Week 14: Lecture A

Configuration-aware Fuzzing
& Course Wrap-up

Monday, April 14, 2025

OOOOOOOOOOOOOOOOO

How are semester projects going?

Making progress? Stuck?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

How are semester projects going?

Questions? Need help? Come to
office hours after class today!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

The Next Few Weeks

/
Part 3: New Frontiers in Fuzzing

Monday Meeting

Mar. 31
Kernel Fuzzing
» Readings:

Apr. 07
Compiler Fuzzing
» Readings:

Apr. 14
Fuzzing Configurable Software
» Readings:

Apr. 21
A Final Presentations (Day 2)

A Final Reports due Tuesday by 11:59pm via Canvas

Wednesday Meeting

Apr. 02
LLM-assisted Fuzzing
» Readings:

Apr. 09
Hardware Fuzzing
» Readings:

Apr. 16
A Final Presentations (Day 1)

Apr. 23
No Class (Reading Day)

Stefan Nagy

Recap: Project Schedule

Apr. 16th & 21st: final presentations
= 5-8 minute slide deck and discussion
= What you did, and why, and what results
= Report any bugs found (and show you did so!)

What's most important:
= High-level technique
= Challenges and workarounds
= Key results (bugs found, other successes, etc.)

a4
THATISTANLEXGCELLE NI
QUESTIONIKENT
FIRST/OFTALL

Project report due by midnight last day of class
= 3-5 pages describing your work and results
= Reports of any bugs found

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Recap: Project Schedule

4)

Final Project (collected via Canvas)

Instructions: Using your skills from Labs 1-3, team-up in groups of two to four students to hunt bugs in a real-world software of your
choice! Upon choosing a target, your team must figure out how to (1) harness it, (2) fuzz it, and (3) triage any discovered bugs. You may
select any target you like (e.g., popular APIs, video games, kernels), provided it has not been fuzzed before—or has demonstrably not
been fuzzed effectively. Failure to do your due dilligence will cause your team to lose points—or worse yet—have to find a different target!

Halfway through the semester, your team will present a 5-minute project lightning proposal to the class outlining your chosen target, your
proposed approach, and the significance of your work. At the semester's end, you will prepare and deliver a final in-class presentation
along with submitting a final project report outlining your ultimate approach, findings, and any discovered bugs.

Heilmeier's Catechism will serve as the high-level rubric for your proposal, presentation, and report—so be ready to answer why your
project idea matters! But most importantly, get creative and have fun. Besides Heilmeier's Catechism, other important criterion include:

* Responsible Disclosure: Discovered bugs must be disclosed to developers! Include any bug report links (e.g., GitHub issues) in your
\ final report. If bug reports are not public, you may include screenshots of your correspondence (e.g., emails) with developers.

.

4)

Final Reports (3-5 pages) due by 11:59PM on Tuesday, April 21st
Merge your Final Reports and Presentation Slides into one PDF

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Finalized Team Presentation Schedule
Wednesday Monday

Project Title Alter Domus Project Title Fuzzing Resume-Matcher

Sunithya Penumarthy,Rahul Mandava,Harshita Samala,Leela

Team Members Braden Campbell, Chandler Turner Team Members Sowmya Jandhyala

Project Title Fuzzing Draw.io Project Title Fuzzing Libgrencode

Vikas Kommalapati, Pranav Madhav, Kishore Kumar

Team Members Davit Zatikyan, Wilker Gonzalez Team Members Kampalli, Anjali Kampalli
Project Title Juceing Project Title Fuzzing llama-cpp

Team Members Pablo Arancibia-Bazan, Alec Carton, Sean McGuirk Team Members Hao Ren, ChenCheng Mao, Ruiyang Xia
Project Title Fuzzing PDFio Project Title Fuzzing Eclipse Paho C client library

Team Members Adwait Shinganwade, Brensen Villegas Team Members Nazmus Shakib Sayom, Jainta Paul
Project Title Fuzzing Blender Project Title Fuzzing GUI Applications

Team Members Austin Garcia, Hyunwoo Lee Team Members Tanner Rowlett
Project Title Fuzzing MelonDS Project Title Fuzzing Stormlib

