Week 1: Lecture A

Course Introduction

Monday, January 8, 2024

OOOOOOOOOOOOOOOOO

Reminders

Be sure to join the course Canvas and Piazza

= See links at top of course page
m cs.utah.edu/~snagy/courses/cs5963/

Trouble accessing? See me after class!
= Oremail me at: snagy@cs.utah.edu

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

https://cs.utah.edu/~snagy/courses/cs5963/
mailto:snagy@cs.utah.edu

Today’s Class

Welcome to CS 5963/6963 &
Course Overview

What is software testing?
= How does it work?
= Why do we use it?

Ethics and Academic Integrity

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

About Me

cs.utah.edu/~snagy
twitter.com/snagycs
@snagy@infosec.exchange

Stefan Nagy

Assistant Professor, KSoC

Co-founder and Co-director: Places I've been:
UTAH SOFTWARE University of Utah, 2022-now
SECURITY GROUP Virginia Tech, Ph.D. 2016-2022

SCHOOL OF COMPUTING | THE UNIVERSITY OF UTAH Univ. of Illinois, B.S.

2012-2016

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

My Research Group

FU_URES

FUTURE TECHNOLGY FOR USABLE, RELIABLE, &
EFFICIENT SECURITY OF SOFTWARE & SYSTEMS

SCHOOL OF COMPUTING | THE UNIVERSITY OF UTAH | SALT LAKE CITY

Our work: systems and software
security, binary analysis, fuzzing

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Course Overview

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

What brought you here?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Course Goals
Help you become better researchers
Expose you to different perspectives
Experience with state-of-the-art tools
Get course credit so you can graduate?

All while learning about software testing

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

Course Components

Reading & evaluating research
= Contextualize
= Prosvs. cons
= Contribution
= Summarizing
= |dentify assumptions

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Course Components

Reading & evaluating research
Contextualize
Pros vs. cons
Contribution
Summarizing
Identify assumptions

Conducting & presenting research
= |dentify an open problem and solve it
= Develop new tooling and release it
= Evaluate and disseminate your work
= Help society by finding security bugs

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Course Format
Meetings: Mondays & Wednesdays at 1:25 — 2:45 PM

Locations: WEB L114 (class), MEB 3446 (office hours)
= Office hours held from 2:45 - 3:30 PM following lecture

20 - 30 min: instructor-led lecture on topic of the day
= Slides will be posted on the course website Schedule

40 - 50 min: student-led paper presentation & discussion
= One ortwo papers per day related to the lecture topic

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

1

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Course Website

cs.utah.edu/~snagy/courses/cs5963

AHLERT SCHOOL OF COMPUTING
AH

CS 5963/6963: Applied Software Security Testing

This special topics course will dive into today’s state-of-the-art techniques for uncovering hidden security vulnerabilities in
software. Introductory fuzzing exercises will provide hands-on experience with industry-popular security tools such as AFL+ and

AddressSanitizer, culminating in a final project where you’ll work to hunt down, analyze, and report security bugs in a real-
world application or system of your choice.

This class is open to graduate students and upper-level undergraduates. It is recommended you have a solid grasp over topics
like software security, systems programming, and C/C++.

Learning Outcomes: At the end of the course, students will be able to:

« Design, implement, and deploy automated testing techniques to improve vulnerability on large and complex software systems.
« Assess the effectiveness of automated testing techniques and identify why they are well- or ill-suited to specific codebases.

« Distill testing outcomes into actionable remediation information for developers.

« Identify opportunities to adapt automated testing to emerging and/or unconventional classes of software or systems.

Pinpoint testing obstacles and synthesize strategies to overcome them.

« Appreciate that testing underpins modern software quality assurance by discussing the advantages of proactive and post-
deployment software testing efforts.

N

Stefan Nagy

12

Schedule

Weeks 1 - 3: Course Intro & Systems Research 101

Weeks 4 - 9: Fundamentals of Software Fuzzing

= Three (relatively easy) labs
= Semester Project begins on Week 6

Weeks 10 - 12: Emerging Enhancements in Fuzzing

Weeks 13 - 16: New Frontiers & Project Presentations

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

13

Grading

10% — Attendance & Paper Discussions

10% - Paper Presentations (one per student)
15% — Lab 1: Beginner Fuzzing

15% - Lab 2: Crash Triage

15% - Lab 3: Harnessing

35% - Final Project

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

14

Attendance & Participation

Requirement 1: Show up to class
= Contact me about absences in advance

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

15

Attendance & Participation

Requirement 1: Show up to class
= Contact me about absences in advance

Requirement 2: Participate during

other students’ presentations
= Ask thoughtful questions
= Understand the science
= Help your classmates learn

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Paper Presentations

Two paper presentations per lecture, followed by 5-10 minute discussions

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

17

Paper Presentations

Two paper presentations per lecture, followed by 5-10 minute discussions

Audience: you are not required to read the paper
= ... butyou are required to participate in the discussion!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

18

Paper Presentations

Two paper presentations per lecture, followed by 5-10 minute discussions

Audience: you are not required to read the paper
= ... butyou are required to participate in the discussion!

