Week 2: Lecture B
Research 101: Writing

Wednesday, January 17, 2024

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUU

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Recap: Course Website

cs.utah.edu/~snagy/courses/cs5963

AHLERT SCHOOL OF COMPUTING
AH

CS 5963/6963: Applied Software Security Testing

This special topics course will dive into today’s state-of-the-art techniques for uncovering hidden security vulnerabilities in
software. Introductory fuzzing exercises will provide hands-on experience with industry-popular security tools such as AFL+ and

AddressSanitizer, culminating in a final project where you’ll work to hunt down, analyze, and report security bugs in a real-
world application or system of your choice.

This class is open to graduate students and upper-level undergraduates. It is recommended you have a solid grasp over topics
like software security, systems programming, and C/C++.

Learning Outcomes: At the end of the course, students will be able to:

« Design, implement, and deploy automated testing techniques to improve vulnerability on large and complex software systems.
« Assess the effectiveness of automated testing techniques and identify why they are well- or ill-suited to specific codebases.

« Distill testing outcomes into actionable remediation information for developers.

« Identify opportunities to adapt automated testing to emerging and/or unconventional classes of software or systems.

Pinpoint testing obstacles and synthesize strategies to overcome them.

« Appreciate that testing underpins modern software quality assurance by discussing the advantages of proactive and post-
deployment software testing efforts.

Stefan Nagy

Recap: Course Resources

Course website assignments, schedule, slides, paper signup

LTV 4 2 N questions, discussion, announcements

CaANVASueeeeeeeeeeeereeeseeeaee homework submission, course gradebook

Instructor email (snagy@cs.utah.edu) ...veeeveeennneees administrative issues
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

mailto:snagy@cs.utah.edu

Recap: Lateness Policy

Assignments will be posted on course website
= See cs.utah.edu/~snagy/courses/cs5963/assignments

Due by 11:59 PM on the specified deadline date

= Late assignments will not be accepted

If you are sick / traveling / abducted by aliens...
= Try to keep me posted and we will figure something out

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

https://cs.utah.edu/~snagy/courses/cs5963/assignments

Recap: Course Materials
No textbook is required for this course

Some excellent resources on fuzzing are:

= The Fuzzing Book by Zeller, Gopinath, Bohme, Fraser, and Holler
= Fuzzing Against the Machine by Antonio Nappa and Blazquez

Other general computer security textbooks:

= Introduction to Computer Security by Goodrich and Tamassia
= Security Engineering by Ross Anderson

These are are linked on the course syllabus
m cs.utah.edu/~snagy/courses/cs5963/

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

http://cs.utah.edu/~snagy/courses/cs5963/

Recap: No Exams

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Recap: Paper Presentations

Signup sheet available on course website (must use UofU gcloud account)

= 38 fuzzing papers from top venues in security, software engineering, and some workshops
= Choose one paper by Monday, January 22

A B c D E

» Directions: select one paper to present (that isn't already taken), and enter your name in the
UW corresponding "Presenter” box for that day. After you present, upload your slides to Canvas.
Date Jan. 08 Jan. 10
Topic Course Introduction Research 101
H H H Paper 1

CS 5963/6963: Applied Software Security Testing il No Readings o Readings

This special topics course will dive into today’s state-of-the-art techniques for uncovering hidden security vulnerabilities in Date Jan. 15 Jan. 17

software. Introductory fuzzing exercises will provide hands-on experience with industry-popular security tools such as AFL+ and Topic Research 101

AddressSanitizer, culminating in a final project where you’ll work to hunt down, analyze, and report security bugs in a real- Paper 1 No Class (Martin Luther King Jr. Day) .

world application or system of your choice. Paper 2 WOREEEES

This class is open to graduate students and upper-level undergraduates. It is recommended you have a solid grasp over topics Date Jan. 22 Jan. 24

like software security, systems programming, and C/C++. Topic Research 101 Introduction to Fuzzing Presenters

" . - . Dissecting American Fuzzy Lop: A

Learning Outcomes: At the end of the course, students will be able to: Paper 1 No Readi FuzzBench Evaluation (FUZZING'22)

« Design, implement, and deploy automated testing techniques to improve vulnerability on large and complex software systems. Paper 2 0 Readings AFL++: Combining Incremental Steps of

« Assess the effectiveness of automated testing techniques and identify why they are well- or ill-suited to specific codebases. Fuzzing Research (WOOT'20)