Team Members Jie Lin, Alexa Fresz, Corinna Healey, Leo Ramirez Team Members Tinh Nguyen, Leo Leano, Austin Li, Vasil Vassilev
Project Title Fuzzing Polybar Project Title Fuzzing Open5G

Kalyan Shankar Ragam, Praneeth Chavva, Koumudi Raju

Team Members Kothapally, Aparna Gudivada Team Members Axe Tang
Project Title Fuzzing Vulkan Project Title Trying to improve fuzzer coverage on Tesseract
Team Members Ethan Collier, Henry Zheng Team Members Yash Lele, Rutuja Bhirud, Duncan Gilbreath
Project Title Fuzzing Thinger.io Project Title Fuzzing on struct_mapping library

Navya Dommalapati, Savant Mullapudi, Rajesh Vempalla,

Team Members Gavin Dibble, James Hart Team Members Shivahari Gundeti

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

End-of-semester Course Evals

| want your feedback!

= 3rd time teaching this course &
= Help me improve the class!

Due by May 6th
= https://scf.utah.edu
= Please please please!

HELP MEHELP YOU

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

https://scf.utah.edu/blue/

End-of-semester Course Evals

If 85% of class (42 of 49 students)
submits an eval, we’'ll add 2% extra
credit to your Participation grades!

(equivalent to one lecture’s worth of points!)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

https://scf.utah.edu/blue/

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Config-aware Fuzzing

Stefan Nagy

1

Software Variability: a Tale of Two Perspectives

1 i - M readelf: Warning: Nothing to do.
Varlablllty at run tlme: Usage: readelf <option(s)> elf-file(s)

Display information about the contents of ELF format files

= Different ways of parsing input Options are:
. -a --all Equivalent to: -h -1 -S -s -r -d -V -A -I
u CU rrent focus Of fUZZ|ng researCh -h --file-header Display the ELF file header

-1 --program-headers Display the program headers
--segments An alias for --program-headers
-S --section-headers Display the sections' header
--sections An alias for --section-headers
-g --section-groups Display the section groups
-t --section-details Display the section details
-e --headers Equivalent to: -h -1 -S
-S --syms Display the symbol table
--symbols An alias for --syms
--dyn-syms Display the dynamic symbol table
--1to-syms Display LTO symbol tables
--sym-base=[018110116]
Force base for symbol sizes. The options are
mixed (the default), octal, decimal, hexadecimal.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 12

Software Variability: a Tale of Two Perspectives

Variability at run-time:
= Different ways of parsing input
= Current focus of fuzzing research

Variability at compile-time:
= |ncluding & excluding certain code
= Potentially huge attack surface
= Not currently being explored

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

readelf: Warning: Nothing to do.
Usage: readelf <option(s)> elf-file(s)
Display information about the contents of ELF format files

Options are:
--all
--file-header
--program-headers
--segments
--section-headers
--sections

--section-groups
--section-details
--headers

--syms
--symbols

--dyn-syms
--1to-syms

Equivalent to: -h -1 -S -s -r -d -V -A -I
Display the ELF file header
Display the program headers

An alias for --program-headers
Display the sections' header

An alias for --section-headers
Display the section groups
Display the section details
Equivalent to: -h -1 -S

Display the symbol table

An alias for --syms

Display the dynamic symbol table
Display LTO symbol tables

--sym-base=[018110116]

Stefan Nagy

Force base for symbol sizes. The options are

mixed (the default), octal, decimal, hexadecimal.

13

Compile-time Variability

Maintaining deployment-specific codebases is unscalable
= Support on-demand features, environments, architectures

Solution: software variability Q-—-

=

= One codebase, multiple builds W

Mechanisms for variability:

= Cand C++: the preprocessor
= Rust: conditional compilation

e

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

14

Compile-time Variability Bugs

Bugs triggerable only within a specific variant of the software

#ifdef TWL4030_CORE
int twl_probe()

{
int *ops = NULL; "l=—————

#ifdef OF_IRQ

ops = &irqg_domain_simple_ops;

#endif

int irq = *ops; W——

}
#endif

Can you spot the bug?

If TWL4030_CORE and !0F_IRQ,
then int *ops remains NULL...

= NULL pointer dereference!

http://vbdb.itu.dk/linux/6252547.html

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

With thousands to millions of
possible variants, concurrent
testing becomes unscalable!

