Week 6: Lecture A

Harnessing |

Monday, February 12, 2024

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

Feb. 12
Feb. 14
Feb. 19
Feb. 28
Feb. 28
Mar. 04 & 06

Apr. 17 & 22

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Recap: Key Dates

Lab 3 released

Lab 2 due

No class (President’s Day)
Lab 3 due

5-minute project proposals
No class (Spring Break)

Final project presentations

Stefan Nagy

cs.utah.edu/~snagy/courses/cs5963/schedule

Feb. 05

Bugs & Triage | (slides)
» Readings:

Triage Lab released

Feb. 12

Harnessing |

» Readings:

Harnessing Lab released

Feb. 19
No Class (President's Day)

Feb. 26
Fuzzing Science
» Readings:

Final Project released

Mar. 04
No Class (Spring Break)

Feb. 07

Bugs & Triage |l (slides)

» Readings:

Beginner Fuzzing Lab due by 11:59pm

Feb. 14
Harnessing Il
» Readings:

Triage Lab due by 11:59pm

Feb. 21
Tackling Roadblocks
» Readings:

Feb. 28
Proposal Presentations

Harnessing Lab due by 11:59pm

Mar. 06
No Class (Spring Break)

Recap: Lab 2 Overview

Assignment: learn how to use AddressSanitizer (ASAN)
= Read its documentation in https://clang.llvm.org/docs/AddressSanitizer.html

Replay the crashes you found in Lab 1 on an ASAN-instrumented binary
= Collect information on each crash
= What do you observe?

Deliverable: a 1-3 page report detailing your findings

= Feel free to make it your own (e.g., pictures, text, etc.)

Linux environments are recommended
= Usea VM ifyou don’t have one!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

https://clang.llvm.org/docs/AddressSanitizer.html

Recap: Lab 2 Tips

Re-run crashes on the ASAN instrumented binary
= Use Python to script collection of ASAN outputs
= Do string post-processing to collect error types, crashing source line, etc.
= Group and deduplicate crashes as you see fit

Didn't find any crashes in Lab 1?

= Try fuzzing fuzzgoat from https://github.com/fuzzstation/fuzzgoat
= Should yield lots of crashes quickly

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

https://github.com/fuzzstati0n/fuzzgoat

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Harnessing

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Recap: Coverage-guided Fuzzing

E Interesting!
/ ’ (new code) cCrashes

Inputs

Uninteresting (SEGFAULT)

‘ \ Execute and ' _% #W
Collect Feedback

Program (nO new COde

(e.g., code coverage)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Recap: Coverage-guided Fuzzing

‘ \ Execute and
Collect Feedback

Program

(e.g., code coverage)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Harnessing

Definition: making a program fuzzable
= Pass input data to a program'’s core logic
= Skip functionality we don't care about
= Drop-in integration with fuzzers (e.g., AFL)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Harnessing

Definition: making a program fuzzable
= Pass input data to a program'’s core logic
= Skip functionality we don't care about
= Drop-in integration with fuzzers (e.g., AFL)

Types of harnesses
= Target a single function (libFuzzer-style)
= Target many functions (AFL-style)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Harnessing

Definition: making a program fuzzable

= Pass input data to a program'’s core logic
= Skip functionality we don't care about
= Drop-in integration with fuzzers (e.g., AFL)

Types of harnesses
= Target a single function (libFuzzer-style)
= Target many functions (AFL-style)

One of the most important (and difficult) parts of fuzzing
= Lots of domain expertise
= Automating still an open problem

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

1

What makes a good harness?

Speed: avoid re-executing uninteresting code
= GUl initialization

= Server/client setup routines
= Weird developer-added obstacles

= Cycles are precious—don’t waste them!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

12

What makes a good harness?

Coverage: invoke interesting parts of the code tiresranch exec source

// example.cpp
= Higher coverage = more thorough testing - T
4 {
5 xv 1 if (param)
. . 6 {
= Test hard-to-reach functionality 4 | et
9 else
1 {
= Measure and improve harnesses 1 i —
| }
12
. . | as 1| int main(int argc, char* argv[])
= Coverage blindspots = missed bugs! 1 S|
! ;g 1 return 0;
20 }
21

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

What makes a good harness?

Correctness: reset necessary program state .
= Global variable state crashes: 1,000 (L000 unique)

= Stack state *
= Heap state

= State errors = false positive crashes!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

14

Harnessing Open- vs. Closed-source Code

Open Source:

Publicly-available source codebase
Achieves security by transparency

Generally easy to harness

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 15

Harnessing Open- vs. Closed-source Code

Closed Source:

Distributed as a precompiled binary
Opaque to everyone but its developer

2

Far more difficult to harness

Open Source:

= Publicly-available source codebase
= Achieves security by transparency

F
00])

EB
ac
809 /4

= Generally easy to harness

16

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Basic Harnessing

Stefan Nagy

17

What fuzzers expect...