Presenters: your job is to
= Summarizing
Contextualize
Pros vs. cons
Contributions
Key assumptions
Prepare a short slide deck (you can get “inspired” from existing presentations)
15 - 20 minute presentation (with a 5-10 minute audience discussion to follow)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Paper Presentations

Signup sheet available on course website (must use UofU gcloud account)

= 38 fuzzing papers from top venues in security, software engineering, and some workshops
= Choose one paper by Monday, January 22

A B c D E
» Directions: select one paper to present (that isn't already taken), and enter your name in the
UW us a up, corresponding "Presenter” box for that day. After you present, upload your slides to Canvas.
Date Jan. 08 Jan. 10
Topic Course Introduction Research 101
H H H Paper 1
CS 5963/6963: Applied Software Security Testing il No Readings o Readings
This special topics course will dive into today’s state-of-the-art techniques for uncovering hidden security vulnerabilities in Date Jan. 15 Jan. 17
software. Introductory fuzzing exercises will provide hands-on experience with industry-popular security tools such as AFL+ and Topic Research 101
AddressSanitizer, culminating in a final project where you’ll work to hunt down, analyze, and report security bugs in a real- Paper 1 No Class (Martin Luther King Jr. Day) 9
world application or system of your choice. Paper 2 WOREEEES
This class is open to graduate students and upper-level undergraduates. It is recommended you have a solid grasp over topics Date Jan. 22 Jan. 24
like software security, systems programming, and C/C++. Topic Research 101 Introduction to Fuzzing Presenters
" . - . Dissecting American Fuzzy Lop: A
Learning Outcomes: At the end of the course, students will be able to: Paper 1 No Readi FuzzBench Evaluation (FUZZING'22)
« Design, implement, and deploy automated testing techniques to improve vulnerability on large and complex software systems. Paper 2 0 Readings AFL++: Combining Incremental Steps of
« Assess the effectiveness of automated testing techniques and identify why they are well- or ill-suited to specific codebases. Fuzzing Research (WOOT'20)
« Distill testing outcomes into actionable remediation information for developers. Dalfé J_""" 2 1 : Jan. 31 -
« Identify opportunities to adapt automated testing to emerging and/or unconventional classes of software or systems. Topie Input Generation Freseniers Runtime Feedback Tresenters
o))) DARWIN: Survival of the Fittest Fuzzing [The Use of Likely Invariants as Feedback for}
« Pinpoint testing obstacles and synthesize strategies to overcome them. Paper 1 Mutators (NDSS'23 Fuzzers (USENIX'21
. G\ppreclate that testing un.derplns modern software quality assurance by discussing the advantages of proactive and post- CarpetFuzz: Automatic Program Optuoq 6L eeFuzz: Fuzzing WebGL Through Error
leployment software testing efforts. Paper 2 Constraint Extraction from Documentation Message Guided Mutation (USENIX'23)
for Fuzzing (USENIX'23) -
—_—

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

Hands-on Labs

Three (relatively easy) labs to be completed solo
= Lab 1: Beginner fuzzing
= Lab 2: Crash triage
= Lab 3: Target harnessing

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

21

Hands-on Labs

Three (relatively easy) labs to be completed solo
= Lab 1: Beginner fuzzing
= Lab 2: Crash triage
= Lab 3: Target harnessing

Paced with the introductory content from Weeks 4-9
= Apply the techniques you've learned in class
= Get familiar with state-of-the-art tools like AFL and ASAN
= Deliverables: a short report (1-3 pages) of what you’ve learned

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

22

Hands-on Labs

Three (relatively easy) labs to be completed solo

= Lab 1: Beginner fuzzing
= Lab 2: Crash triage
= Lab 3: Target harnessing

Paced with the introductory content from Weeks 4-9

= Apply the techniques you've learned in class
= Get familiar with state-of-the-art tools like AFL and ASAN
= Deliverables: a short report (1-3 pages) of what you’ve learned

Designed to prepare you for the Semester Final Project

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

23

Semester Final Project

Objective: uncover new bugs in a real-world program
Team up in groups of 1-4

Select an “interesting” target program of your choice; e.g.:
= Popular applications

Nintendo emulators

Old computer games

MacOS Rosetta

GET CREATIVE!

