
Stefan Nagy

Week 3: Lecture B
Introduction to Fuzzing
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Recap: Paper Presentations

￭ Two paper presentations per lecture, followed by 5–10 minute discussions

￭ Audience: you are not required to read the paper
￭ … but you are required to participate in the discussion!

￭ Presenters: your job is to teach us the paper 
￭ Summarizing
￭ Contextualize
￭ Pros vs. cons
￭ Contributions
￭ Key assumptions
￭ Prepare a short slide deck (you can get “inspired” from existing presentations)
￭ 15 – 20 minute presentation (with a 5–10 minute audience discussion to follow)
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Recap: Hands-on Labs

￭ Three (relatively easy) labs to be completed solo
￭ Lab 1: Beginner fuzzing 
￭ Lab 2: Crash triage
￭ Lab 3: Target harnessing

￭ Paced with the introductory content from Weeks 4–9
￭ Apply the techniques you’ve learned in class
￭ Get familiar with state-of-the-art tools like AFL and ASAN
￭ Deliverables: a short report (1–3 pages) of what you’ve learned

￭ Designed to prepare you for the Semester Final Project
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Recap: Key Dates
￭ Jan. 24 Lab 1 released

￭ Feb. 07 Lab 1 due

￭ Feb. 14 Lab 2 due

￭ Feb. 19 No class (President’s Day)

￭ Feb. 28 Lab 3 due

￭ Feb. 28 5-minute project proposals

￭ Mar. 04 & 06 No class (Spring Break)

￭ Apr. 17 & 22 Final project presentations
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cs.utah.edu/~snagy/courses/cs5963/schedule
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Questions?
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Background
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Programs and Inputs

￭ Modern applications accept many sources of input:
￭ Files
￭ Arguments
￭ Environment variables
￭ Network packets
￭ …

￭ Nowadays: multiple sources of inputs
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Software Bugs
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Software Bugs
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When bugs go bad

￭ Improper input validation leads to security vulnerabilities  
￭ Bugs that violate the system’s confidentiality, integrity, or availability

￭ Exploitation: leveraging a vulnerability to perform unauthorized actions
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▪Missed initialization check
▪ Free’d pointers not NULL’d
▪ Unchecked memory writes

Common Vulnerabilities
▪ Use uninitialized memory
▪ Use non-owned memory
▪ Overflowing a data buffer

Consequences Attacker Exploitation
▪ Software denial of service
▪ Leak sensitive information
▪ Inject & run arbitrary code

Race against time to find & fix vulnerabilities 
before they are exploited

Exploitation
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With so many vulnerabilities today…

12

Source: cvedetails.com
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… exploits are getting more and more sophisticated
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Proactive Vulnerability Discovery

￭ Analyze program without running it

￭ Accuracy a major concern
￭ False negatives (vulnerabilities missed)
￭ False positives (results are unusable)

￭ As code size grows, speed drops
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￭ Analyze program by executing it

￭ Better accuracy: no false positives
￭ Execution reveals only what exists
￭ Program crashed? You found a bug!

￭ Capable of very high throughput

Dynamic Testing:Static Analysis:
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Fuzzing
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One dark and stormy night… 
in the era of dial-up internet
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ABCDEFGH

Source: https://www.linux-magazine.com/Issues/2022/255/Fuzz-Testing
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ABCDEFGH

AB.. $4G…

Source: https://www.linux-magazine.com/Issues/2022/255/Fuzz-Testing

One dark and stormy night… 
in the era of dial-up internet
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ABCDEFGH

AB.. $4G…

Source: https://www.linux-magazine.com/Issues/2022/255/Fuzz-Testing

￭ Shouldn’t programs do much better with glitched or invalid input?

One dark and stormy night… 
in the era of dial-up internet
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Bart’s idea: test programs on random inputs!
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￭ Quickly generate lots and lots of random inputs

￭ Execute each on the target program

￭ See what happens
￭ Crash 
￭ Hang
￭ Nothing at all
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Bart’s idea: test programs on random inputs!
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Random inputs work!

