: Key Dates
￭ Feb. 12 Lab 3 released

￭ Feb. 14 Lab 2 due

￭ Feb. 19 No class (President’s Day)

￭ Feb. 28 Lab 3 due

￭ Feb. 28 5-minute project proposals

￭ Mar. 04 & 06 No class (Spring Break)

￭ Apr. 17 & 22 Final project presentations

2

cs.utah.edu/~snagy/courses/cs5963/schedule

Stefan Nagy

Recap: Lab 2 Overview

￭ Assignment: learn how to use AddressSanitizer (ASAN)
￭ Read its documentation in https://clang.llvm.org/docs/AddressSanitizer.html

￭ Replay the crashes you found in Lab 1 on an ASAN-instrumented binary
￭ Collect information on each crash
￭ What do you observe?

￭ Deliverable: a 1–3 page report detailing your findings
￭ Feel free to make it your own (e.g., pictures, text, etc.)

￭ Linux environments are recommended
￭ Use a VM if you don’t have one!

3

https://clang.llvm.org/docs/AddressSanitizer.html

Stefan Nagy

Recap: Lab 2 Tips

￭ Re-run crashes on the ASAN instrumented binary
￭ Use Python to script collection of ASAN outputs
￭ Do string post-processing to collect error types, crashing source line, etc.
￭ Group and deduplicate crashes as you see fit

￭ Didn’t find any crashes in Lab 1?
￭ Try fuzzing fuzzgoat from https://github.com/fuzzstati0n/fuzzgoat
￭ Should yield lots of crashes quickly

4

https://github.com/fuzzstati0n/fuzzgoat

Stefan Nagy

Questions?

5

Stefan Nagy

Harnessing

6

Stefan Nagy

✓

X

Interesting!

Uninteresting

Program

Inputs

7

(new code)

(no new code)

Execute and
Collect Feedback

(e.g., code coverage)

Crashes

(SEGFAULT)

Recap: Coverage-guided Fuzzing

Stefan Nagy

✓

X

Interesting!

Uninteresting

8

(new code)

(no new code)

Recap: Coverage-guided Fuzzing

Inputs

Crashes

(SEGFAULT)

Program

Execute and
Collect Feedback

(e.g., code coverage)

Stefan Nagy

Harnessing

￭ Definition: making a program fuzzable
￭ Pass input data to a program’s core logic
￭ Skip functionality we don’t care about
￭ Drop-in integration with fuzzers (e.g., AFL)

9

Stefan Nagy

Harnessing

￭ Definition: making a program fuzzable
￭ Pass input data to a program’s core logic
￭ Skip functionality we don’t care about
￭ Drop-in integration with fuzzers (e.g., AFL)

￭ Types of harnesses
￭ Target a single function (libFuzzer-style)
￭ Target many functions (AFL-style)

10

Stefan Nagy

Harnessing

￭ Definition: making a program fuzzable
￭ Pass input data to a program’s core logic
￭ Skip functionality we don’t care about
￭ Drop-in integration with fuzzers (e.g., AFL)

￭ Types of harnesses
￭ Target a single function (libFuzzer-style)
￭ Target many functions (AFL-style)

￭ One of the most important (and difficult) parts of fuzzing
￭ Lots of domain expertise
￭ Automating still an open problem

11

Stefan Nagy

What makes a good harness?

￭ Speed: avoid re-executing uninteresting code
￭ GUI initialization

￭ Server/client setup routines

￭ Weird developer-added obstacles

￭ Cycles are precious—don’t waste them!

12

Stefan Nagy

What makes a good harness?

￭ Coverage: invoke interesting parts of the code
￭ Higher coverage = more thorough testing

￭ Test hard-to-reach functionality

￭ Measure and improve harnesses

￭ Coverage blindspots = missed bugs!

13

Stefan Nagy

What makes a good harness?

￭ Correctness: reset necessary program state
￭ Global variable state

￭ Stack state

￭ Heap state

￭ State errors = false positive crashes!

14

crashes: 1,000 (1,000 unique)

Stefan Nagy

Harnessing Open- vs. Closed-source Code

▪ Publicly-available source codebase
▪ Achieves security by transparency

▪ Generally easy to harness

Open Source:

15

Stefan Nagy

Harnessing Open- vs. Closed-source Code

▪ Publicly-available source codebase
▪ Achieves security by transparency

▪ Generally easy to harness

▪ Distributed as a precompiled binary
▪ Opaque to everyone but its developer

▪ Far more difficult to harness

Closed Source:Open Source:

16

Stefan Nagy

Basic Harnessing

17

Stefan Nagy

What fuzzers expect…

￭ AFL: program takes command-line input

18

./TargetBinary [arguments] @@

Stefan Nagy

What fuzzers expect…

￭ AFL: program takes command-line input
￭ Load, send, and store input data as files

19

./TargetBinary [arguments] @@

outDirectory / .cur_input

Stefan Nagy

What fuzzers expect…

￭ libFuzzer: inputs as buffered data

20

int LLVMFuzzerTestOneInput (const char *Data, long Size) {

}

Stefan Nagy

What fuzzers expect…

￭ libFuzzer: inputs as buffered data
￭ Fuzzer alters Data and Size objects

21

int LLVMFuzzerTestOneInput (const char *Data, long Size) {
 DoSomethingInterestingWithMyAPI (Data, Size);
 return 0;
}

Stefan Nagy

So what’s the difference?

￭ AFL: program takes command-line input

￭ libFuzzer: inputs as buffered data

22

int LLVMFuzzerTestOneInput (const char *Data, long Size) {
 DoSomethingInterestingWithMyAPI (Data, Size);
 return 0;
}

./TargetBinary [arguments] @@

Stefan Nagy

APIs vs Applications

￭ API
￭ ???

