
Stefan Nagy

Week 3: Lecture B
Introduction to Fuzzing

1

Wednesday, January 24, 2024

Stefan Nagy

Recap: Paper Presentations

￭ Two paper presentations per lecture, followed by 5–10 minute discussions

￭ Audience: you are not required to read the paper
￭ … but you are required to participate in the discussion!

￭ Presenters: your job is to teach us the paper
￭ Summarizing
￭ Contextualize
￭ Pros vs. cons
￭ Contributions
￭ Key assumptions
￭ Prepare a short slide deck (you can get “inspired” from existing presentations)
￭ 15 – 20 minute presentation (with a 5–10 minute audience discussion to follow)

2

Stefan Nagy

Recap: Hands-on Labs

￭ Three (relatively easy) labs to be completed solo
￭ Lab 1: Beginner fuzzing
￭ Lab 2: Crash triage
￭ Lab 3: Target harnessing

￭ Paced with the introductory content from Weeks 4–9
￭ Apply the techniques you’ve learned in class
￭ Get familiar with state-of-the-art tools like AFL and ASAN
￭ Deliverables: a short report (1–3 pages) of what you’ve learned

￭ Designed to prepare you for the Semester Final Project

3

Stefan Nagy

Recap: Key Dates
￭ Jan. 24 Lab 1 released

￭ Feb. 07 Lab 1 due

￭ Feb. 14 Lab 2 due

￭ Feb. 19 No class (President’s Day)

￭ Feb. 28 Lab 3 due

￭ Feb. 28 5-minute project proposals

￭ Mar. 04 & 06 No class (Spring Break)

￭ Apr. 17 & 22 Final project presentations

4

cs.utah.edu/~snagy/courses/cs5963/schedule

Stefan Nagy

Questions?

5

Stefan Nagy

Background

6

Stefan Nagy

Programs and Inputs

￭ Modern applications accept many sources of input:
￭ Files
￭ Arguments
￭ Environment variables
￭ Network packets
￭ …

￭ Nowadays: multiple sources of inputs

7

Stefan Nagy

Software Bugs

8

Stefan Nagy

Software Bugs

9

Stefan Nagy

When bugs go bad

￭ Improper input validation leads to security vulnerabilities
￭ Bugs that violate the system’s confidentiality, integrity, or availability

￭ Exploitation: leveraging a vulnerability to perform unauthorized actions

10

Stefan Nagy

▪Missed initialization check
▪ Free’d pointers not NULL’d
▪ Unchecked memory writes

Common Vulnerabilities
▪ Use uninitialized memory
▪ Use non-owned memory
▪ Overflowing a data buffer

Consequences Attacker Exploitation
▪ Software denial of service
▪ Leak sensitive information
▪ Inject & run arbitrary code

Race against time to find & fix vulnerabilities
before they are exploited

Exploitation

11

Stefan Nagy

With so many vulnerabilities today…

12

Source: cvedetails.com

Stefan Nagy

… exploits are getting more and more sophisticated

13

1972
First known
overflows

1997
Ret-2-Libc

attacks

1997
Function ptr

hijacking

1998
StackGuard
bypasses

1998
Heap

overflows

1999
Format
strings

2002
ASLR

bypasses

2002
Integer

overflows

2005
Ret oriented
programming

2005
Hardware DEP

bypasses

2007
Double
frees

2007
Heap

grooming

2007
Null pointer
dereference

2009
Heap

spraying

2010
JIT

spraying

2011
Jmp oriented
programming

2014
Call oriented
programming

2016
Data oriented
programming

1996
Stack

overflows

2021
Zero-click
exploits

What’s next?

Stefan Nagy

Proactive Vulnerability Discovery

￭ Analyze program without running it

￭ Accuracy a major concern
￭ False negatives (vulnerabilities missed)
￭ False positives (results are unusable)

￭ As code size grows, speed drops

14

￭ Analyze program by executing it

￭ Better accuracy: no false positives
￭ Execution reveals only what exists
￭ Program crashed? You found a bug!

￭ Capable of very high throughput

Dynamic Testing:Static Analysis:

Stefan Nagy

Proactive Vulnerability Discovery

￭ Analyze program without running it

￭ Accuracy a major concern
￭ False negatives (vulnerabilities missed)
￭ False positives (results are unusable)

￭ As code size grows, speed drops

15

￭ Analyze program by executing it

￭ Better accuracy: no false positives
￭ Execution reveals only what exists
￭ Program crashed? You found a bug!

￭ Capable of very high throughput

Dynamic Testing:Static Analysis:

Stefan Nagy

Fuzzing

16

Stefan Nagy

One dark and stormy night…
in the era of dial-up internet

17

ABCDEFGH

Source: https://www.linux-magazine.com/Issues/2022/255/Fuzz-Testing

Stefan Nagy 18

ABCDEFGH

AB.. $4G…

Source: https://www.linux-magazine.com/Issues/2022/255/Fuzz-Testing

One dark and stormy night…
in the era of dial-up internet

Stefan Nagy 19

ABCDEFGH

AB.. $4G…

Source: https://www.linux-magazine.com/Issues/2022/255/Fuzz-Testing

￭ Shouldn’t programs do much better with glitched or invalid input?

One dark and stormy night…
in the era of dial-up internet

Stefan Nagy

Bart’s idea: test programs on random inputs!

20

Stefan Nagy

￭ Quickly generate lots and lots of random inputs

￭ Execute each on the target program

￭ See what happens
￭ Crash
￭ Hang
￭ Nothing at all

21

Bart’s idea: test programs on random inputs!

