Week 5: Lecture B
Bugs & Triage i

Wednesday, February 7, 2024

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

Recap: Key Dates

Feb. 05 Lab 2 released cs.utah.edu/~snagy/courses/cs5963/schedule

Part 1: Course Intro and Research 101

Feb. 07 Lab 1due

Monday Meeting Wednesday Meeting
Jan. 08 Jan. 10
Feb 1 4 La b 2 d e Course Introduction Research 101: Ideas
® u Jan. 15 Jan. 17
No Class (Martin Luther King Jr. Day) Research 101: Writing

Jan. 22 Jan. 24

Feb. 19 No class (President’s Day) 101 Revawing an Prosat Nisiucsinia P

Sign up for paper presentations by 11:59pm

Beginner Fuzzing Lab released

FEb. 28 La b 3 d u e Part 2: Fuzzing Fundamentals

Feb. 28 5-minute project proposals
Mar.04 & 06 No class (Spring Break) d o
Ap r‘ 1 7 & 22 Fi n al p roj eCt p rese ntati o n S EE{{%EE{ :.ab released ;:R;e:a:‘;fg;dlle by 11:59pm

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Lab 2: Crash Triage

Assignment: learn how to use AddressSanitizer (ASAN)
= Read its documentation in https://clang.llvm.org/docs/AddressSanitizer.html

Replay the crashes you found in Lab 1 on an ASAN-instrumented binary
= Collect information on each crash
= What do you observe?

Deliverable: a 1-3 page report detailing your findings

= Feel free to make it your own (e.g., pictures, text, etc.)

Linux environments are recommended
= Usea VM ifyou don’t have one!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

https://clang.llvm.org/docs/AddressSanitizer.html

Lab 2 Tips

Re-run crashes on the ASAN instrumented binary
= Use Python to script collection of ASAN outputs
= Do string post-processing to collect error types, crashing source line, etc.
= Group and deduplicate crashes as you see fit

Didn't find any crashes in Lab 1?

= Try fuzzing fuzzgoat from https://github.com/fuzzstation/fuzzgoat
= Should yield lots of crashes quickly

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

https://github.com/fuzzstati0n/fuzzgoat

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Crash Triage

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Recap: Coverage-guided Fuzzing

E Interesting!
/ ’ (new code) cCrashes

Inputs

Uninteresting (SEGFAULT)

‘ \ Execute and ' _% #W
Collect Feedback

Program (nO new COde

(e.g., code coverage)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Recap: Coverage-guided Fuzzing Now
what?

[

Crashes

®

(SEGFAULT)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

So your fuzzer found some crashes...

Are they actually real bugs?

= Your fuzzer may be lying to you...

What kind of bugs were found?
= Type (e.g., logic, memory safety)
= Root cause

How severe is each bug?
= Developers: which to prioritize
= Reporters: convince developers

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Crash Deduplication

Stefan Nagy

10

AFL's “Unique” Crashes

AFL repurposes its coverage | trace bitmap

T T T T T

bitmap to count unique crashes global bitmap / %ﬁ
| | | | l ‘

New coverage?

|
| cur_location = <COMPILE_TIME_RANDOM>;

. Shared_mem [cur_location @ prev_location]++;
i Pr'ev._locaﬁon = cur_location >> |

A\

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

-~

AFL's “Unique” Crashes

AFL repurposes its coverage | trace bitmap

[T T I

: : W][]
bitmap to count unique crashes crash bitmap / . !1J
= New crash edge? New unique crash wiw — # ..
_HEE EEN —

. i. New coverage?

|
| cur_location = <COMPILE_TIME_RANDOM>;

. Shared_mem [cur_location @ prev_location]++;
| prev_location = cur_location >> |

A\

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

-~

AFL's “Unique” Crashes

AFL repurposes its coverage

bitmap to count unique crashes crash bitma / . m
= New crash edge? New unique crash | —— I
Influenced by weird things . \

= Non-deterministic behavior |

= Undefined behavior
= Bitmap collisions

Not a sound metric for “bugs”

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

I

| trace bitmap

New coverage?

