Week 1: Lecture A

Course Introduction

Monday, January 8, 2024
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Reminders

Be sure to join the course Canvas and Piazza

= See links at top of course page
m cs.utah.edu/~snagy/courses/cs5963/

Trouble accessing? See me after class!
= Oremail me at: snagy@cs.utah.edu
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https://cs.utah.edu/~snagy/courses/cs5963/
mailto:snagy@cs.utah.edu

Today’s Class

Welcome to CS 5963/6963 &
Course Overview

What is software testing?
= How does it work?
= Why do we use it?

Ethics and Academic Integrity
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About Me

cs.utah.edu/~snagy
twitter.com/snagycs
@snagy@infosec.exchange

Stefan Nagy

Assistant Professor, KSoC

Co-founder and Co-director: Places I've been:
UTAH SOFTWARE University of Utah, 2022-now
SECURITY GROUP Virginia Tech, Ph.D. 2016-2022

SCHOOL OF COMPUTING | THE UNIVERSITY OF UTAH Univ. of Illinois, B.S.

2012-2016
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My Research Group

FU_URES

FUTURE TECHNOLGY FOR USABLE, RELIABLE, &
EFFICIENT SECURITY OF SOFTWARE & SYSTEMS

SCHOOL OF COMPUTING | THE UNIVERSITY OF UTAH | SALT LAKE CITY

Our work: systems and software
security, binary analysis, fuzzing
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Course Overview
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What brought you here?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy



Course Goals
Help you become better researchers
Expose you to different perspectives
Experience with state-of-the-art tools
Get course credit so you can graduate?

All while learning about software testing
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Course Components

Reading & evaluating research
= Contextualize
=  Prosvs. cons
= Contribution
= Summarizing
= |dentify assumptions
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Course Components

Reading & evaluating research
Contextualize
Pros vs. cons
Contribution
Summarizing
Identify assumptions

Conducting & presenting research
= |dentify an open problem and solve it
= Develop new tooling and release it
= Evaluate and disseminate your work
= Help society by finding security bugs
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Course Format
Meetings: Mondays & Wednesdays at 1:25 — 2:45 PM

Locations: WEB L114 (class), MEB 3446 (office hours)
= Office hours held from 2:45 - 3:30 PM following lecture

20 - 30 min: instructor-led lecture on topic of the day
= Slides will be posted on the course website Schedule

40 - 50 min: student-led paper presentation & discussion
= One ortwo papers per day related to the lecture topic
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Course Website

cs.utah.edu/~snagy/courses/cs5963

AHLERT SCHOOL OF COMPUTING
AH

CS 5963/6963: Applied Software Security Testing

This special topics course will dive into today’s state-of-the-art techniques for uncovering hidden security vulnerabilities in
software. Introductory fuzzing exercises will provide hands-on experience with industry-popular security tools such as AFL+ and

AddressSanitizer, culminating in a final project where you’ll work to hunt down, analyze, and report security bugs in a real-
world application or system of your choice.

This class is open to graduate students and upper-level undergraduates. It is recommended you have a solid grasp over topics
like software security, systems programming, and C/C++.

Learning Outcomes: At the end of the course, students will be able to:

« Design, implement, and deploy automated testing techniques to improve vulnerability on large and complex software systems.
« Assess the effectiveness of automated testing techniques and identify why they are well- or ill-suited to specific codebases.

« Distill testing outcomes into actionable remediation information for developers.

« Identify opportunities to adapt automated testing to emerging and/or unconventional classes of software or systems.

Pinpoint testing obstacles and synthesize strategies to overcome them.

« Appreciate that testing underpins modern software quality assurance by discussing the advantages of proactive and post-
deployment software testing efforts.

N

Stefan Nagy
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Schedule

Weeks 1 - 3: Course Intro & Systems Research 101

Weeks 4 - 9: Fundamentals of Software Fuzzing

= Three (relatively easy) labs
= Semester Project begins on Week 6

Weeks 10 - 12: Emerging Enhancements in Fuzzing

Weeks 13 - 16: New Frontiers & Project Presentations
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Grading

10% — Attendance & Paper Discussions

10% - Paper Presentations (one per student)
15% — Lab 1: Beginner Fuzzing

15% - Lab 2: Crash Triage

15% - Lab 3: Harnessing

35% - Final Project
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Attendance & Participation

Requirement 1: Show up to class
= Contact me about absences in advance
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Attendance & Participation

Requirement 1: Show up to class
= Contact me about absences in advance

Requirement 2: Participate during

other students’ presentations
= Ask thoughtful questions
= Understand the science
= Help your classmates learn
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Paper Presentations

Two paper presentations per lecture, followed by 5-10 minute discussions
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Paper Presentations

Two paper presentations per lecture, followed by 5-10 minute discussions

Audience: you are not required to read the paper
= ... butyou are required to participate in the discussion!
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Paper Presentations

Two paper presentations per lecture, followed by 5-10 minute discussions

Audience: you are not required to read the paper
= ... butyou are required to participate in the discussion!