￭ Application
￭ ???

23

Stefan Nagy

APIs vs Applications

￭ API
￭ Application Programming Interface
￭ Suite of functions for some niche purpose
￭ Intended to be used by other applications

￭ Application
￭ ???

24

Stefan Nagy

APIs vs Applications

￭ API
￭ Application Programming Interface
￭ Suite of functions for some niche purpose
￭ Intended to be used by other applications

￭ Application
￭ Self-contained programs
￭ Single- or multi-purpose
￭ “Consumes” external APIs

25

Stefan Nagy

Identifying Suitable Targets

￭ For APIs (e.g., libJPEG):
￭ Find API’s “consumer” functions
￭ Review documentation and figure out how to call it

￭ For Applications (e.g., Adobe Reader):
￭ Find what directly loads data (e.g., calls fopen())
￭ Skip-over irrelevant setup code

26

Stefan Nagy

Example: libArchive

27

Stefan Nagy

Example: libArchive

28

Stefan Nagy

Example: libArchive

29

archive_read_open (…)

Stefan Nagy

Example: libArchive

30

archive_read_open (…)

Stefan Nagy

Example: libArchive

31

archive_read_open (…)

Stefan Nagy

Example: libArchive

32

archive_read_open (…)

archive_read_data (…)

Stefan Nagy

Example: libArchive

33

archive_read_open (…)

archive_read_data (…)

IF file header valid…

Stefan Nagy

Example: libArchive

34

int LLVMFuzzerTestOneInput(*buf, len) {

 int ret;
 ssize_t r;
 struct archive *a = archive_read_new();

 Buffer buffer = {buf, len};
 archive_read_open(a, &buffer, NULL, …, NULL);

 std::vector<uint8_t> databuf (getpagesize(), 0);
 struct archive_entry *entry;

while(1) {
 ret = archive_read_next_header(a, &entry);
 if (ret == ARCHIVE_EOF || ARCHIVE_FATAL)
 Break;

 while (r =
archive_read_data(a,

databuf.data(),
databuf.size())

> 0);

 if (r == ARCHIVE_FATAL)
 break;
 }
 archive_read_free(a);
 return 0;
}

Stefan Nagy

Useful Heuristics

￭ No source code?
￭ Capture a few call traces when running some valid inputs

￭ Look for functions that call interesting functions (e.g., fopen())

￭ Work backwards and figure out how to call them
￭ E.g., what validity-checking functions to call first

35

Stefan Nagy

Useful Heuristics

￭ Have source code?
￭ … or a reasonably-precise decompilation?

￭ Consider McCabe’s Cyclomatic Complexity
￭ #Edges - #Nodes + 2(#ConnectedComponents)

36

Source: https://en.wikipedia.org/wiki/Cyclomatic_complexity

Stefan Nagy

Useful Heuristics

￭ Have source code?
￭ … or a reasonably-precise decompilation?

￭ Consider McCabe’s Cyclomatic Complexity
￭ #Edges - #Nodes + 2(#ConnectedComponents)
￭ Example = 9 - 8 + 2(1) = 3

￭ Higher score considered more interesting target

37

Source: https://en.wikipedia.org/wiki/Cyclomatic_complexity

Stefan Nagy

Useful Heuristics

￭ Have source code?
￭ … or a reasonably-precise decompilation?

￭ Consider McCabe’s Cyclomatic Complexity
￭ #Edges - #Nodes + 2(#ConnectedComponents)
￭ Example = 9 - 8 + 2(1) = 3

￭ Higher score considered more interesting target
￭ Caveat: switch table for parsing cmdline opts
￭ High CC yet irrelevant to the fuzzer—why?

38

Source: https://en.wikipedia.org/wiki/Cyclomatic_complexity

Stefan Nagy

Useful Heuristics

￭ Have source code?
￭ … or a reasonably-precise decompilation?

￭ Consider McCabe’s Cyclomatic Complexity
￭ #Edges - #Nodes + 2(#ConnectedComponents)
￭ Example = 9 - 8 + 2(1) = 3

￭ Higher score considered more interesting target
￭ Caveat: switch table for parsing cmdline opts
￭ High CC yet irrelevant to the fuzzer—why?

￭ Path is hardcoded pre-fuzzing!

39

Source: https://en.wikipedia.org/wiki/Cyclomatic_complexity

Stefan Nagy

Useful Heuristics

40

int i = 1;

while (i <= 5)

{

 cout<<i<<endl;

 i++;

}

int a = 1;

int b = 2;

if (a>b)

 cout<<"a is greater";

else

 cout<<"b is greater";

CC score
= 5 - 5 + 2(1)
= 2

CC score
= 6 - 7 + 2(1)
= 1

Stefan Nagy

Trial and Error

￭ Writing harnesses is not a one-and-done task
￭ There is always room for improvement

￭ Write an initial harness, test it, and reflect
￭ Is the harness actually correct?

41

Stefan Nagy

Trial and Error

￭ Writing harnesses is not a one-and-done task
￭ There is always room for improvement

￭ Write an initial harness, test it, and reflect
￭ Is the harness actually correct?

￭ Yes: no (or few) false positive crashes
￭ No: lots of false positive crashes

￭ Am I executing interesting functionality?

42

Stefan Nagy

Trial and Error

￭ Writing harnesses is not a one-and-done task
￭ There is always room for improvement

￭ Write an initial harness, test it, and reflect
￭ Is the harness actually correct?

￭ Yes: no (or few) false positive crashes
￭ No: lots of false positive crashes

￭ Am I executing interesting functionality?
￭ Yes: coverage increases over time
￭ No: coverage plateaus after some time

￭ Study your target, and find ways improve your harnesses

43

Stefan Nagy

Questions?

44