AFL: program takes command-line input

./TargetBinary [arguments] @@

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

18

What fuzzers expect...

AFL: program takes command-line input
= Load, send, and store input data as files

~
—
Q
=
Q
(¢}
+
o
[
>
Q
=
<
je))
=
Q
c
3
D
5
—
(7))
]
OS]

outDirectory /

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

.cur_input

19

What fuzzers expect...

libFuzzer: inputs as buffered data

int LLVMFuzzerTestOneInput (const char *Data, long Size) {

—_———
N

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

20

What fuzzers expect...

libFuzzer: inputs as buffered data
= Fuzzer alters Data and Size objects

int LLVMFuzzerTestOneInput (const char *Data, long Size) {
DoSomethingInterestingWithMyAPI (Data, Size);
return 0;

}

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

21

So what's the difference?

AFL: program takes command-line input

./TargetBinary [arguments] @@

St
N _

libFuzzer: inputs as buffered data

|
' int LLVMFuzzerTestOneInput (const char *Data, long Size) {
| DoSomethingInterestingWithMyAPI (Data, Size);

return 0;

}

- -

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

22

API

= ?7?

Application

= 7?7

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

APIs vs Applications

Stefan Nagy

23

APIs vs Applications

API

= Application Programming Interface
= Suite of functions for some niche purpose
= Intended to be used by other applications

Application

= 7?7

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

24

APIs vs Applications

API

= Application Programming Interface
= Suite of functions for some niche purpose
= Intended to be used by other applications

Application
= Self-contained programs
= Single- or multi-purpose
= “Consumes” external APIs

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

SCHOOL OF COMPUTING

Identifying Suitable Targets

For APIs (e.g., libJPEG):
= Find API's “consumer” functions
= Review documentation and figure out how to call it

For Applications (e.g., Adobe Reader):
= Find what directly loads data (e.g., calls fopen())
= Skip-over irrelevant setup code

UNIVERSITY OF UTAH

Stefan Nagy

26

Example: libArchive

int
archive_read_open(struct archive *, void *client_data, archive_open_callback *,
archive_read_callback *, archive_close_callback *);

1
1
1
1
1
1
|
| int

i archive_read_open2(struct archive *, void *client_data, archive_open_callback *,

: archive_read_callback *, archive_skip_callback *, archive_close_callback *);

I

| int

| archive_read_open_FILE(struct archive *, FILE *file);

1

1

| int

| archive_read_open_fd(struct archive *, int fd, size_t block_size);

1

i int

: archive_read_open_filename(struct archive *, const char *filename, size_t block_size);
1

| int

1

| archive_read_open_memory(struct archive *, void *buff, size_t size);

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

27

Example: libArchive

g
:Int_—__—————————_—__-~

. archive_read_open(struct archive *, void *client_data, archive_open_ ca//backﬁ "\
. archlve read callback * archive close callback *);

I ~_____________——f
int

archive_read_open2(struct archive *, void *client_data, archive_open_callback *,
archive_read_callback *, archive_skip_callback *, archive_close_callback *);

int

archive_read_open_FILE(struct archive *, FILE *file);

int

archive_read_open_fd(struct archive *, int fd, size_t block_size);

int

archive_read_open_filename(struct archive *, const char *filename, size_t block_size);
int

archive_read_open_memory(struct archive *, void *buff, size_t size);

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Example: libArchive

[o o T — — o T
Illnt e _———

| archive_read_open(struct archive *, void *client_data, archive_open_ ca//backﬁ "\
archlve read callback * archive close callback *);
~___________————f
int
archive_read_open2(struct archive *, void *client_data, archive_open_callback *,
archive_read_callback *, archive_skip_callback *, archive_close_callback *);

int

archive_read_open_FILE(struct archive *, FILE *file);

int

archive_read_open_fd(struct archive *, int fd, size_t block_size);

int

archive_read_open_filename(struct archive *, const char *filename, size_t block_size);
int

archive_read_open_memory(struct archive *, void *buff, size_t size);

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

archive_read_open (..)