Presenters: your job is to
= Summarizing
Contextualize
Pros vs. cons
Contributions
Key assumptions
Prepare a short slide deck (you can get “inspired” from existing presentations)
15 - 20 minute presentation (with a 5-10 minute audience discussion to follow)
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Paper Presentations

Signup sheet available on course website (must use UofU gcloud account)

= 38 fuzzing papers from top venues in security, software engineering, and some workshops
=  Choose one paper by Monday, January 22

A B c D E
» Directions: select one paper to present (that isn't already taken), and enter your name in the
UW us a up, corresponding "Presenter” box for that day. After you present, upload your slides to Canvas.
Date Jan. 08 Jan. 10
Topic Course Introduction Research 101
H H H Paper 1
CS 5963/6963: Applied Software Security Testing il No Readings o Readings
This special topics course will dive into today’s state-of-the-art techniques for uncovering hidden security vulnerabilities in Date Jan. 15 Jan. 17
software. Introductory fuzzing exercises will provide hands-on experience with industry-popular security tools such as AFL+ and Topic Research 101
AddressSanitizer, culminating in a final project where you’ll work to hunt down, analyze, and report security bugs in a real- Paper 1 No Class (Martin Luther King Jr. Day) 9
world application or system of your choice. Paper 2 WOREEEES
This class is open to graduate students and upper-level undergraduates. It is recommended you have a solid grasp over topics Date Jan. 22 Jan. 24
like software security, systems programming, and C/C++. Topic Research 101 Introduction to Fuzzing Presenters
" . - . Dissecting American Fuzzy Lop: A
Learning Outcomes: At the end of the course, students will be able to: Paper 1 No Readi FuzzBench Evaluation (FUZZING'22)
« Design, implement, and deploy automated testing techniques to improve vulnerability on large and complex software systems. Paper 2 0 Readings AFL++: Combining Incremental Steps of
« Assess the effectiveness of automated testing techniques and identify why they are well- or ill-suited to specific codebases. Fuzzing Research (WOOT'20)
« Distill testing outcomes into actionable remediation information for developers. Dalfé J_""" 2 1 : Jan. 31 -
« Identify opportunities to adapt automated testing to emerging and/or unconventional classes of software or systems. Topie Input Generation Freseniers Runtime Feedback Tresenters
o ) ) ) DARWIN: Survival of the Fittest Fuzzing [The Use of Likely Invariants as Feedback for}
« Pinpoint testing obstacles and synthesize strategies to overcome them. Paper 1 Mutators (NDSS'23 Fuzzers (USENIX'21
. G\ppreclate that testing un.derplns modern software quality assurance by discussing the advantages of proactive and post- CarpetFuzz: Automatic Program Optuoq 6L eeFuzz: Fuzzing WebGL Through Error
leployment software testing efforts. Paper 2 Constraint Extraction from Documentation Message Guided Mutation (USENIX'23)
for Fuzzing (USENIX'23) -
—_—
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Hands-on Labs

Three (relatively easy) labs to be completed solo
= Lab 1: Beginner fuzzing
= Lab 2: Crash triage
= Lab 3: Target harnessing
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Hands-on Labs

Three (relatively easy) labs to be completed solo
= Lab 1: Beginner fuzzing
= Lab 2: Crash triage
= Lab 3: Target harnessing

Paced with the introductory content from Weeks 4-9
= Apply the techniques you've learned in class
= Get familiar with state-of-the-art tools like AFL and ASAN
= Deliverables: a short report (1-3 pages) of what you’ve learned
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Hands-on Labs

Three (relatively easy) labs to be completed solo

= Lab 1: Beginner fuzzing
= Lab 2: Crash triage
= Lab 3: Target harnessing

Paced with the introductory content from Weeks 4-9

= Apply the techniques you've learned in class
=  Get familiar with state-of-the-art tools like AFL and ASAN
= Deliverables: a short report (1-3 pages) of what you’ve learned

Designed to prepare you for the Semester Final Project

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy
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Semester Final Project

Objective: uncover new bugs in a real-world program
Team up in groups of 1-4

Select an “interesting” target program of your choice; e.g.:
= Popular applications

Nintendo emulators

Old computer games

MacOS Rosetta

GET CREATIVE!

