Week 4: Lecture A

Input Generation

Monday, January 29, 2024

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUU

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Recap: Lab 1

Lab 1: Beginner Fuzzing (due 2/07 by 11:59PM)

= Familiarize yourself with AFL++ and its features
= Check out its documentation in docs/

Pick three features, evaluate them, and discuss your findings
= E.g., impacts on code coverage, speed, crash discovery
= What insights do you have?
= Why did one feature work better than another?

Deliverable: a 1-3 page report detailing your findings

= Feel free to make it your own (e.g., pictures, text, etc.)

Need a Linux environment
= Use the CS 4440 VM if you don't have one!

Stefan Nagy

Recap: Lab 1

Pick any target program you like, e.g.:
» FuzzGoat fuzzing benchmark
m FORTE-FuzzBench
= HexHive's Magma

Skills you'll learn along the way:
= Compiling a C/C++ program
= Inserting AFL++'s instrumentation
= Initiating fuzzing with AFL++
= |nterpreting AFL++'s results

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

https://github.com/fuzzstati0n/fuzzgoat
https://github.com/FoRTE-Research/FoRTE-FuzzBench
https://github.com/HexHive/magma

Recap: Key Dates

Jan. 24 Lab 1 released cs.utah.edu/~snagy/courses/cs5963/schedule

Feb 07 Lab 1 d ue Part 1: Course Intro and Research 101

Monday Meeting Wednesday Meeting
Jan. 08 Jan. 10
Feb 1 4 La b 2 d e Course Introduction Research 101: Ideas
° u Jan. 15 Jan. 17
No Class (Martin Luther King Jr. Day) Research 101: Writing
. , Jan. 22 Jan. 24
F b 1 9 N l P d t D 101: iewing and i Introduction to Fuzzing
e hd 0 C aSS (res I e n S ay) Sign up for paper presentations by 11:59pm > Readings:

Beginner Fuzzing Lab released

FEb. 28 La b 3 d u e Part 2: Fuzzing Fundamentals

Feb. 28 5-minute project proposals
Mar.04 & 06 No class (Spring Break) d o
Ap r‘ 1 7 & 22 Fi n al p roj eCt p rese ntati o n S EE{{%EE{ :.ab released ;:R;e:a:‘;fg;dlle by 11:59pm

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Input Generation

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Recap: Coverage-guided Fuzzing

E Interesting!
/ ’ (new code) cCrashes

Inputs

Uninteresting (SEGFAULT)

‘ \ Execute and ' _% #W
Collect Feedback

Program (nO new COde

(e.g., code coverage)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Recap: Coverage-guided Fuzzing

E

Inputs il

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Types of Input Generation

Model-agnostic: brute-force your way to valid inputs
= Random insertions, deletions, and splicing

Model-guided: follow a pre-defined input specification
= Follow “rules” to create highly-structured inputs

White-box approaches:
= Symbolic execution: solve branches as symbolic expressions
= Concolic execution: solve branches as concrete values
= Taint tracking: infer critical input “parts” and mutate those

Source: The Art, Science, and Engineering of Fuzzing: A Survey

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Before you start: choose your seeds!

Seeds: the starting inputs from which to mutate from

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

10

Before you start: choose your seeds!

Seeds: the starting inputs from which to mutate from

Small seeds

= E.g, the smallest-possible PDF file =~

= Eg.,an empty file

o0 B small.pdf
25504446 2D312E30 0A312030 206F626A 3C3C2F54 7970652F 43617461 6C6F672F

2 50616765 73203220 3020523E 3E656E64 6F626A20 32203020 6F626A3C 3C2F5479
70652F50 61676573 2F4B6964 735B3320 3020525D 2F436F75 6E742031 3E3E656E

6 646F626A 20332030 206F626A 3C3C2F54 7970652F 50616765 2F4D6564 6961426F
785B3020 30203320 335D3E3E 656E646F 626A2074 7261696C 65723C3C 2F53697A
6520342F 526F6F74 20312030 20523E3E

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

%PDF-1.0 1 @ obj<</Type/Catalog/) ST o -
Pages 2 @ R>>endobj 2 0 obj<</Ty steve@stefansacbookml Downloads % file small.pdf
pe/Pages/Kids[3 @ R]/Count 1>>en . .

T small.pdf: PDF document, version 1;0), 1 pages
x[@ @ 3 3]>>endobj trailer<</Siz e i

e 4/Root 1 R>>

Stefan Nagy M

Before you start: choose your seeds!

