Week 3: Lecture B

Introduction to Fuzzing

Wednesday, January 24, 2024

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUU

Recap: Paper Presentations

Two paper presentations per lecture, followed by 5-10 minute discussions

Audience: you are not required to read the paper
= ... butyou are required to participate in the discussion!

Presenters: your job is to
= Summarizing
Contextualize
Pros vs. cons
Contributions
Key assumptions
Prepare a short slide deck (you can get “inspired” from existing presentations)
15 - 20 minute presentation (with a 5-10 minute audience discussion to follow)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Recap: Hands-on Labs

Three (relatively easy) labs to be completed solo

= Lab 1: Beginner fuzzing
= Lab 2: Crash triage
= Lab 3: Target harnessing

Paced with the introductory content from Weeks 4-9

= Apply the techniques you've learned in class
= Get familiar with state-of-the-art tools like AFL and ASAN
= Deliverables: a short report (1-3 pages) of what you’ve learned

Designed to prepare you for the Semester Final Project

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Recap: Key Dates

Jan. 24 Lab 1 released cs.utah.edu/~snagy/courses/cs5963/schedule

Feb 07 Lab 1 d ue Part 1: Course Intro and Research 101

Monday Meeting Wednesday Meeting
Jan. 08 Jan. 10
Feb 1 4 La b 2 d e Course Introduction Research 101: Ideas
° u Jan. 15 Jan. 17
No Class (Martin Luther King Jr. Day) Research 101: Writing
. , Jan. 22 Jan. 24
F b 1 9 N l P d t D 101: iewing and i Introduction to Fuzzing
e hd 0 C aSS (res I e n S ay) Sign up for paper presentations by 11:59pm > Readings:

Beginner Fuzzing Lab released

FEb. 28 La b 3 d u e Part 2: Fuzzing Fundamentals

Feb. 28 5-minute project proposals
Mar.04 & 06 No class (Spring Break) d o
Ap r‘ 1 7 & 22 Fi n al p roj eCt p rese ntati o n S EE{{%EE{ :.ab released ;:R;e:a:‘;fg;dlle by 11:59pm

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Background

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Programs and Inputs

Modern applications accept many sources of input:
Files

Arguments

Environment variables

Network packets

Nowadays: multiple sources of inputs

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 7

Software Bugs

D

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Software Bugs

& Application.eye

[B Application.exe has Stopped Working

A problem Caused th

€ program to
correctly, Please clos

stop Wworking
€ the program

SCHOOL OF COMPUTING

Stefan Nagy
UNIVERSITY OF UTAH

When bugs go bad

Improper input validation leads to security vulnerabilities
= Bugs that violate the system’s confidentiality, integrity, or availability

R

=N

Exploitation: leveraging a vulnerability to perform unauthorized actions

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 10

Exploitation

TEE '
| \i\ = ERROR

e)
Common Vulnerabilities Consequences
= Missed initialization check = Use uninitialized memory
= Free'd pointers not NULLd = Use non-owned memory
= Unchecked memory writes y = Overflowing a data buffer)

Attacker Exploitation

» Software denial of service
» | eak sensitive information
= [nject & run arbitrary code

Race against time to find & fix vulnerabilities

before they are exploited

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

1

With so many vulnerabilities today...

m Denial of Service

m Code Execution

m Overflow

m Cross Site Scripting

m Directory Traversal
Bypass Something
Gain Information

m Gain Privilege

m Memory Corruption
SQL Injection
File Inclusion
Cross Site Request Forgery
HTTP Response Splitting

Source: cvedetails.com

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

... exploits are getting more and more sophisticated

— V4

- N S
1997 / 1998 \ 2007 / 2007 \ 2021
Function ptr ! Heap \ Heap I Null pointer \ Zero-click
hijacking " overflows grooming I' dereference \I exploits
\
1997 " 1998 1 2005 ! 2007 ' 2016
Ret-2-Libc I StackGuard 1 Ret oriented I Double I Data oriented
attacks I bypasses 1 programming : frees ‘I programming
|
I
1996 1999 | 2005 | 2000 2014
Stack I Format | Hardware DEP | Heap , Calloriented
overflows strings 1 bypasses I spraying I programming
i
I I I
1972 I 2002 | 2002 I 2010 \ 20M
First known | Integer ! ASLR I JIT \ Jmp oriented
overflows I overflows ‘\ bypasses spraying \ programming
I s S = 7 \