« Distill testing outcomes into actionable remediation information for developers. Dalé J_""" 2 1 : Jan. 31

« Identify opportunities to adapt automated testing to emerging and/or unconventional classes of software or systems. Topie Input Generation Freseniers Runtime Feedback Tresenters

o))) DARWIN: Survival of the Fittest Fuzzing [The Use of Likely Invariants as Feedback for}
« Pinpoint testing obstacles and synthesize strategies to overcome them. Paper 1 Mutators (NDSS'23 Fuzzers (USENIX'21
« Appreciate that testing un.derplns modern software quality assurance by discussing the advantages of proactive and post- CarpetFuzz: Automatuc Program Optlon‘ Bt 6o Fuiing WabGL, Thioish Bisr
deployment software testing efforts. Paper 2 Constraint Extraction from Documentation Message Guided Mutation (USENIX'23)
- i for Fuzzing (USENIX'23) g

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

Recap: Paper Presentations

[Enrollment has exceeded the number of papers }

[You may “buddy up” on paper presentations J

[No more that two students may present a paper}

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Recap: Key Dates

Jan. 22 Select one paper to present cs.utah.edu/~snagy/courses/cs5963/schedule

Feb 07 La b 1 d u e Part 1: Course Intro and Research 101

Monday Meeting Wednesday Meeting
Jan. 08 Jan. 10
Feb 1 4 La b 2 d e Course Introduction Research 101: Ideas
® u Jan. 15 Jan. 17
No Class (Martin Luther King Jr. Day) Research 101: Writing

Jan. 22 Jan. 24

Feb. 19 No class (President’s Day) 1o Rviing andPresrt ity

Sign up for paper presentations by 11:59pm

Beginner Fuzzing Lab released

FEb. 28 La b 3 d u e Part 2: Fuzzing Fundamentals

Feb. 28 5-minute project proposals
Mar.04 & 06 No class (Spring Break) d o
Ap r‘ 1 7 & 22 Fi n al p roj eCt p rese ntati o n S EE{{%EE{ :.ab released ;:R;e:a:‘;fg;dlle by 11:59pm

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Writing:
The Communication of Research

Stefan Nagy

1

Why write papers?

It you don't publically document your work,
then it does not exist (beyond you)

OOOOOOOOOOOOOOOOO Stefan Nagy

12

Why write papers?
Document and communicate what you did
Convince others that you actually did it
Convince others that what you did actually matters

Because you won't get a Ph.D. without it

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

13

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Writing Papers

Stefan Nagy

14

Writing papers is a process...

- -

[ldea H Write H Edit }—»{SubmltJ

l @@@
‘
\
. /
ﬁ Research i‘

Stefan Nagy

\
1
I

/

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

15

The Fieldstone Writing Method

Start putting words on paper as early as possible
= Writing near a deadline is really hard
= Finalizing “the pitch” is an iterative process

Write as you go along
= |tis easier to talk about a problem you are currently solving
= |tis harder to remember all problems you solved on short notice
= |tis easier to revise and remove than to create from scratch

Gerald M. Wei

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 16

Before you start: The Tagline

What is your paper’s tagline?
At most two sentences (15 seconds in an elevator)

Rest of paper must gracefully support the tagline

"There can only be
ONE (paper +aﬁline)“

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 17

Titles

Highlight what you do and distinguishing properties
= Objective is not to make you look smart (e.g., big words)

Common distinguishing adjectives:
= Automatic
= Low-overhead
= Dynamic
= Reconfigurable
= Find a favorite thesaurus

Disambiguate the core message

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

L

power thesaurus

18

The Title Rule

Paper titles should be fun or catchy,
and ultimately memorable.

You Autocomplete Me: .. “F:uzzihﬁ Hardware like SofFtware"

Who's Calling? izi
g° Char‘acher‘lzmﬁ Robocalls_ "Who Left Open the

'‘Users Really Do Plug in C.ookie Jar? A Eva\ugﬁop
USB Drives They Find" of Third-Party Cookies

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

19

The (other) Title Rule

Your paper title and system name
should be Google-able.

. o '‘Fuzzing@H . Dicdei .
er- Fuzzin g@Home : Distributed F u
; tizer ﬂu\ded uzzing uzzing.
“Pa\"mGSP‘N Sanl

" Fav _
ExcelLint - Finding Spreadsheet ETTET ocado : Fuzzin, Binding Code

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 20

Paper Outline

[Abstract]

[Introduction]

[Background?]

