
Stefan Nagy

Week 5: Lecture B
Bugs & Triage II

1

Wednesday, February 7, 2024

Stefan Nagy

Recap: Key Dates
￭ Feb. 05 Lab 2 released

￭ Feb. 07 Lab 1 due

￭ Feb. 14 Lab 2 due

￭ Feb. 19 No class (President’s Day)

￭ Feb. 28 Lab 3 due

￭ Feb. 28 5-minute project proposals

￭ Mar. 04 & 06 No class (Spring Break)

￭ Apr. 17 & 22 Final project presentations

2

cs.utah.edu/~snagy/courses/cs5963/schedule

Stefan Nagy

Lab 2: Crash Triage

￭ Assignment: learn how to use AddressSanitizer (ASAN)
￭ Read its documentation in https://clang.llvm.org/docs/AddressSanitizer.html

￭ Replay the crashes you found in Lab 1 on an ASAN-instrumented binary
￭ Collect information on each crash
￭ What do you observe?

￭ Deliverable: a 1–3 page report detailing your findings
￭ Feel free to make it your own (e.g., pictures, text, etc.)

￭ Linux environments are recommended
￭ Use a VM if you don’t have one!

3

https://clang.llvm.org/docs/AddressSanitizer.html

Stefan Nagy

Lab 2 Tips

￭ Re-run crashes on the ASAN instrumented binary
￭ Use Python to script collection of ASAN outputs
￭ Do string post-processing to collect error types, crashing source line, etc.
￭ Group and deduplicate crashes as you see fit

￭ Didn’t find any crashes in Lab 1?
￭ Try fuzzing fuzzgoat from https://github.com/fuzzstati0n/fuzzgoat
￭ Should yield lots of crashes quickly

4

https://github.com/fuzzstati0n/fuzzgoat

Stefan Nagy

Questions?

5

Stefan Nagy

Crash Triage

6

Stefan Nagy

✓

X

Interesting!

Uninteresting

Program

Inputs

7

(new code)

(no new code)

Execute and
Collect Feedback

(e.g., code coverage)

Crashes

(SEGFAULT)

Recap: Coverage-guided Fuzzing

Stefan Nagy

✓

X

Interesting!

Uninteresting

Program

8

(new code)

(no new code)

Recap: Coverage-guided Fuzzing

Inputs

Execute and
Collect Feedback

(e.g., code coverage)

Crashes

(SEGFAULT)

Now
what?

Stefan Nagy

So your fuzzer found some crashes…

￭ Are they actually real bugs?
￭ Your fuzzer may be lying to you…

￭ What kind of bugs were found?
￭ Type (e.g., logic, memory safety)
￭ Root cause

￭ How severe is each bug?
￭ Developers: which to prioritize
￭ Reporters: convince developers

9

total crashes : 200 (99 unique)

Stefan Nagy

Crash Deduplication

10

Stefan Nagy

AFL’s “Unique” Crashes

￭ AFL repurposes its coverage
bitmap to count unique crashes

11

trace bitmap

global bitmap

New coverage?

✓
cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location ⊕ prev_location]++;
prev_location = cur_location >> 1;

Stefan Nagy

AFL’s “Unique” Crashes

￭ AFL repurposes its coverage
bitmap to count unique crashes
￭ New crash edge? New unique crash

12

trace bitmap

crash bitmap

New coverage?

cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location ⊕ prev_location]++;
prev_location = cur_location >> 1;

Stefan Nagy

AFL’s “Unique” Crashes

￭ AFL repurposes its coverage
bitmap to count unique crashes
￭ New crash edge? New unique crash

￭ Influenced by weird things
￭ Non-deterministic behavior
￭ Undefined behavior
￭ Bitmap collisions

￭ Not a sound metric for “bugs”

13

trace bitmap

crash bitmap

New coverage?

cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location ⊕ prev_location]++;
prev_location = cur_location >> 1;

Stefan Nagy

How should we group crashes?

￭ Manually
￭ Need domain expertise
￭ Hard to enumerate lots of crashes

￭ Automatically
￭ Scripted tooling
￭ Requires a good “proxy” metric

￭ Performance vs. precision

14

Stefan Nagy

Fuzzy Stack Hashing

￭ Approximated measure of bugs found
￭ E.g., MD5(“foo|a|b|c|d”)
￭ Most popular proxy metric in use today

￭ Idea: concatenate top-N stack frames
for each crashing test case
￭ Large N = every crash unique (over-count)
￭ Small N = few crashes unique (under-count)
￭ Most set N arbitrarily

15

Source: The Art, Science, and Engineering of Fuzzing: A Survey

Stefan Nagy

Fuzzy Stack Hashing

￭ Concatenate more information
￭ Source code lines
￭ Addresses
￭ Crashing signal
￭ ASAN-reported bug type

￭ E.g., MD5(“UAF:foo|a|b|c|d”)

16

== ASAN: heap-use-after-free on address
0x61900000047f at pc 0x00000040a52c bp
0x7fff9200dbf0 sp 0x7fff9200dbe0
READ of size 1 at 0x61900000047f thread T0
 #0 0x40a52b in src/main.cpp:30
 #1 0x40e088 in std_function.h:297
 #2 0x40d605 in std_function.h:687
 #3 0x40b8d5 in src/main.cpp:130
 #4 0x7f9a498ff412 in libc-start.c:308

Stefan Nagy

Trade-offs

￭ Fast to collect, but…

￭ N-values completely
change results

￭ Still over-counts bugs
￭ But not as much as AFL

17

Source: Evaluating Fuzz Testing

Stefan Nagy

Crash Clustering

￭ Idea: mutate crashing test cases
￭ Group them by similar characteristics

￭ E.g., crashing vs. not crashing
￭ E.g., coverage of buggy path

￭ Infer bug root causes from clusters
￭ Find common input properties

￭ Trade-offs: results not instant
￭ A lot more fuzzing is needed
￭ Sacrifice speed for precision

18

Igor: Crash Deduplication Through Root-Cause Clustering

Stefan Nagy

Exploitability Assessment

￭ What is needed to exploit this bug?
￭ E.g., process and kernel state
￭ In other words: can you write an exploit for it?