Seeds: the starting inputs from which to mutate from

Small seeds

= E.g, the smallest-possible PDF file =~

= Eg.,an empty file

o0 B small.pdf
25504446 2D312E30 0A312030 206F626A 3C3C2F54 7970652F 43617461 6C6F672F

32 50616765 73203220 3020523E 3E656E64 6F626A20 32203020 6F626A3C 3C2F5479
70652F50 61676573 2F4B6964 735B3320 3020525D 2F436F75 6E742031 3E3E656E
646F626A 20332030 206F626A 3C3C2F54 7970652F 50616765 2F4D6564 6961426F
785B3020 30203320 335D3E3E 656E646F 626A2074 7261696C 65723C3C 2F53697A
6520342F 526F6F74 20312030 20523E3E

%PDF-1.0 1 @|obj<</Type/Catalog/
Pages 2 @ R>>endobj 2 @ obj<</Ty
pe/Pages/Kids[3 @ R]/Count 1>>en
dobj 3 @ obj<</Type/Page/MediaBo
x[@ @ 3 3]>>endobj trailer<</Siz
e 4/Root 1 @ R>>

Provides a fuzzer the “ingredients” to pass
the program’s initial input-parsing logic!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

elif self.token[1]

7

elif self.token[1]

"trailer'

if self.token[1]

‘endobj':

12

Before you start: choose your seeds!

Seeds: the starting inputs from which to mutate from

Small seeds

= E.g., the smallest-possible PDF file
= Eg.,an empty file

Large seeds
= E.g., crawl web for every PDF ever created
= Eg, SSL/TLS certificates

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

13

Before you start: choose your seeds!

Seeds: the starting inputs from which to mutate from

No right answer—it is target-dependent!
= Smaller seeds = cover earlier code, but struggle to reach deeper code
= Largerseeds = cover deeper code to start, but are slower to execute

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

14

Before you start: choose your seeds!
Seeds: the starting inputs from which to mutate from

Publicly-available seed corpora:
= AFLplusplus/testcases directory
= A few basic file formats
= |mages, PDF, MP4, etc.
= My own fuzzing-seeds repo
= Lots of seed corpora
= Many file formats

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

https://github.com/AFLplusplus/AFLplusplus/tree/stable/testcases
https://github.com/FuturesLab/fuzzing-seeds/

OOOOOOOOOOOOOOOOO

Model-agnostic Generation

Stefan Nagy

16

Model-agnostic Generation

Brute-force your way to valid inputs
= Bit and byte “flipping”
= Addition and subtraction
= |nserting random chunks
= Inserting dictionary “tokens”

The good: super fast

= |Incorporating feedback like coverage enables
you to synthesize valid inputs (eventually)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

flarelge

I€r.senses =
tting'sharper!

17

AFL's Model-agnostic Mutators

Deterministic mutation
= Bit and byte flips
= Single, two, or four bits in a row

= Arithmetic operators
= Additions/subtractions of both endians

= Inject “fun” values (-1, 256, 1024, etc.)
= Values that often cause weird behavior

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

11

11m11

11

11

11

11

11

11

11

12

11

11

11

11

11

11

11

11

FF

11

11

11

Non-deterministic mutation

AFL's Model-agnostic Mutators (cont.)

= Performed on each input after deterministic
mutations is exhausted or skipped entirely

= Stacked tweaks

Randomly apply multiple det. Mutations

Clone / remove parts of the input

= Test case splicing

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Cuts two distinct inputs at random split

points and fuses them

Stefan Nagy

1200 115

AA

AA

AA

JAVAY

BB

BB

BB

BB

Q¥

BB BB

JAVAY

JAVAY

19

Trade-offs

= Surprisingly effective: valid inputs appear out of thin air

P 5
= | ety | |

r—l”ﬂr_vmrw—u—l[—lr—!ﬁﬂl_]r_]”‘r—w—u—l[—‘;—u—v[—u—]

‘_1‘_1’_‘T_’r—‘r_'l_‘l_‘ml_1‘—lf_1'_"_"_“r—”_‘l—’r_'l_ll_1

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Trade-offs

Need a lot of luck to solve magic bytes checks and nested checksums

if (u64 (input)==u64 ("MAGICHDR"))
bug (1) ;

Listing 2: Fuzzing problem (1): finding valid input to bypass magic bytes.

if (u64 (input)==sum(input+8, len-8))
if (u64 (input+8)==sum(input+16, len-16))
if (input [16]=="R’ && input[17]=="Q"’)
bug (2) ;