Figure out how to fuzz your target, find bugs, and responsibly disclose them

Deliverables: a report, disclosure of bugs, and open-source your team’s fuzzer

SCHOOL OF COMPUTING
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SCHOOL OF COMPUTING
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Semester Final Project

5-minute project proposal on Feb. 28

{

Final presentations at semester’s end

\_

You have full creative liberty—get
creative and fuzz something fun!

Stefan Nagy



Key Dates

Jan. 15 No class (MLK Jr. Day) cs.utah.edu/~snagy/courses/cs5963/schedule

Jan. 22 Select one paper to present

Part 1: Course Intro and Research 101

Monday Meeting Wednesday Meeting
Feb. 07 Lab 1 due moe

Course Introduction Research 101: Ideas

Jan. 15 Jan. 17

No Class (Martin Luther King Jr. Day) Research 101: Writing
Febo 14 La b 2 d u e Jan. 22 Jan. 24

101: iewing and i Introduction to Fuzzing
Sign up for paper presentations by 11:59pm »> Readings:

Feb. 19 No class (President’s Day)

Part 2: Fuzzing Fundamentals

Feb. 28 La b 3 d u e Monday Meeting Wednesday Meeting

Jan. 29 Jan. 31

Input Generation Runtime Feedback
» Readings: » Readings:
L o
F b 28 5 t t l Feb. 05 Feb. 07
e ° -mlnu e projec proposa S Bugs & Triage | Bugs & Triage Il
» Readings: » Readings:
Triage Lab released Beginner Fuzzing Lab due by 11:59pm
.
Feb. 12 Feb. 14
Mar.04 & 06  No class (Spring Break) e
» Readings: » Readings:
Harnessing Lab released Triage Lab due by 11:59pm

Apr. 17 & 22 Final project presentations
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Lateness Policy

Assignments will be posted on course website
= See cs.utah.edu/~snagy/courses/cs5963/assignments

Due by 11:59 PM on the specified deadline date

= Late assignments will not be accepted

If you are sick / traveling / abducted by aliens...
= Try to keep me posted and we will figure something out

SCHOOL OF COMPUTING
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Course Materials
No textbook is required for this course

Some excellent resources on fuzzing are:
= The Fuzzing Book by Zeller, Gopinath, Bohme, Fraser, and Holler
=  Fuzzing Against the Machine by Antonio Nappa and Blazquez

Other general computer security textbooks:
= |ntroduction to Computer Security by Goodrich and Tamassia
= Security Engineering by Ross Anderson

These are are linked on the course syllabus
m cs.utah.edu/~snagy/courses/cs5963/

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy
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No Exams

OOOOOOOOOOOOOOOOO
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Questions?
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A Brief Overview of Software Testing

OOOOOOOOOOOOOOOOO

Stefan Nagy
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Our world depends on software...

©
Oo
- i e
\Q o
i
Personal Military and
Technology Government
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... and software security is a nightmare
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... and software security is a nightmare

Amnesty says NSO's Pegasus
used to hack phones of
Palestinian rights workers

‘A cyber-attack disrupted my cancer treatment'

nnnnn

Cyber-attack hits
UK internet phone

providers .
Janesville school

district hit by
ransomware attack

Solarwinds hackers are targeting the . \¢W York subway @ ({;
Qo

global IT supply chain, Microsoft says hacked i.n computer
breach linked to China
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Why is software insecure?

Modern applications accept many sources of input:
Files

Arguments

Environment variables

Network packets

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH
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Why is software insecure?

Modern applications accept many sources of input:
Files

Arguments
Environment variables
Network packets

Developer mistakes create software bugs
= Pointer mismanagement, bounds checking, etc.
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Why is software insecure?

Modern applications accept many sources of input:
Files

Arguments
Environment variables
Network packets

@

Developer mistakes create software bugs \
= Pointer mismanagement, bounds checking, etc.

Many bugs are exploitable by attackers

= Denial of service, info leakage, code execution

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy
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Software Security Vulnerabilities

m Denial of Service

m Code Execution

m Overflow

m Cross Site Scripting

m Directory Traversal
Bypass Something
Gain Information

m Gain Privilege

m Memory Corruption
SQL Injection
File Inclusion
Cross Site Request Forgery
HTTP Response Splitting

Source: cvedetails.com
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Software Security Vulnerabilities

WH: $100+ billion in annual cybersecurity damages
NIST: 25 vulnerabilities per every 1,000 lines of code
NASA: 1-100 million lines of code in modern software
DHS: 80% of attacks exploit unknown vulnerabilities

We need effective, scalable approaches for
vetting all software and systems

SCHOOL OF COMPUTING
U UNIVERSITY OF UTAH Stefan Nagy 39



Proactive Vulnerability Discovery

Static Analysis:

Analyze program without running it

Accuracy a major concern

= False negatives (vulnerabilities missed)
= False positives (results are unusable)

As code size grows, speed drops

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Dynamic Testing:

éé EXE »%

Analyze program by executing it

Better accuracy: no false positives

= Execution reveals only what exists
=  Program crashed? You found a bug!