~_—_—’

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 13

Proactive Vulnerability Discovery

Static Analysis:

Analyze program without running it

Accuracy a major concern

= False negatives (vulnerabilities missed)
= False positives (results are unusable)

As code size grows, speed drops

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Dynamic Testing:

éé EXE »%

Analyze program by executing it

Better accuracy: no false positives

= Execution reveals only what exists
= Program crashed? You found a bug!

Capable of very high throughput

14

Proactive Vulnerability Discovery
Dynamic Testing:

éé EXE ’%

Analyze program by executing it

Better accuracy: no false positives

= Execution reveals only what exists
= Program crashed? You found a bug!

Capable of very high throughput

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Fuzzing

Stefan Nagy

16

One dark and stormy night...
in the era of dial-up internet

Source: https://www.linux-magazine.com/Issues/2022/255/ Fuzz-Testing

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

One dark and stormy night...
in the era of dial-up internet

Source: https://www.linux-magazine.com/Issues/2022/255/ Fuzz-Testing

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

One dark and stormy night...
in the era of dial-up internet

Shouldn’t programs do much better with glitched or invalid input?

Source: https://www.linux-magazine.com/Issues/2022/255/ Fuzz-Testing

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Bart’s idea: test programs on random inputs!

Listing 1

import random
def fuzzer(max_length=100, char_start=32, char_range=32):
"""Generate a string of up to “max_length® characters
in the range [char_start®, “char_start® + “char_range® - 1]"""
string_length = random.randrange(@, max_length + 1)
out = ""
for i in range(@, string_length):
out += chr(random.randrange(char_start, char_start + char_range))
return out

1 7#%" *#0=)$;%6* ;>638: *>80"=</>(/*
:-(2<4 1:5%6856&7""11<7+%<%7 ,4.8+

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

20

Bart’s idea: test programs on random inputs!
Quickly generate lots and lots of random inputs
Execute each on the target program

See what happens
= (Crash
= Hang
= Nothing at all

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

21

Random inputs work!

Crash or hang 25-33% of utility
programs in seven UNIX variants

Results reveal several common
mistakes made by programmers

They called this fuzz testing
= Known today as fuzzing

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

An Empirical Study of the Reliability
of
UNIX Utilities

Barton P. Miller

bart@cs.wisc.edu

Lars Fredriksen
L.Fredriksen@att.com

Bryan So

so@cs.wisc.edu

Stefan Nagy

22

OOOOOOOOOOOOOOOOO

The Evolution of Fuzzing

Stefan Nagy

23

Fuzzing like it's 1989
Random inputs

Black-box: only check program’s end result
= Signals
= Return values
= Program-specific output

Save inputs that trigger weird behavior

= SIGSEGV, SIGFPE, SIGILL, etc.
= Assertion failures
= QOther reported errors

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Finding Bugs with Fuzzing

&

Bao\l:j behaved
> eo\ﬂe cases

The Land o@

The space ok possible program behaviors

Source: https://blogtrailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Black-box fuzzing only gets you so far...

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

How can fuzzing exploration be guided?