S

|

| cur_location = <COMPILE_TIME_RANDOM>;

. Shared_mem [cur_location @ prev_location]++;
| prev_location = cur_location >> |

Stefan Nagy

13

How should we group crashes?

Manually

= Need domain expertise
= Hard to enumerate lots of crashes

Automatically
= Scripted tooling
= Requires a good “proxy” metric
= Performance vs. precision

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Fuzzy Stack Hashing

Approximated measure of bugs found :
= Eg., MD5(“foola|b|c|d") main
= Most popular proxy metric in use today :

Idea: concatenate top-N stack frames

for each crashing test case _
= Large N = every crash unique (over-count) = b
= Small N = few crashes unique (under-count) |
= Most set N arbitrarily

a

foo (crashed ¥)

Source: The Art, Science, and Engineering of Fuzzing: A Survey

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Fuzzy Stack Hashing

Concatenate more information
= Source code lines == ASAN: heap-use-after-free on address

0x61900000047f at pc 0x00000040a52c bp
= Addresses 0x7ff£f9200dbf0 sp 0x7fff9200dbel
[(}ashinggjgna[READ of size 1 at 0x61900000047f thread TO
= ASAN-reported bug type

#0 0x40a52b in src/main.cpp:30
= Eg, MD5(“UAF:foola|b]c|d")

N

#1 0x40e088 in std function.h:297
#2 0x40d605 in std function.h:687
#3 0x40b8d5 in src/main.cpp:130
\ #4 0x7£9a498ff412 in libc-start.c:308

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Trade-offs

Fast to collect, but... Bug # Hashes Matches False Matches Input count
A 9 2 1 7 | 228
N-values completely B 362 33 VI 31,103
h It C 24 21 P30 106
change results D 159 119 10 | 12,672
E 15 4 I 1 , 12,118
Still over-counts bugs : I3 1 I I —
= But not as much as AFL G 2 0 ' 2 2
H 1 1 1 o | 568
I 4 4 o | 10

Source: Evaluating Fuzz Testing

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Crash Clustering

Idea: mutate crashing test cases

e CVE-2016-5314
= Group them by similar characteristics o CVE-2016-10269 #1
= E.g., crashing vs. not crashing o CVE-2015-8784
= E.g., coverage of buggy path B il BT | 0.04
; - 0.02
= Infer bug root causes from clusters 'r‘ @%8 000
= Find common input properties & & o

Trade-offs: results not instant

= A lot more fuzzing is needed
= Sacrifice speed for precision

Igor: Crash Deduplication Through Root-Cause Clustering

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 18

Exploitability Assessment

What is needed to exploit this bug?

= E.g, process and kernel state
= In other words: can you write an exploit for it?

Automatic Exploit Generation (AEG)
= Only works for simple bugs
= Many assumptions that don’t hold
= Unsolved (and not-easily-solvable) problem

Best option today: do it by hand
= A“dark art” with a steep learning curve
= Did someone say a CTF Team...?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

OOOOOOOOOOOOOOOOO

Responsible Disclosure

Stefan Nagy

20

== heap-use—after—free
#0 src/main.cpp:30
#1 std_function.h:297
#2 std_function.h:687
#3 src/main.cpp:130

e

y

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Disclosing Bugs Responsibly

Stefan Nagy

21

! == heap—use—after—free
! #0 src/main.cpp:30
! #1 std_function.h:297
! #2 std_function.h:687
1

S

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

43 src/main.cpp:130

Disclosing Bugs Responsibly

Stefan Nagy

22

== heap-use—after—free
#0 src/main.cpp:30
#1 std function.h:297
42 std_function.nh:687
#3 src/main.cpp:130

£

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Disclosing Bugs Responsibly

1
1
1
1
1
1
1
1
1
1

Stefan Nagy

23

== heap-use—after—free
#0 src/main.cpp:30
#1 std function.h:297
42 std_function.nh:687

#3 src/main.cpp:130
. e’

£

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Disclosing Bugs Responsibly

1
1
1
1
1
1
1
1
1
1

Stefan Nagy

24

== heap-use—after—free
#0 src/main.cpp:30
#1 std function.h:297
42 std_function.nh:687

#3 src/main.cpp:130
. e’

£

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Disclosing Bugs Responsibly

1
1
1
1
1
1
1
1
1
1

Stefan Nagy

25

SCHOOL OF COMPUTING

What developers love...