[Technique]

[Implementation]

[Evaluation]

[Discussion?]

[Related Work]

[Conclusion]

OOOOOOOOOOOOOOOOO
Wk Stefan Nagy 21

The “Makes Sense” Rule

A research paper should make sense just
from reading its introduction, conclusion,
and the captions to all figures and tables.

SCHOOL‘OF SOMESITING Stefan Nagy

22

Abstract

Paper Outline

[Introduction]4' -="

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

_ Write your papers to be skimmed
by readers from the outside->in

s
[Background?] \\‘:\
| Technique | AN
Vo
[Implementation] \\ .\
[Evaluation] \\ "
[Discussion?] \‘ I

[Related Work]\\‘

[Conclusion

Stefan Nagy

23

Paper Outline

AT]<_ oo Write your papers to be s;.klmrr.led
: - by readers from the outside-in
[Introduction]4‘ N
W
[Background?] W
\
[Technique] \ \\
AN
[Implementation] ‘\ Mo
. \ \
[Evaluation] \ \
[Discussion?] \‘ M
\
Save “related” work for near the end - - - - | Related Work | ¢

[Conclusion

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

24

OOOOOOOOOOOOOOOOO

Structure of (a good) Paper

Stefan Nagy

25

Abstract

Write as if it's a standalone document
= Very high level and concise description

First paragraph
= High-level problem and motivation
= Bridge sentence: what's the gap?

Second paragraph
= Description of insights and approach
= Sum up your experiment and results
= Use formatting to your advantage

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Abstract

Shark Tank: study the “art” of the pitch

Good pitches
= Concise, correct, and high-level
= |dea hasn’t been done before
= Something that matters to society
= Proofisin the pudding (i.e., results)

Bad pitches

= Not concise, incorrect, or too technical
= Limited impact or already been done
= Qutcomes bad or not measurable

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

Choose Clarity over Complexity

Once, David Goodstein, a colleague of the Nobel-Prize-winning theoretical
physicist Richard Feynman, said "Rich, explain to me, so that | can understand It,
why spin one-half particles obey Fermi-Dirac statistics?"

Feynman looked at Goodstein and said, "I'll prepare a freshman lecture on it
The physicist went away to compose his lesson, but a few days later came back to

his colleague, "I couldn't do it Feynman said, "I couldn't reduce it to the
freshman level. That means we don't really understand it."

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 28

Papers Should Tell a Story

Telling a story in a technical paper is not like Shakespeare or writing Dante's
Inferno, but like creating a character in a movie. The goal Is logical
connectedness. We have all been to movies where a character did something that
didn't make sense or where we said, "lI'd never do that" We have all experienced
plot holes in movies. When writing a technical paper, our goals is to tell a story
without plot holes. We NEVER want a reviewer to say, "Why did they do it that
way? This doesn't make sense. This is unclear, what are the authors hiding?"
This motto applies to writing the design section just as much as the evaluation
section. It even applies to the intro where our goal is to convince reviewers that

our problem is important, challenging, that our approach follows given previous
work, and that our approach is effective.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

29

The “Get to the Point” Rule

Don't write a mystery novel; give the reader
the important information up front.

OOOOOOOOOOOOOOOOO Stefan Nagy

30

Walk the “Abstraction Ladder”

High level: the abstract concepts, layman’s terms

= Don'tinclude low-level details or terms here HUMAN
= Be succinct yet correct
= Assume audience is clueless ARTIST

MUSICIAN

Low level: technical details, specialized terms

= Assume audience is knowledgeable GUITARIST

ROCK GUITARIST

Work your description from the high-level
to the low-level, then back up

JERRY GARCIA

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 31

Introduction

Accept/reject decisions often made here

4—-6 paragraphs
= Motivation
= Problem
= What others have done and the gap
= What you do
= How you implement and evaluate
= Results
= List of contributions

Don’t waste space with a paper outline

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

32

Introduction

Don't spend too much space addressing the work of others
= |t detracts from the presentation of your work

Address works reviewers will most likely relate to your work

A string of references signals to readers that your work is a
small boat in a sea of precious work

A good intro generally takes 1-1.5 pages

Only append a citation once for each context you use it in

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

33

The Heilmeier Catechism

What are you trying to do? Articulate objectives using absolutely no jargon.