Listing 3: Fuzzing problem (2): finding valid input to bypass checksums.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Dictionary Tokens

Other “fun” values
= Program-specific magic bytes
= cmp operands
= strcmp operands

= Input-specific magic bytes
= Headers
= Common attributes

Useful... but often noisy
= Not every cmp is relevant
to an input’s structure

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

1f (strcmp (header.magic _password, "h4ck3d by :

plgZz")) goto terminate now;
: ...or:
: 1f (header.magic value == 0x12345678) goto
: terminate now;

<html><header><title>Hello</title></header> ;

<body>World
</body></html>

ca> <a/>
 ='a’'

Stefan Nagy

22

OOOOOOOOOOOOOOOOO

Model-guided Generation

Stefan Nagy

23

Model-guided Generation

Follow a pre-defined input specification

<html> </html>
= Pre-defined input grammars
= Dynamically-learned grammars : <heads” »~ <(head> <hedyr | </bodys
= Domain-specific generators
P 8 <title> </title> Wosll s/
Hello

The gOOd: many more Valid inputs ..

= Model-agnostic inputs are often discarded <html> </html>
because they fail basic input sanity checks
= Valid inputs = higher code coverage shegds o/ <ihead> <body> </body>

< >
<title> </title> World<br/

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Pre-defined Models

Input grammars

. XML_GRAMMAR: Grammar = {

= Usually handwritten : "¢start>": ["<xml-tree>"],

= Domain expert

"<xml-tree>": ["<text>",
"<xml-open-tag><xml-tree><xml-close-tag>",

"<xml-openclose-tag>",

= Many grammars already ' cmi-open-tags”:
- ANTLR format : "<xml-openclose-tag>":
: "<xml-close-tag>":
= Kaitai structs : "<xml-attribute>":
: meddn™
"<text>":

"<letter>":

"<letter_space>":

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

"<xml-tree><xml-tree>"],

["<<id>>", "<<id> <xml-attribute>>"],
["<<id>/>", "<<id> <xml-attribute>/>"],
["</<id>>"], :
["<id>=<id>", "<xml-attribute> <xml-attribute>"], :
["<letter>", "<id><letter>"], :
["<text><letter_space>", "<letter_space>"],
srange(string.ascii_letters + string.digits +

"\"" + mem + ".")'
srange(string.ascii_letters + string.digits +

Wimn g e g om m g wEmy

25

Dynamically-learned Models

Infer grammars on-the-fly
= Learn before fuzzing starts
= Scan program for useful data
= Piece together grammar

= Learn during fuzzing
= Build state machine
= Parse inputs accordingly
= Refine on each iteration

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

<html><head><title>Hello</title></head><body>World
</body></html>

Stefan Nagy 26

Domain-specific Generators
Hand-written tools to spit-out conforming inputs

Famous examples
= (CSmith: C programs
= JSFunFuzz: Javascript
= DOMFuzz: DOM interface

Frameworks for writing your own
= XSmith
= FormatFuzzer
= FuzzFactory

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Trade-offs

Writing or learning specifications is hard
= E.g,CSmith written in 40,000+ LoC
= Domain expertise is critical

Seemingly impossible for many inputs
= For example, no grammar for x86 binaries

Deeper coverage is not always better

= Likely to miss bugs hidden in shallow code
(e.g., input validity checks)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

28

OOOOOOOOOOOOOOOOO

White-box Input Generation

Stefan Nagy

29

Symbolic and Concolic Execution

Model paths as symbolic expressions
= Construct a system of boolean equations @
= Pass this off to an SMT solver |
= Attempt to find all satisfiable assignments -7y —my
= Concolic execution: test one concrete path @ @ |

Many solvers available today o o
= Eg,Z3,Yices, CVC4

The good: great for many branches @) Beration 1 . {b) Toerstion 2

= Cuts through magic bytes without much trouble

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 30

Symbolic Execution Example

assert false
return (x, y)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

< X

W >

31

Symbolic Execution Example

assert false
return (x, y)

0. def f (x, y):
1. if (x > y):
L 2. X =X +Yy
3. y =x -y
4. X =X -Y
. 5. '

. 6.