Stefan Nagy

15

Compile-time Variability Bugs

http://vbdb.itu.dk/database.html

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

42 Variability Bugs in the Linux Kernel:
A Qualitative Analysis

lago Abal Claus Brabrand Andrzej Wasowski
iago@itu.dk brabrand@itu.dk wasowski@itu.dk

IT University of Copenhagen
Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark

ABSTRACT

Feature-sensitive verification pursues effective analysis of the
exponentially many variants of a program family. However,
researchers lack examples of concrete bugs induced by vari-
ability, occurring in real large-scale systems. Such a collection
of bugs is a requirement for goal-oriented research, serving to
evaluate tool implementations of feature-sensitive analyses
by testing them on real bugs. We present a qualitative study
of 42 variability bugs collected from bug-fixing commits to
the Linux kernel repository. We analyze each of the bugs,
and record the results in a database. In addition, we provide
self-contained simplified C99 versions of the bugs, facilitating
understanding and tool evaluation. Our study provides in-
sights into the nature and occurrence of variability bugs in a
large C software system, and shows in what ways variability
affects and increases the complexity of software bugs.

Features in a configurable system interact in non-trivial
ways, in order to influence each others functionality. When
such interactions are unintended, they induce bugs that man-
ifest themselves in certain configurations but not in others, or
that manifest differently in different configurations. A bug in
an individual configuration may be found by analyzers based
on standard program analysis techniques. However, since
the number of configurations is exponential in the number
of features, it is not feasible to analyze each configuration
separately.

Family-based [33] analyses, a form of feature-sensitive anal-
yses, tackle this problem by considering all configurable
program variants as a single unit of analysis, instead of ana-
lyzing the individual variants separately. In order to avoid
duplication of effort, common parts are analyzed once and
the analysis forks only at differences between variants. Re-

Stefan Nagy

16

http://vbdb.itu.dk/database.html

Is anyone fuzzing for compile-time variability bugs?

OSS-Fuzz export CFLAGS="$CFLAGS —-DSQLITE_MAX_LENGTH=128000000 \
-DSQLITE_MAX_SQL_LENGTH=128000000 \
= Xx86 —DSQLITE_MAX_MEMORY=25000000 \
. -DSQLITE_PRINTF_PRECISION_LIMIT=1048576 \
X64 -DSQLITE_DEBUG=1 \
- ARM (m aybe?) -DSQLITE_MAX_PAGE_COUNT=16384"
SyZI(auer [stable-6.1-arm64-kasan-base.config

= Many kernels
= Default configs only

[9 stable-6.1-arm64-kasan.config

[stable-6.1-kasan-base.config

[stable-6.1-kasan.config

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Is anyone fuzzing for compile-time variability bugs?

OSS-Fuzz export CFLAGS="$CFLAGS -DSQLITE_MAX_LENGTH=128000000 \
-DSQLITE_MAX_SQL_LENGTH=128000000 \
u X86 -DSQLITE_MAX_MEMORY=25000000 \
. -DSQLITE_PRINTF_PRECISION_LIMIT=1048576 \
X64 -DSQLITE_DEBUG=1 \
- ARM (m aybe?) -DSQLITE_MAX_PAGE_COUNT=16384"
SyZI(auer [stable-6.1-arm64-kasan-base.config

= Many kernels
= Default configs only

[9 stable-6.1-arm64-kasan.config

[stable-6.1-kasan-base.config

An under-explored class of bugs [stable-6.1-kasan.config
= We need tools to find them!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

What would compile-time variability fuzzing look like?

Crude approach: A A A

= Enumerate every config possible
= Concurrently fuzz all the builds {\

= Differential execution

A
O 0

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

19

What would compile-time variability fuzzing look like?

Crude approach:
= Enumerate every config possible
= Concurrently fuzz all the builds
= Differential execution

Problem: combinatorial explosion

= Good luck building every config
= Good luck fuzzing every build

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Static Analysis of Variability in System Software: The 90,000 #ifde£s Issue*

System software can be configured at compile time to
tailor it with respect to a broad range of supported hard-
ware architectures and application domains. The Linux
v3.2 kernel, for instance, provides more than 12,000
configurable features, which control the configuration-
dependent inclusion of 31,000 source files with 89,000
#1ifdef blocks.