How is it done today, and what are the limits of current practice?

What is new in your approach and why do you think it will be successful?
Who cares? If you are successful, what difference will it make?

What are the risks?

How much will it cost?

How long will it take?

What are the mid-term and final “exams” to check for success?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

34

The Novelty Rule

Don't claim to be first—even If you
are—because that pisses reviewers off and
they can always find a paper that—from
10,000 feet away—looks similar to yours.

Let others make those claims.

OOOOOOOOOOOOOOOOOO Stefan Nagy

35

Corollary to The Novelty Rule

Don't tell readers what to think
(e.g., our approach is simple, clever, novel,
awesome, the best ever).

Let others make those claims.

SCHOOL~0F COMPU1'}NG Stefan Nagy

36

Be Concrete and Explicit

NO!

YES!

We describe the WizWoz
system. It is really cool.

We give the syntax and semantics of
a language that supports concurrent
processes (Section 3). Its innovative
features are...

We study its properties

We prove that the type system is
sound, and that type checking is
decidable (Section 4)

We have used WizWoz in
practice

We have built a GUI toolkit in
WizWoz, and used it to implement a
text editor (Section B). The result is
half the length of the Java version.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

37

The Algorithm Rule

Your technique is better explained in words.

Algorithm 1: The UnTracer algorithm integrated in AFL.

Input: P: the target program
Data: b: a basic block
B: a set of basic blocks
. an AFL-generated test case
®: the set of all coverage-increasing test cases

1 AFL_SETUP()

// Instrument oracle and tracer binaries
Po < INSTORACLE(P)

3 Pr < INSTTRACER(P)

// Find and modify all of oracle’s blocks
B=10

B < GETBASICBLOCKS(P)

[8]

(7 N

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

38

Related Work

Not a place to disparage previous work
Not a place to show your breadth of knowledge

Tell a story

= How the problem has progressed throughout history
= How ideas relate to and build off each other

Keep it to a few lines per paper

End sections with how your work fits in

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

39

Related Work

Delay an in-depth literature review

= Don’t try to learn everything at once
= Read one paper per week during system building
= Curate, organize, and annotate a bibliography

What papers are reviewers likely to think of when they read yours?

Refer to papers by how they are best known (not always by author)
= Example: “SystemName shows...” instead of “Simpson et al. shows..”

Sentences should be complete if you were to remove citations
= Example: “SystemName [1] shows...” instead of “[1] shows...”

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

40

Conclusion

Reverse pyramid: tell them what you did

= Start: specific eva'luation res'ults \ The high-level pitch /
= End: area and societal meaning
Technique
. . .. & results
High-level implications of your results --~_
. \ -
- Ee;;(l)gnmenflat.lgns \\\ ! Call to
pp.or U.n| 1es Se__ 2 action
= Future directions !
I
\

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

41

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Refining your Writing

Stefan Nagy

42

Grammar

Avoid past tense; use present tense
= “We implement” instead of “We implemented”

Avoid passive voice; use active voice
= “We analyze functions...” instead of “Functions are analyzed..”

Avoid contractions
= “do not” instead of “don’t”

Avoid wiggle words
= Would, could, should, maybe, possibly, can

Avoid abstract; be concrete
= “A 300 pound elephant” instead of “A large elephant”

Do not tell the reader what to do; tell what you did
= “First, you need to find the six least-connected components...”

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

43

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Grammar Resources

More Than One Million Copies Sold

On
Writing
Well

The Classic Guide to Writing Nonfiction

Grammar
Girl

William Zinsser

FOR BETTER WRITING ~ AGuideto Debuﬁmi‘Your Prose

UNIVERSITY WRITING CENTER

J.WILLARD MARRIOTT LIBRARY
SECOND FLOOR, RM 2701
295S 1500 E

rammarl
(801) 587-9122

Stefan Nagy

A

Graphics

Chart Suggestions—A Thought-Starter D bt ioissirescs g

Variable Width Table or Table with Bar Chart Column Chart Circular Area Chart Line Chart Column Chart Line Chart
Column Chart Embedded Charts . E , ‘ %
J% 1l \i ‘ f/
T T T T T T
My Ticiiis Few Ticims Cyelical Data Nen-Cyclical Data Singleor Few Ctcgorios Many Casegorics
Two Variables Many
perlte Garcgorles Few Careadties Many Periods Few Periods
) 1 h
T
One Variable per ltem
T Over Time