- 7.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

W >

32

Symbolic Execution Example

if (x -y > 0): :
assert false § L3 y:(A+B)-B=A
return (x, y) :

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

33

Symbolic Execution Example

X -y

if (x -y > 0):
assert false
return (x, y)

Possible path constraints:

e (A>B)and(B-A>0) = satisfiable?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

y:B
X : A+B
L3 y:(A+B)-B=A
L x:(A+B)-A=B
y:A
B-A>0/
L6

Stefan Nagy

34

Symbolic Execution Example

.. XA
0. def f (x, y) y:B
1. if (x > y) A>B

2. X =X+y ; L, X:A+B

3. y =x-Y y:B

4. X =X -Y .

5. if (x -y > 0): : AB

. 6. assert false L3 y:(A+B) - B=A

7. return (x, y) ¥

Possible path constraints:
e (A>B)and(B-A>0) =unsatisfiable
e (A>B)and(B-A<=0) = satisfiable?

unsatisfiable

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

35

Symbolic Execution Example

X -y

if (x -y > 0):
assert false
return (x, y)

Possible path constraints:
e (A>B)and(B-A>0) =unsatisfiable
e (A>B)and(B-A<=0) =satisfiable
e (A<=B) = satisfiable?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

B-A>0/\B-A<=0
L6

W >

A>B /\Aes
12 X:A+B : L7

X:A
y:B y:B
X : A+B
L3 y:(A+B)-B=A
L x:(A+B)-A=B
y:A

X:B X:B
y:A y:A Lo

unsatisfiable satisfiable

Stefan Nagy 36

Symbolic Execution Example

X -y

if (x -y > 0):
assert false
return (x, y)

Possible path constraints:
e (A>B)and(B-A>0) =unsatisfiable
e (A>B)and(B-A<=0) =satisfiable
e (A<=B) = satisfiable

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

X:A
y:B
A>B /\A<=B
X:A+B X:A
L2 y:B y:B L
‘ satisfiable
13 X : A+B
y:(A+B)-B=A
x:(A+B)-A=B
L4 vi
B-A>0/\B-A<=O
X:B X:B
L6 y:A y:A Lo
unsatisfiable satisfiable

Stefan Nagy 37

Taint Tracking

Track input bytes’ flow throughout program

= |dentify input “chunks” that affect program state
= Chunks that affect branches
= Chunks that flow to function calls

= Mutate these chunks
= Random mutation 11111 (211|111 (11|11 (11|11

= |nsert fun or useful tokens 111111121112 1121112111111

The good: finding vulnerable buffers,
solving branches

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Taint Tracking

Track input bytes’ flow throughout program
= |dentify input “chunks” that affect program state

= Chunks that affect branches
= Chunks that flow to function calls

= Mutate these chunks
= Random mutation
= Insert fun or useful tokens

The good: finding vulnerable buffers,
solving branches

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

N ERENE Bytes that comprise X

Nl Bytes that comprise Y [kl

39

Taint Tracking

Track input bytes’ flow throughout program

= |dentify input “chunks” that affect program state
= Chunks that affect branches
= Chunks that flow to function calls

= Mutate these chunks

= Random mutation -

= |nsert fun or useful tokens

The good: finding vulnerable buffers,
solving branches

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Mutate!

iyl 11 11 11 11

i¥@ 00 00 00 00 00

40

All of these techniques are heavyweight

Too slow to deploy for every input, branch, etc.

Generally limited to simple software
Good luck doing taint tracking on MS Office...

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

White-box Generation Trade-offs

Must decide which problems to feed it
= Scheduling problem

Stefan Nagy

A

Edges
Covered

0 min

Time spent fuzzing

41

White-box Generation Trade-offs

All of these techniques are heavyweight A _-»

= Too slow to deploy for every input, branch, etc. f

= Must decide which problems to feed it oy

= Scheduling problem Edges X
Covered \
PLAPL Al

Generally limited to simple software _,*T - '

= Good luck doing taint tracking on MS Office... V4 >

0 min

Emerging techniques give us hope!
= Fast “poor man’s” taint tracking: RedQueen
= Fast source-level concolic exec: SymCC

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 42

Recap: Types of Input Generation

Model-agnostic: great on simple, easy-to-solve branches
= Need a lot of luck to solve multi-byte conditionals and checksums

Model-guided: more valid inputs leads to higher coverage
= QOut of luck if specification is not defined or hard-to-define

White-box approaches:
= Symbolic / concolic exec: precise solving of multi-byte conditionals
= Taint tracking: easily identifies key data objects, branch constraints
= Far too heavyweight to deploy on every single generated input

Source: The Art, Science, and Engineering of Fuzzing: A Survey

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

43

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