Figure out how to fuzz your target, find bugs, and responsibly disclose them

Deliverables: a report, disclosure of bugs, and open-source your team’s fuzzer

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Semester Final Project

5-minute project proposal on Feb. 28

{

Final presentations at semester’s end

_

You have full creative liberty—get
creative and fuzz something fun!

Stefan Nagy

Key Dates

Jan. 15 No class (MLK Jr. Day) cs.utah.edu/~snagy/courses/cs5963/schedule

Jan. 22 Select one paper to present

Part 1: Course Intro and Research 101

Monday Meeting Wednesday Meeting
Feb. 07 Lab 1 due moe

Course Introduction Research 101: Ideas

Jan. 15 Jan. 17

No Class (Martin Luther King Jr. Day) Research 101: Writing
Febo 14 La b 2 d u e Jan. 22 Jan. 24

101: iewing and i Introduction to Fuzzing
Sign up for paper presentations by 11:59pm »> Readings:

Feb. 19 No class (President’s Day)

Part 2: Fuzzing Fundamentals

Feb. 28 La b 3 d u e Monday Meeting Wednesday Meeting

Jan. 29 Jan. 31

Input Generation Runtime Feedback
» Readings: » Readings:
L o
F b 28 5 t t l Feb. 05 Feb. 07
e ° -mlnu e projec proposa S Bugs & Triage | Bugs & Triage Il
» Readings: » Readings:
Triage Lab released Beginner Fuzzing Lab due by 11:59pm
.
Feb. 12 Feb. 14
Mar.04 & 06 No class (Spring Break) e
» Readings: » Readings:
Harnessing Lab released Triage Lab due by 11:59pm

Apr. 17 & 22 Final project presentations

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Lateness Policy

Assignments will be posted on course website
= See cs.utah.edu/~snagy/courses/cs5963/assignments

Due by 11:59 PM on the specified deadline date

= Late assignments will not be accepted

If you are sick / traveling / abducted by aliens...
= Try to keep me posted and we will figure something out

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 27

https://cs.utah.edu/~snagy/courses/cs5963/assignments

Course Materials
No textbook is required for this course

Some excellent resources on fuzzing are:
= The Fuzzing Book by Zeller, Gopinath, Bohme, Fraser, and Holler
= Fuzzing Against the Machine by Antonio Nappa and Blazquez

Other general computer security textbooks:
= |ntroduction to Computer Security by Goodrich and Tamassia
= Security Engineering by Ross Anderson

These are are linked on the course syllabus
m cs.utah.edu/~snagy/courses/cs5963/

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

28

http://cs.utah.edu/~snagy/courses/cs5963/

No Exams

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUU

Stefan Nagy

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

A Brief Overview of Software Testing

OOOOOOOOOOOOOOOOO

Stefan Nagy

31

Our world depends on software...

©
Oo
- i e
\Q o
i
Personal Military and
Technology Government

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 32

... and software security is a nightmare

25000
20,141
20000 ~ 18325
New Vulnerabilities Reported Per Year - " 55717.344
Source: cvedetails.com 14716
15000
10000
7,939
6, 610 6,520 6,504 6,454
a3 [5632 5736 53 5,297 5,191
5000 B 4155
2,156 2,451
894 1,020 1,677 1,527
0

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

33

... and software security is a nightmare

Amnesty says NSO's Pegasus
used to hack phones of
Palestinian rights workers

‘A cyber-attack disrupted my cancer treatment'

nnnnn

Cyber-attack hits
UK internet phone

providers .
Janesville school

district hit by
ransomware attack

Solarwinds hackers are targeting the . \¢W York subway @ ({;
Qo

global IT supply chain, Microsoft says hacked i.n computer
breach linked to China

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 34

Why is software insecure?

Modern applications accept many sources of input:
Files

Arguments

Environment variables

Network packets

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

35

Why is software insecure?

Modern applications accept many sources of input:
Files

Arguments
Environment variables
Network packets

Developer mistakes create software bugs
= Pointer mismanagement, bounds checking, etc.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

36

Why is software insecure?

Modern applications accept many sources of input:
Files

Arguments
Environment variables
Network packets

@

Developer mistakes create software bugs \
= Pointer mismanagement, bounds checking, etc.

Many bugs are exploitable by attackers

= Denial of service, info leakage, code execution

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

.