Capable of very high throughput

40



Proactive Vulnerability Discovery

Widely deployed in industry today:

~ @ OQOMeta
VE @ 4

Microsoft

s

Over 36,000 errors in 550 codebases
Over 18,000 errors in Google Chrome
Over 11,000 errors in Linux’s kernel

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Dynamic Testing:

éé EXE ’%

Analyze program by executing it

Better accuracy: no false positives

= Execution reveals only what exists
=  Program crashed? You found a bug!

Capable of very high throughput
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Key Approach: Fuzz Testing
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Key Approach: Fuzz Testing

=

Inputs

—

Program
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Key Approach: Fuzz Testing

Inputs
‘ \ Execute and
Collect Feedback
Program (e.g, code coverage)

SCHOOL OF COMPUTING
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Key Approach: Fuzz Testing

Interesting!
(new code)
Inputs
‘ \ Execute and
Collect Feedback
Program (e.g, code coverage)
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Key Approach: Fuzz Testing

E Interesting!

(new code)

Inputs

Uninteresting

‘ \ Execute and ' _ﬁ #W
Collect Feedback

Program (nO new COde

(e.g., code coverage)
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Key Approach: Fuzz Testing

E Interesting!

(new code) cCrashes

Inputs

EGFAULT)
Uninteresting (SEGFAU

‘ \ Execute and ' _% #ﬁ
Collect Feedback

Program (nO new COde

(e.g., code coverage)
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Key Approach: Fuzz Testing

&

Badly behaved
- eo\ﬁe cases

The Land o€

The space ok possible program behaviors

Source: https://blogtrailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/
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Key Approach: Fuzz Testing

Google: We've open-sourced

. v ClusterFuzz tool that found
GitLab 16,000 bugs in Chrome

New fuzzing tool finds 26 USB
M bugs in Linux, Windows, macOS,
COMPILER INFRASTRUCTURE and FreeBSD

Fuzzing continues to remain today's most popular
and successful software security testing approach

SCHOOL OF COMPUTING
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My Research: Extending Fuzzing's Reach

Closed-source Binaries
Linux Binaries, Firmware
Windows, MacOS Binaries
Obfuscated Executables

Code Dev/Analysis Tools
Compilers, Debuggers
Language Transpilers
Binary Analysis Tools

Complex Codebases
Applications, Kernels
Software Product Lines
Heterogeneous Software

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Can closed-source code be
fuzzed as well as open-source?

Where do these tools fail?
How can we find their bugs?

What code aren’t we fuzzing?
Are there bugs we are missing?

Stefan Nagy

Prior Work:
Fast Coverage Tracing
Fast Process Execution

Ongoing Work:
Fuzzing Decompilers
Fuzzing Transpilers

Ongoing Work:
Configuration Fuzzing
Automated Harnessing
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Topics in this Course

D@

FUNCTIONAL SMUKE szcunrrv INSTALLATION
SUFTWARE
QUALITY COMPATIBILITY

ASSUHANCE

@%@%

VOLUME EXPL[]RAT[]RY

STRESS L0AD LUCALIZATII]N USABILITY




Topics in this Course

- \ Input generation
Runtime feedback
»
EE Fuzz Optimization
SEERTY ' l Harnessing
= Sanitizers
o = Bug oracles
® % B & & Bugs = Property testing
‘ = Differential testing
Bug reporting
: Deduplication
= Triage

4 Root cause analysis
\ / Severity analysis

Stefan Nagy 52
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Questions?
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OOOOOOOOOOOOOOOOO

Ethical Considerations

Stefan Nagy
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A Note on Ethics

NOTE:

.

Under no circumstances may you exploit or misuse
any bugs that you find (e.g., zero-day vulnerabilities)
for unauthorized access or other illegal activity.

Violations of this policy will be referred to Student Conduct.

~

/
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A Note on Ethics

[ Our goals in this course are to help devs & users, have fun, and learn! }

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

56



Questions [/ Professor AMA

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy



Next time on CS 5963/6963...

Research 101: Ideas

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU
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