<

29

Example: libArchive

archive_read_data()
Read data associated with the header just read. Internally, this is
a convenience function that calls archive_read_data_block() and
fills any gaps with nulls so that callers see a single continuous
stream of data.

archive_read_data_block()
Return the next available block of data for this entry. Unlike
archive_read_data(), the archive_read_data_block() function avoids
copying data and allows you to correctly handle sparse files, as
supported by some archive formats. The library guarantees that
offsets will increase and that blocks will not overlap. Note that
the blocks returned from this function can be much larger than the
block size read from disk, due to compression and internal buffer
optimizations.

archive_read_data_skip()
A convenience function that repeatedly calls
archive_read_data_block() to skip all of the data for this archive
entry. Note that this function is invoked automatically by
archive_read_next_header2() if the previous entry was not completely
consumed.

archive_read_data_into_fd()
A convenience function that repeatedly calls
archive_read_data_block() to copy the entire entry to the provided
file descriptor.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

30

Example: libArchive

I :archive_read_data() ~
| { Read data associated with the header just read. Internally, this 4
| a convenience function that calls archive_read_data_block() and
\ | fills any gaps with nulls so that callers see a single continuous '
™ - “StFeamagf data. - -
! archive_read_data_block(J~ == == == == == = == =
| Return the next available block of data for this entry. Unlike
| archive_read_data(), the archive_read_data_block() function avoids
: copying data and allows you to correctly handle sparse files, as
: supported by some archive formats. The library guarantees that
: offsets will increase and that blocks will not overlap. Note that
i the blocks returned from this function can be much larger than the
: block size read from disk, due to compression and internal buffer
| optimizations.
| archive_read_data_skip()
| A convenience function that repeatedly calls
| archive_read_data_block() to skip all of the data for this archive
| entry. Note that this function is invoked automatically by
| archive_read_next_header2() if the previous entry was not completely
| consumed.
:archive_read_data_into_fd()
: A convenience function that repeatedly calls
: archive_read_data_block() to copy the entire entry to the provided
| file descriptor.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

31

Example: libArchive

I :archive_read_data() ~
| { Read data associated with the header just read. Internally, this 4
| a convenience function that calls archive_read_data_block() and
\ | fills any gaps with nulls so that callers see a single continuous '
™ - “StFeamagf data. - -
! archive_read_data_block(J~ == == == == == = == =
| Return the next available block of data for this entry. Unlike
| archive_read_data(), the archive_read_data_block() function avoids
: copying data and allows you to correctly handle sparse files, as
: supported by some archive formats. The library guarantees that
: offsets will increase and that blocks will not overlap. Note that
i the blocks returned from this function can be much larger than the
: block size read from disk, due to compression and internal buffer
| optimizations.
| archive_read_data_skip()
| A convenience function that repeatedly calls
| archive_read_data_block() to skip all of the data for this archive
| entry. Note that this function is invoked automatically by
| archive_read_next_header2() if the previous entry was not completely
| consumed.
:archive_read_data_into_fd()
: A convenience function that repeatedly calls
: archive_read_data_block() to copy the entire entry to the provided
| file descriptor.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

o))
=
@)
>
[
<
D
|
=
()
o))
o
|
©]
©
()
=)
~
~

o))
=
O
>
[N
<
D
|
-
D
job)
o
|
o
o)}
—~+
o)}
~~
~

32

Example: libArchive

I :archive_read_data() ~
| { Read data associated with the header just read. Internally, this 4
| a convenience function that calls archive_read_data_block() and
\ | fills any gaps with nulls so that callers see a single continuous '
’“—-"Stf?am.gfiata. __———’
archive_read_data_block(T™ ™= == == m= == == == =

Return the next available block of data for this entry. Unlike
archive_read_data(), the archive_read_data_block() function avoids
copying data and allows you to correctly handle sparse files, as
supported by some archive formats. The library guarantees that
offsets will increase and that blocks will not overlap. Note that

the blocks returned from this function can be much larger than the (\
block size read from disk, due to compression and internal buffer ! . :
enBlnizstions, , archive_read_open (..) |

\ 1
A convenience function that repeatedly calls \\ _________________________________
archive_read_data_block() to skip all of the data for this archive ~

entry. Note that this function is invoked automatically by

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
1
| archive_read_data_skip()
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

archive_read_next_header2() if the previous entry was not completely -,
consumed. 7’
archive_read_data_into_fd() <~
A convenience function that repeatedly calls (Tt TT T ‘.I
archive_read_data_block() to copy the entire entry to the provided ! . |
file descriptor. . archive_read_data (..) |
\ 1

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Example: libArchive

int LLVMFuzzerTestOneInput(*buf, len) {

int ret;
ssize_t r;
struct archive *a = archive_read_new();

Buffer buffer = {buf, len};

archive_read_open(a, &buffer, NULL, .., NULL);

std::vector<uint8_t> databuf (getpagesize(), 0);
struct archive_entry *entry;

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

while(1) {
ret = archive_read_next_header(a, &entry);
if (ret == ARCHIVE_EOF || ARCHIVE_FATAL)
Break;

while (r =
archive_read_data(a,
databuf.data(),
databuf.size())

> 0);
if (r == ARCHIVE_FATAL)
break;
}
archive_read_free(a);
return 90;

34

Useful Heuristics

No source code?
= Capture a few call traces when running some valid inputs

= Look for functions that call interesting functions (e.g., fopen())

= Work backwards and figure out how to call them
= E.g., what validity-checking functions to call first

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Dyn

QeEmMuU

35

Useful Heuristics

Have source code?
= ..orareasonably-precise decompilation?