￭ Automatic Exploit Generation (AEG)
￭ Only works for simple bugs
￭ Many assumptions that don’t hold
￭ Unsolved (and not-easily-solvable) problem

￭ Best option today: do it by hand
￭ A “dark art” with a steep learning curve
￭ Did someone say a CTF Team…?

19

Stefan Nagy

Responsible Disclosure

20

Stefan Nagy

Disclosing Bugs Responsibly

21

== heap-use-after-free

 #0 src/main.cpp:30

 #1 std_function.h:297

 #2 std_function.h:687

 #3 src/main.cpp:130

Stefan Nagy

Disclosing Bugs Responsibly

22

== heap-use-after-free

 #0 src/main.cpp:30

 #1 std_function.h:297

 #2 std_function.h:687

 #3 src/main.cpp:130

Stefan Nagy

Disclosing Bugs Responsibly

23

== heap-use-after-free

 #0 src/main.cpp:30

 #1 std_function.h:297

 #2 std_function.h:687

 #3 src/main.cpp:130

Stefan Nagy

Disclosing Bugs Responsibly

24

== heap-use-after-free

 #0 src/main.cpp:30

 #1 std_function.h:297

 #2 std_function.h:687

 #3 src/main.cpp:130

Stefan Nagy

Disclosing Bugs Responsibly

25

== heap-use-after-free

 #0 src/main.cpp:30

 #1 std_function.h:297

 #2 std_function.h:687

 #3 src/main.cpp:130

Stefan Nagy

What developers love…

￭ Proof-of-concept test cases
￭ Devs need to reproduce your bug

￭ Perform their own severity analysis
￭ Limited time and resources
￭ Fix most severe ones first
￭ E.g., MS Patch Tuesday

￭ Help them improve their test suites

26

Stefan Nagy

What developers love…

￭ Actionable insights
￭ Basic: build information

￭ E.g., compiler, version, OS, etc.
￭ Only report bugs in the latest version!

￭ Good: crashing source lines, PoCs

￭ Better: root cause analysis
￭ E.g., Missing a check on chunk X
￭ You’ll need to get your hands dirty

￭ Best: proposed patches
￭ May be a back-and-forth battle

27

Stefan Nagy

What developers love…

￭ Follow-up testing
￭ Initial fixes may be incomplete
￭ Re-run your fancy fuzzer
￭ Open-source your fancy fuzzer

28

Source: Deja Vulnerability by Google Project Zero

Stefan Nagy

What developers hate…

￭ Little (or unhelpful) information
￭ No PoC test cases or stack traces

￭ Bugs on obsolete versions
￭ E.g., I installed this via apt-get

￭ Spamming tons of bug reports
￭ Duplicate bug reports
￭ Already-reported bugs

29

Stefan Nagy

What developers hate…

￭ Selfish resumé padding
￭ Requesting CVE assignment without

first asking them
￭ Common in academic papers
￭ Reviewers are partially to blame

￭ Developers can (and do) dispute CVEs

30

Stefan Nagy

What developers hate…

￭ Weaponizing and selling an exploit
￭ A huge underground economy

￭ Nation-state actors
￭ Cyber-criminal gangs

31

Stefan Nagy

What developers hate…

￭ Weaponizing and selling an exploit
￭ A huge underground economy

￭ Nation-state actors
￭ Cyber-criminal gangs

￭ Don’t do this

32

Stefan Nagy

What developers hate…

￭ Weaponizing and selling an exploit
￭ A huge underground economy

￭ Nation-state actors
￭ Cyber-criminal gangs

￭ Don’t do this
￭ Likely to end up in bad hands

regardless of who brokered it

33

Stefan Nagy

What developers hate…

￭ Weaponizing and selling an exploit
￭ A huge underground economy

￭ Nation-state actors
￭ Cyber-criminal gangs

￭ Don’t do this
￭ Likely to end up in bad hands

regardless of who brokered it
￭ Authoritarian regimes use these

all the time for evil acts
￭ You are very likely causing people

to get hurt (or worse)

34

Stefan Nagy

What developers hate…

￭ Weaponizing and selling an exploit
￭ A huge underground economy

￭ Nation-state actors
￭ Cyber-criminal gangs

￭ Don’t do this
￭ Likely to end up in bad hands

regardless of who brokered it
￭ Authoritarian regimes use these

all the time for evil acts
￭ You are very likely causing people

to get hurt (or worse)
￭ You will fail this class (and worse)

35

Stefan Nagy

Developers are people, too

￭ Data suggests that fixing bugs is a really tough job

￭ Treat developers with courtesy, respect, and patience

36

Source: https://content.rollbar.com/hubfs/State-of-Software-Code-Report.pdf

Stefan Nagy

Questions?

37