￭ Crash or hang 25–33% of utility 
programs in seven UNIX variants

￭ Results reveal several common 
mistakes made by programmers

￭ They called this fuzz testing
￭ Known today as fuzzing
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The Evolution of Fuzzing
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Fuzzing like it’s 1989

￭ Random inputs

￭ Black-box: only check program’s end result
￭ Signals
￭ Return values
￭ Program-specific output

￭ Save inputs that trigger weird behavior
￭ SIGSEGV, SIGFPE, SIGILL, etc.
￭ Assertion failures
￭ Other reported errors
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Finding Bugs with Fuzzing
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Source: https://blog.trailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/
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Black-box fuzzing only gets you so far…
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How can fuzzing exploration be guided?
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￭ Idea: track some measure of 
exploration “progress”
￭ Coverage of program code
￭ Stack traces
￭ Memory accesses

￭ Pinpoint inputs that further 
progress over the others

￭ Mutate only those inputs
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Code Coverage

￭ Code coverage: program regions 
reached by each test case

￭ Horse racing analogy: breed 
only the winning inputs
￭ New coverage? Keep the input
￭ Old coverage? Discard it
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Maximize
code coverage
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Program

Inputs
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Coverage-guided Fuzzing
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Inputs
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Coverage-guided Fuzzing
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Coverage-guided Fuzzing
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(new code)
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Coverage-guided Fuzzing
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Source: https://blog.trailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/
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Modern Fuzzing
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Fuzzing in the Industry

￭ Fuzzing = today’s most popular bug-finding technique
￭ Most real-world fuzzing is coverage-guided
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Taxonomy of Fuzzers
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Tools of the trade: AFL

￭ Most historically significant fuzzer 
ever developed

￭ Authors: Michal Zalewski (2013) 
￭ Google (2019–2022)
￭ The AFL++ team (2020–onwards)

￭ Versatile, easy to spin up & modify
￭ Spawned probably ~100 PhD & MS theses
￭ (mine included)

￭ Mix of carefully chosen trade-offs
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What AFL aims to be…

￭ Primary goal: high test case throughput

￭ Sacrifice precision in most areas
￭ Lightweight, simple mutators
￭ Coarse, approximated code coverage
￭ Little reasoning about seed selection

￭ Revolutionary & still insanely effective
￭ Ideas ported over to honggFuzz, libFuzzer
￭ and nearly all other fuzzers
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Tools of the trade: AFL AFL++

￭ By far today’s most popular fuzzer

￭ Official successor to vanilla AFL
￭ Started out as a community-led fork
￭ Google has since archived vanilla AFL

￭ A platform for trying-out new features
￭ Integrated lots of academic prototypes
￭ Easily tailorable to your target’s needs
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https://github.com/AFLplusplus/AFLplusplus
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Building a good fuzzer is all about finding the 
right balance of performance & precision.
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Trade-offs are target-dependent…
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If something has not been fuzzed before, 
any fuzzing will probably find lots of bugs.
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Any fuzzing is better than not fuzzing!
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Questions?
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Lab 1: Beginner Fuzzing
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￭ See Assignments tab on course website
￭ Click the drop-down link for Lab 1

￭ Deadline: Wednesday, February 7
￭ Submit on Canvas by 11:59 PM MST
￭ Late assignments are not accepted
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Lab 1: Beginner Fuzzing
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Lab 1: Beginner Fuzzing

￭ Assignment: familiarize yourself with AFL++ 
￭ Read its documentation in docs/

￭ Pick three features, try them out, and discuss your findings
￭ E.g., impacts on code coverage, speed, crash discovery
￭ What insights do you have? 
￭ Why did one feature work better than another? 

￭ Deliverable: a 1–3 page report detailing your findings
￭ Feel free to make it your own (e.g., pictures, text, etc.)

￭ Need a Linux environment
￭ Use the CS 4440 Lubuntu VM if you don’t have one
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Lab 1: Introduction to Fuzzing

￭ Primary goal: prepare you for the semester project

￭ Other goals: 
￭ Give you experience with industry-standard tools
￭ Put you in the “research” mindset
￭ Improve your debugging skills
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Questions?
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