Among Items
| Column Histogram
| Few
. Single [— Data— —
Comparison Variable | Poines | [| ’ h |
Scatter Chart Two |
Variables
. X What would you oo Line Histogram
Relationship — ” . — Distribution ——— Many
like to show? el
Points AN
Bubble Chart
Composition Scatter Chart
Three
Variables Two
Variables —|
Changing Static
Ces Hime 30 Area Chart
‘ Theee
Few Periods Many Periods Variables —
%
] | |
Only Relative Relative and Absolute Only Relative Relative and Absolute Simple Share A lation or C
Differences Matter Differences Matter Differences Matter Differences Matter o Toral Siibtraceionieo el of Components
Stocked 100% Stacked Stacked 100% Stacked Area Chart Pie Chart Waterfall Chart Stacked 100% Column Chart
Column Chart Column Chart Area Chart with Subcomponents

AAA | e | X || (B

Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

The Graphics Rule
Make graphics in vector formats, not rasters.

Vector Raster

D 3
2 £

OOOOOOOOOOOOOOOOO

UUUUUUUUUUUUUUUU Stefan Nagy

46

Graphics Resources

Charts and graphs

= Python matplotlib matpltl ib Sea born

= Seaborn for enhanced charts

System diagrams

= Draw.io)
= Powerpoint @PowerPoint draw.io -

= Inkscape (advanced) INKSCAPE

Image search engines
= Vecteezy

= Google image search @ VeCteeZy

= Various clipart websites

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 47

Paper Editing
Use version tracking (e.g., GitHub, Overleaf)

Create macros to leave in-lined suggestions

PDF diffing utilities (essential for revisions)

= latexpand: combine many.tex files into a single file .
= latexdiff: markup changes between two .tex files 1 Introduction

= Build a PDF diff from the resulting . tex file [SN: Add some context here!]
Software vulnerabilities represent
economies tens to hundreds of billion

. - | Lo, 4

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Perform an Adversarial Review

Identify the hurdles to believing your paper
= Remove hurdles through proof or citation
= Sometimes a citation is stronger than a self-contained proof
= Goal: minimize hurdles

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

49

Perform an Adversarial Review

Identify the hurdles to believing your paper

= Remove hurdles through proof or citation
= Sometimes a citation is stronger than a self-contained proof
= Goal: minimize hurdles

Where and how will a reader get confused?

What will a competitor disagree with?

Are all my claims supported by reference or through experimentation?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

50

Maintain a Paper Template

Essential sections
= With notes on how to write those sections

Default set of packages

Useful commands
= Macros (e.g., \NameOfOurCoolSystem)
= Inlined comment macros (great for collaboration)

Examples of common insets
= Figures
= Tables
= Code snippets

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

-

Overview:
In this project, we propose...
1. In what ways...?
2. What challenges...?
3. Canwe...?
Intellectual Merit:
Offering to extend principled scientific techniques...
1. Thing 1:
2. Thing 2:
3. Thing 3:
Broader Impacts:
The research outcomes of this project will be...

Qywords: Software

Collaborative Research: SaTC: CORE: Medium: ... \

51

Miscellaneous Tips

Introduction: goal, intuition, reasoning, and takeaways are critical to a story

For each paragraph:
= At this point in the paper, what does the reader know?
= What one point does this paragraph need to make?

Evaluations: include analysis with description
= Do not reiterate what readers can see for themselves (e.g., 50% overhead)

Implementations are not ideas
= |deas should be general (e.g., implementable on other systems)
= Implementations are narrow embodiments of the general idea

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

52

Maintain a Lexicon of Cool Words

Decompose

Expedition, Frontier

Side-channel, Out-of-band

Offline, Online

Dynamic, Static

Continuum

Artifact

Transient

Intermittent

Taxonomy, Orthogonal, Tradeoff space
Forward error correction, Backward error correction
Towards (in a title especially)
Overcoming, Suggests, Asymmetry

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

53

The Final Rule

One must always leave something
for reviewers to say.

OOOOOOOOOOOOOOOOO Stefan Nagy

54

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Next time on CS 5963/6963...

Research 101: Presenting and Reviewing

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

56