Idea: track some measure of

exploration “progress”

= Coverage of program code
= Stack traces
= Memory accesses

Pinpoint inputs that further
progress over the others

Mutate only those inputs

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Code Coverage

Code coverage: program regions
reached by each test case

Horse racing analogy: breed

only the winning inputs
= New coverage? Keep the input
= Old coverage? Discard it

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

0N U b

11
12
13
14
15

174767
177
34x
1174767
SOX
143x
88x

177x
1x

function fib(n) {
if (n === 0) {

}
}
}

}
}

return 0

else if (n === 1) {

return 1

else if (n > 1) {

return fib(n - 1) + fib(n - 2)
else {

thrower()

console.log('fib(10):', fib(10))

Maximize

code coverage

28

Inputs

[|

Program

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Coverage-guided Fuzzing

Stefan Nagy

29

Coverage-guided Fuzzing

Inputs
‘ \ Execute and
Collect Feedback
Program (e.g, code coverage)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

30

Coverage-guided Fuzzing

Interesting!
(new code)
Inputs
‘ \ Execute and
Collect Feedback
Program (e.g, code coverage)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

31

Coverage-guided Fuzzing

E Interesting!

(new code)

Inputs

Uninteresting

‘ \ Execute and ' _% #ﬁ
Collect Feedback

Program (no new code)

(e.g., code coverage)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 32

Coverage-guided Fuzzing

E Interesting!

(new code) cCrashes

Inputs

Uninteresting (SEGFAULT)

‘ \ Execute and ' _ﬁ #W
Collect Feedback

Program (no new code)

(e.g., code coverage)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 33

Coverage-guided Fuzzing

7 N
/ \
] \ Y
0™ = —» &
control fow ~\ \\ control flow — l control flow
h N 4
3“‘3(‘*‘ rutated input N_ J0 rutated input Vo _ 3“39 RN
Sao? Discovery of
Q{ Q o‘?g NCw behéviorgl
—) 0 .
control flow ~ control flow
seed input mutated input Sraph rutated input 3ra‘oh
-’(O QO-’QO
control flow - control flow
h h
rutated input gee rutated input gee

1) Run the seed input
through the program to
proo\uce a Crq

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

2) Mutate the \n(au’r, test
the new inputs, and look
Lor chanﬁes in the CFq

Source: https://blogtrailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/

3) Rinse and repeaﬂ

Stefan Nagy 34

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Modern Fuzzing

Stefan Nagy

35

Fuzzing in the Industry

Fuzzing = today’s most popular bug-finding technique
= Most real-world fuzzing is coverage-guided

Google: We've open-sourced

E v ClusterFuzz tool that found
y GitLab 16,000 bugs in Chrome

| § New fuzzing tool finds 26 USB
‘ M bugs in Linux, Windows, macOS,
COMPILER INFRASTRUCTURE and FreeBSD

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

36

Taxonomy of Fuzzers

Fuzzer component

//

Test case generation Execution monitoring
T P
Grammar-based Mutational Black-box White-box Grey-box
| P | | |
dharma [13] Directed Coverage-guided Autodafe [17] Driller [18] AFL [5]
gramfuzz [14] | | dharma [13] QSYM [19] honggfuzz [4]
Peach [15] . Peach [15] KLEE [20] libFuzzer [6]
TaintScope [16] ~ AFL [5] Mayhem [21] VUzzer [7]
honggfuzz [4] S2E [22] Triforce AFL [24]
libFuzzer [6] SAGE [23]
VUzzer [7]

TaintScope [16]

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

37

Tools of the trade: AFL

Most historically significant fuzzer
ever developed

Authors: Michal Zalewski (2013)

= Google (2019-2022)
= The AFL++ team (2020-onwards)

Versatile, easy to spin up & modify
= Spawned probably ~100 PhD & MS theses
= (mine included)

Mix of carefully chosen trade-offs

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

38

What AFL aims to be...

Primary goal: high test case throughput

5b (somebin)

;_ ’T runﬂl‘r‘le H i cyclesdone 0 |
M e _° M | last new path : | total ths : |
Sacrifice precision in most areas | tast uniq crash : | uniq crashes : |
. . . | '/La’stﬂuqiqﬁhéf\‘g - ! uniq hangs : |
" nghtwelghtl Slmpl‘e mUtatorS :_;IO\;I pro‘c;:s‘su_\g H i mapdens:l.ty] |
= Coarse, approximated code coverage |- Stage progress - " Findings in depth '
. . . | now trying : | favored paths : |
= Little reasoning about seed selection : | new edges on : |
| total execs : | total crashes : |
| exec speed :) | total hangs : |
f U Z Z i mibian 1 0 ™0 & L — path geometry — 8
. . . . | bit flips : | levels : |
Revolutionary & still insanely effective 1 sy rus . | pending : |
| ar:.thme?:.cs | pend.fav |
= |deas ported over to honggFuzz, libFuzzer e e }
| havoc : | variable : 184 |