Proof-of-concept test cases
= Devs need to reproduce your bug

= Perform their own severity analysis
= Limited time and resources
= Fix most severe ones first
= E.g., MS Patch Tuesday

= Help them improve their test suites

UNIVERSITY OF UTAH

Stefan Nagy

26

What developers love...

Actionable insights
= Basic: build information
= E.g., compiler, version, OS, etc.
= Only report bugs in the latest version!

= Good: crashing source lines, PoCs

= Better: root cause analysis
= E.g., Missing a check on chunk X
= You'll need to get your hands dirty

= Best: proposed patches
= May be a back-and-forth battle

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Come on you guys! You're dereferencing a null pointer. It's right there!

——

27

What developers love...

Follow-up testing

Initial fixes may be incomplete
Re-run your fancy fuzzer
Open-source your fancy fuzzer

Product

Vulnerability exploited in-the-wild

Variant of...

Microsoft Internet Explorer

CVE-2020-0674

CVE-2018-8653* CVE-
2019-1367* CVE-2019- I
1429*

Mozilla Firefox

CVE-2020-6820

Mozilla Bug 1507180

Google Chrome

CVE-2020-6572

CVE-2019-5870 I
CVE-2019-13695

Microsoft Windows

CVE-2020-0986

CVE-2019-0880*

Google Chrome/Freetype

CVE-2020-15999

CVE-2014-9665

Apple Safari

CVE-2020-27930

CVE-2015-0093

* vulnerability was also exploited in-the-wild in previous years

Source: Deja Vulnerability by Google Project Zero

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

28

What developers hate...

Little (or unhelpful) information
= No PoC test cases or stack traces

= Bugs on obsolete versions
= E.g, linstalled this via apt-get

= Spamming tons of bug reports
= Duplicate bug reports
= Already-reported bugs

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

29

What developers hate...

Selfish resumé padding
= Requesting CVE assignment without
first asking them
= Common in academic papers
= Reviewers are partially to blame

= Developers can (and do) dispute CVEs

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

30

What developers hate...

Weaponizing and selling an exploit
= A huge underground economy
= Nation-state actors
= Cyber-criminal gangs

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

31

What developers hate...

Weaponizing and selling an exploit
= A huge underground economy
= Nation-state actors
= Cyber-criminal gangs

= Don’'tdo this

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

32

What developers hate...

Weaponizing and selling an exploit
= A huge underground economy
= Nation-state actors
= Cyber-criminal gangs

= Don’t do this
= Likely to end up in bad hands
regardless of who brokered it

Hacks Raise Fear
Over N.S.A.s Hold

on Cyberweapons

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

What developers hate...

Weaponizing and selling an exploit
= A huge underground economy

Nation-state actors
Cyber-criminal gangs

= Don’'tdo this

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Likely to end up in bad hands
regardless of who brokered it
Authoritarian regimes use these
all the time for evil acts

You are very likely causing people
to get hurt (or worse)

Stefan Nagy

Hacks Raise Fear
Over N.S.A.s Hold

on Cyberweapons

Pegasus: UAE placed
spyware on Khashoggi’s
wife's phone months
before murder

What developers hate...

Weaponizing and selling an exploit
= A huge underground economy

Nation-state actors
Cyber-criminal gangs

= Don’'tdo this

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Likely to end up in bad hands
regardless of who brokered it
Authoritarian regimes use these
all the time for evil acts

You are very likely causing people
to get hurt (or worse)

You will fail this class (and worse)

Stefan Nagy

Hacks Raise Fear
Over N.S.A.s Hold

on Cyberweapons

Pegasus: UAE placed
spyware on Khashoggi’s
wife's phone months
before murder

Developers are people, too

Data suggests that fixing bugs is a really tough job

It turns out that repairing broken code isn’t most
developers’ favorite activity.

26% 21% 20%

would rather would rather would rather
spend time go to spend time
paying bills the dentist with in-laws

Treat developers with courtesy, respect, and patience

Source: https://content.rollbar.com/hubfs/State-of-Software-Code-Report.pdf

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