Stefan Nagy

Random inputs work!

￭ Crash or hang 25–33% of utility
programs in seven UNIX variants

￭ Results reveal several common
mistakes made by programmers

￭ They called this fuzz testing
￭ Known today as fuzzing

22

Stefan Nagy

The Evolution of Fuzzing

23

Stefan Nagy

Fuzzing like it’s 1989

￭ Random inputs

￭ Black-box: only check program’s end result
￭ Signals
￭ Return values
￭ Program-specific output

￭ Save inputs that trigger weird behavior
￭ SIGSEGV, SIGFPE, SIGILL, etc.
￭ Assertion failures
￭ Other reported errors

24

Stefan Nagy

Finding Bugs with Fuzzing

25

Source: https://blog.trailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/

Stefan Nagy

Black-box fuzzing only gets you so far…

26

Stefan Nagy

How can fuzzing exploration be guided?

27

￭ Idea: track some measure of
exploration “progress”
￭ Coverage of program code
￭ Stack traces
￭ Memory accesses

￭ Pinpoint inputs that further
progress over the others

￭ Mutate only those inputs

Stefan Nagy

Code Coverage

￭ Code coverage: program regions
reached by each test case

￭ Horse racing analogy: breed
only the winning inputs
￭ New coverage? Keep the input
￭ Old coverage? Discard it

28

Maximize
code coverage

Stefan Nagy

Program

Inputs

29

Coverage-guided Fuzzing

Stefan Nagy

Program

Inputs

30

Execute and
Collect Feedback

(e.g., code coverage)

Coverage-guided Fuzzing

Stefan Nagy

Program

Inputs

31

Execute and
Collect Feedback

(e.g., code coverage)

✓
Interesting!

(new code)

Coverage-guided Fuzzing

Stefan Nagy

X
Uninteresting

Program

Inputs

32

(no new code)

Execute and
Collect Feedback

(e.g., code coverage)

✓
Interesting!

(new code)

Coverage-guided Fuzzing

Stefan Nagy

✓

X

Interesting!

Uninteresting

Program

Inputs

33

(new code)

(no new code)

Execute and
Collect Feedback

(e.g., code coverage)

Crashes

(SEGFAULT)

Coverage-guided Fuzzing

Stefan Nagy

Coverage-guided Fuzzing

34

Source: https://blog.trailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/

Stefan Nagy

Modern Fuzzing

35

Stefan Nagy

Fuzzing in the Industry

￭ Fuzzing = today’s most popular bug-finding technique
￭ Most real-world fuzzing is coverage-guided

36

Stefan Nagy

Taxonomy of Fuzzers

37

Stefan Nagy

Tools of the trade: AFL

￭ Most historically significant fuzzer
ever developed

￭ Authors: Michal Zalewski (2013)
￭ Google (2019–2022)
￭ The AFL++ team (2020–onwards)

￭ Versatile, easy to spin up & modify
￭ Spawned probably ~100 PhD & MS theses
￭ (mine included)

￭ Mix of carefully chosen trade-offs

38

Stefan Nagy

What AFL aims to be…

￭ Primary goal: high test case throughput

￭ Sacrifice precision in most areas
￭ Lightweight, simple mutators
￭ Coarse, approximated code coverage
￭ Little reasoning about seed selection

￭ Revolutionary & still insanely effective
￭ Ideas ported over to honggFuzz, libFuzzer
￭ and nearly all other fuzzers

39

Stefan Nagy

Tools of the trade: AFL AFL++

￭ By far today’s most popular fuzzer

￭ Official successor to vanilla AFL
￭ Started out as a community-led fork
￭ Google has since archived vanilla AFL

￭ A platform for trying-out new features
￭ Integrated lots of academic prototypes
￭ Easily tailorable to your target’s needs

40

https://github.com/AFLplusplus/AFLplusplus

Stefan Nagy

Building a good fuzzer is all about finding the
right balance of performance & precision.

41

Trade-offs are target-dependent…

Stefan Nagy

If something has not been fuzzed before,
any fuzzing will probably find lots of bugs.

42

Any fuzzing is better than not fuzzing!

Stefan Nagy

Questions?

43

Stefan Nagy

Lab 1: Beginner Fuzzing

44

Stefan Nagy

￭ See Assignments tab on course website
￭ Click the drop-down link for Lab 1

￭ Deadline: Wednesday, February 7
￭ Submit on Canvas by 11:59 PM MST
￭ Late assignments are not accepted

45

Lab 1: Beginner Fuzzing

Stefan Nagy

Lab 1: Beginner Fuzzing

￭ Assignment: familiarize yourself with AFL++
￭ Read its documentation in docs/

￭ Pick three features, try them out, and discuss your findings
￭ E.g., impacts on code coverage, speed, crash discovery
￭ What insights do you have?
￭ Why did one feature work better than another?

￭ Deliverable: a 1–3 page report detailing your findings
￭ Feel free to make it your own (e.g., pictures, text, etc.)

￭ Need a Linux environment
￭ Use the CS 4440 Lubuntu VM if you don’t have one

46

Stefan Nagy

Lab 1: Introduction to Fuzzing

￭ Primary goal: prepare you for the semester project

￭ Other goals:
￭ Give you experience with industry-standard tools
￭ Put you in the “research” mindset
￭ Improve your debugging skills

47

Stefan Nagy

Questions?

48