= Consider McCabe’s Cyclomatic Complexity
= #Edges - #Nodes + 2(#ConnectedComponents)

Source: https://en.wikipedia.org/wiki/Cyclomatic_complexity

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

36

Useful Heuristics

Have source code?
= ..orareasonably-precise decompilation?

= Consider McCabe’s Cyclomatic Complexity
= #Edges - #Nodes + 2(#ConnectedComponents)
= Example=9 - 8 + 2(1) = 3

= Higher score considered more interesting target

Source: https://en.wikipedia.org/wiki/Cyclomatic_complexity

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

37

Useful Heuristics

Have source code?
= ..orareasonably-precise decompilation?

= Consider McCabe’s Cyclomatic Complexity

#Edges - #Nodes + 2(
Example= 9 - 8 + 2(1) = 3

= Higher score considered more interesting target

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Caveat: switch table for parsing cmdline opts
High CC yet irrelevant to the fuzzer—why?

Source: https://en.wikipedia.org/wiki/Cyclomatic_complexity

Stefan Nagy

switch (opt) {

case 'a':

bsdtar—>flags |= OPTFLAG_AUTO_COMPRESS;

break;

case OPTION_ACLS:

bsdtar—>extract_flags |= ARCHIVE_EXTRACT_ACL;

bsdtar->readdisk_flags &= ~ARCHIVE_READDISK_NO_ACL;

bsdtar—>flags |= OPTFLAG_ACLS;

break;

break;

errno = 0;

tptr = NULL;

t = (int)strtol(bsdtar->argument, &tptr, 10);

if (errno || t <=0 || t > 8192 ||
*(bsdtar->argument) == '\@' || tptr == NULL ||
*tptr 1= "\0') {

lafe_errc(1, @, "Invalid or out of range "
"(1..8192) argument to -b");
}
bsdtar—>bytes_per_block = 512 * t;

bsdtar—>bytes_in_last_block = bsdtar—>bytes_per_block;

break;

38

Useful Heuristics

Have source code? o |

= ..orareasonably-precise decompilation?

= Consider McCabe’s Cyclomatic Complexity
= #Edges - #Nodes + 2(
= Example=9 - 8 + 2(1) = 3

= Higher score considered more interesting target
= Caveat: switch table for parsing cmdline opts
= High CCyet irrelevant to the fuzzer—why?
Path is hardcoded pre-fuzzing!

Source: https://en.wikipedia.org/wiki/Cyclomatic_complexity

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

bsdtar—>flags |= OPTFLAG_AUTO_COMPRESS;

break;

case OPTION_ACLS:

bsdtar—>extract_flags |= ARCHIVE_EXTRACT_ACL;
bsdtar->readdisk_flags &= ~ARCHIVE_READDISK_NO_ACL;
bsdtar—>flags |= OPTFLAG_ACLS;

break;

break;

errno = 0;

tptr = NULL;

t = (int)strtol(bsdtar->argument, &tptr, 10);

if (errno || t <=0 || t > 8192 ||
*(bsdtar->argument) == '\@' || tptr == NULL ||
*tptr 1= "\0') {

lafe_errc(1, @, "Invalid or out of range "
"(1..8192) argument to -b");
}
bsdtar—>bytes_per_block = 512 * t;

bsdtar—>bytes_in_last_block = bsdtar—>bytes_per_block;

break;

int 1 = 1;
while (i <= 5)
{
cout<<i<<endl;

i++;

CC score
5 -5+ 2(1)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Useful Heuristics

int a = 1;
int b = 2;
if (a>b)
cout<<"a is greater";
else

cout<<"b is greater";

Stefan Nagy

CC score
=6 -7+ 2(1)
= 1

40

Trial and Error

Writing harnesses is not a one-and-done task
= There is always room for improvement

Write an initial harness, test it, and reflect
= |s the harness actually correct?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

41

Trial and Error

Writing harnesses is not a one-and-done task
= There is always room for improvement

Write an initial harness, test it, and reflect

= |s the harness actually correct?
= Yes: no (or few) false positive crashes
= No: lots of false positive crashes

= Am | executing interesting functionality?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

42

Trial and Error

Writing harnesses is not a one-and-done task
= There is always room for improvement

Write an initial harness, test it, and reflect

= |sthe harness actually correct?
= Yes: no (or few) false positive crashes
= No: lots of false positive crashes
= Am | executing interesting functionality?
= Yes: coverage increases over time
= No: coverage plateaus after some time
= Study your target, and find ways improve your harnesses

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