37

Software Security Vulnerabilities

m Denial of Service

m Code Execution

m Overflow

m Cross Site Scripting

m Directory Traversal
Bypass Something
Gain Information

m Gain Privilege

m Memory Corruption
SQL Injection
File Inclusion
Cross Site Request Forgery
HTTP Response Splitting

Source: cvedetails.com

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

Software Security Vulnerabilities

WH: $100+ billion in annual cybersecurity damages
NIST: 25 vulnerabilities per every 1,000 lines of code
NASA: 1-100 million lines of code in modern software
DHS: 80% of attacks exploit unknown vulnerabilities

We need effective, scalable approaches for
vetting all software and systems

SCHOOL OF COMPUTING
U UNIVERSITY OF UTAH Stefan Nagy 39

Proactive Vulnerability Discovery

Static Analysis:

Analyze program without running it

Accuracy a major concern

= False negatives (vulnerabilities missed)
= False positives (results are unusable)

As code size grows, speed drops

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Dynamic Testing:

éé EXE »%

Analyze program by executing it

Better accuracy: no false positives

= Execution reveals only what exists
= Program crashed? You found a bug!

Capable of very high throughput

40

Proactive Vulnerability Discovery

Widely deployed in industry today:

~ @ OQOMeta
VE @ 4

Microsoft

s

Over 36,000 errors in 550 codebases
Over 18,000 errors in Google Chrome
Over 11,000 errors in Linux’s kernel

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Dynamic Testing:

éé EXE ’%

Analyze program by executing it

Better accuracy: no false positives

= Execution reveals only what exists
= Program crashed? You found a bug!

Capable of very high throughput

41

Key Approach: Fuzz Testing

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Key Approach: Fuzz Testing

=

Inputs

—

Program

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 43

Key Approach: Fuzz Testing

Inputs
‘ \ Execute and
Collect Feedback
Program (e.g, code coverage)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

A

Key Approach: Fuzz Testing

Interesting!
(new code)
Inputs
‘ \ Execute and
Collect Feedback
Program (e.g, code coverage)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

45

Key Approach: Fuzz Testing

E Interesting!

(new code)

Inputs

Uninteresting

‘ \ Execute and ' _ﬁ #W
Collect Feedback

Program (nO new COde

(e.g., code coverage)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 46

Key Approach: Fuzz Testing

E Interesting!

(new code) cCrashes

Inputs

EGFAULT)
Uninteresting (SEGFAU

‘ \ Execute and ' _% #ﬁ
Collect Feedback

Program (nO new COde

(e.g., code coverage)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Key Approach: Fuzz Testing

&

Badly behaved
- eo\ﬁe cases

The Land o€

The space ok possible program behaviors

Source: https://blogtrailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Key Approach: Fuzz Testing

Google: We've open-sourced

. v ClusterFuzz tool that found
GitLab 16,000 bugs in Chrome

New fuzzing tool finds 26 USB
M bugs in Linux, Windows, macOS,
COMPILER INFRASTRUCTURE and FreeBSD

Fuzzing continues to remain today's most popular
and successful software security testing approach

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

My Research: Extending Fuzzing's Reach

Closed-source Binaries
Linux Binaries, Firmware
Windows, MacOS Binaries
Obfuscated Executables

Code Dev/Analysis Tools
Compilers, Debuggers
Language Transpilers
Binary Analysis Tools

Complex Codebases
Applications, Kernels
Software Product Lines
Heterogeneous Software

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Can closed-source code be
fuzzed as well as open-source?

Where do these tools fail?
How can we find their bugs?

What code aren’t we fuzzing?
Are there bugs we are missing?

Stefan Nagy

Prior Work:
Fast Coverage Tracing
Fast Process Execution

Ongoing Work:
Fuzzing Decompilers
Fuzzing Transpilers

Ongoing Work:
Configuration Fuzzing
Automated Harnessing

50

Topics in this Course

D@

FUNCTIONAL SMUKE szcunrrv INSTALLATION
SUFTWARE
QUALITY COMPATIBILITY

ASSUHANCE

@%@%

VOLUME EXPL[]RAT[]RY

STRESS L0AD LUCALIZATII]N USABILITY

Topics in this Course

- \ Input generation
Runtime feedback
»
EE Fuzz Optimization
SEERTY ' l Harnessing
= Sanitizers
o = Bug oracles
® % B & & Bugs = Property testing
‘ = Differential testing
Bug reporting
: Deduplication
= Triage

4 Root cause analysis
\ / Severity analysis

Stefan Nagy 52

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

OOOOOOOOOOOOOOOOO

Ethical Considerations

Stefan Nagy

54

A Note on Ethics

NOTE:

.

Under no circumstances may you exploit or misuse
any bugs that you find (e.g., zero-day vulnerabilities)
for unauthorized access or other illegal activity.

Violations of this policy will be referred to Student Conduct.

~

/

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

55

A Note on Ethics

[Our goals in this course are to help devs & users, have fun, and learn! }

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

56

Questions [/ Professor AMA

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Next time on CS 5963/6963...

Research 101: Ideas

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

58