= and nearly all other fuzzers . trin : : : :

- A cpu: 104
SCHOOL OF COMPUTING Stefan Nagy 39

UNIVERSITY OF UTAH

Tools of the trade:; AFE AFL++

By far today’s most popular fuzzer

Official successor to vanilla AFL

= Started out as a community-led fork
= Google has since archived vanilla AFL

A platform for trying-out new features

= Integrated lots of academic prototypes
= Easily tailorable to your target’s needs

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

https://github.com/AFLplusplus/AFLplusplus

40

Trade-offs are target-dependent...

Building a good fuzzer is all about finding the
right balance of performance & precision.

OOOOOOOOOOOOOOOOO Stefan Nagy

41

Any fuzzing is better than not fuzzing!

I something has not been fuzzed before,
any fuzzing will probably find lots of bugs.

OOOOOOOOOOOOOOOOO Stefan Nagy

42

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Lab 1: Beginner Fuzzing

Stefan Nagy

A

Lab 1: Beginner Fuzzing

See Assignments tab on course website
= Click the drop-down link for Lab 1

Deadline: Wednesday, February 7

= Submit on Canvas by 11:59 PM MST
= Late assignments are not accepted

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

Lab Exercises (collected via Canvas)

Instructions: There will be three introductory fuzzing exercises that will count for 45% of your course grade (15% each).

Unless otherwise indicated, you must work solo. You may consult general reference material, but you may not collaborate
with other students. The material you turn in must be entirely your own work, and you are bound by the Student Code.

Assignment Deadline (by 11:59PM)

Lab 1: Beginner Fuzzing Wednesday, February 7

Overview: In preparation for the semester course project, this lab will familiarize you with AFL++ (the world's most
popular and extensible fuzzing platform).

Your task: Select three of AFL++'s user-configurable features and evaluate their impacts on fuzzing:
« What led you to explore these fundamental features and why?

« How do these features impact speed, coverage, and crash discovery?

« Do certain features work better in tandem, or individually?

+ Do these features perform as you expected, or unexpectedly?

Other Notes:

« Information on AFL++'s available features can be found in its documentation.

« Linux is recommended. You are welcome to use the Lubuntu VM from CS 4440.

« For issues troubleshooting AFL++, you can ask for help on the Course Piazza, or reach its authors via GitHub or the
#aflplusplus-issues-questions channel in the Awesome Fuzzing Discord. It is recommended that you start early.

Recommended Readings:

* AFL++: Combining Incremental Steps of Fuzzing Research.

* Di i (Fuzzy Lop: AF i

* The Ar, Science, and Engineering of Fuzzing: A Survey.

What to Submit:

Submit a 1-3 page report detailing your experimental findings. There are no "right" or "wrong" answers—your work
will be assessed by your overall effort. You have full creative liberty—feel free to use images, tables, etc.

45

Lab 1: Beginner Fuzzing

Assignment: familiarize yourself with AFL++
= Read its documentation in docs/

Pick three features, try them out, and discuss your findings

= E.g., impacts on code coverage, speed, crash discovery
= What insights do you have?

= Why did one feature work better than another?

Deliverable: a 1-3 page report detailing your findings

= Feel free to make it your own (e.g., pictures, text, etc.)

Need a Linux environment
= Use the CS 4440 Lubuntu VM if you don’t have one

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

46

Lab 1: Introduction to Fuzzing
Primary goal: prepare you for the semester project

Other goals:
= Give you experience with industry-standard tools
= Putyou in the “research” mindset
= Improve your debugging skills

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

47

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