Linux provides more than
12,000 configurable features

Stefan Nagy

Toward Compile-time Variability-Aware Fuzzing

Idea: transform conditionally-compiled code into conditionally-invoked

#ifdef TWL4030_CORE
int twl_probe()

{
int *ops = NULL;

#ifdef OF_IRQ
ops = &irq_domain_simple_ops;
#endif

int irq = *ops;

}
#endif

Prior work in the SE community on
“desugaring” preprocessor usage:

SugarC: Scalable Desugaring of Real-World Preprocessor Usage

into Pure C

Zachary Pattersoi
‘The University of Texas at|

Zach.Patterson@utdallag

The U

ABSTRACT

Variability-aware analysis s critic
configurable C software. An impo}
ment of variability-aware analysis

world C software that uses both C|
code, by replacing the preprocessor
C's runtime-variability. In this wor
desugaring tool, SugarC, that tran:

cessor usage. SugarC augments C'|
‘with translation rules, performs si

ing desugaring, and

Effective Analysis of C Programs by Rewri

Alexandru F. losif-Lazar®, Jean Melo?, Al
Brabrand®, and Andrzej Wasowski®
a IT University of Copenhagen, Denmark

Abstract ~ Context. Variability-intensive programs (progr
for many reasons today. Different family members, called
urable options (features) on and off, while reuse of the cd
Inquiry. Verification of program families is challenging §
number of features. Existing single-program analysis and
gram families, and designing and implementing the corrg
laborious.

Approach. In this work, we propose a range of variability-r{
ilies into single programs by replacing compile-time varial

b

challenges that appear in real-world|
iments on DesugarBench, a bench

created programs, show that Sugar(]
features than two existing desugari]
real-world configurable C softwar

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

The obtained p e

program analysis tools such as type checkers, symbolic e
Knowledge. Our variability-related transformations are
between the outcomes in the transformed single prograny
from the original program family is equality.

Grounding. We present our transformation rules and th
perative language IMP. Then, we discuss our experience
efficient and effective analysis and verification of real-wor
Importance. We report some interesting variability-related
art single-program C verification tools, such as FRaMA-C,

Variability Encoding:
From Compile-Time to Load-Time Variability

o

Alexander von Rhein®**, Thomas Thiim*, Ina Schaefer®, Jorg Liebig®, Sven Apel

“University of Passau, Innstrafe 33, D-94032, Germany
P University of Magdeburg, PO. Box 4120, D-39016, Germany
TU Braunschweig, Milhlenpfordistrafe 23, D-38106, Germany

Abstract

Many software systems today are configurable. Analyzing configurable systems is
challenging, especially as (1) the number of system variants may grow exponentially
with the number of configuration options, and (2) often existing analysis tools cannot
be used for configurable systems. Recent work proposes to automatically transform
compile-time variability into load-time variability—called variability encoding—with
the goal of reusing existing analysis tools for analyzing configurable systems and im-
proving analysis performance compared to analyzing all system variants in a brute-
force manner. However, it is not clear whether one can automatically find an efficiently

Stefan Nagy

analyzable load-ti for any given compile-ti
tem. Also, for many analyses, we need guarantees that the load-time configurable sys-
tem precisely encodes the behavior of all system variants that can be statically derived.
‘We address both issues (1) by developing a formal model of variability encoding based

21

Toward Compile-time Variability-Aware Fuzzing

Idea: transform conditionally-compiled code into conditionally-invoked

#ifdef TWL4030_CORE
int twl_probe()

{
int *ops = NULL;

#ifdef OF_IRQ
ops = &irq_domain_simple_ops;
#endif

int irq = *ops;

}
#endif

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Is desugaring amenable
to dynamic testing?

22

Toward Compile-time Variability-Aware Fuzzing

Idea: transform conditionally-compiled code into conditionally-invoked

#ifdef TWL4030_CORE if (getenv(“TWL4030_CORE”){
int twl_probe() Parse the AST | int twl_probe()
{ to identify all {

int *ops = NULL; preprocessor int *ops = NULL;

tokens

#ifdef OF_IRQ > if (getenv(“OF_IRQ"){

ops = &irq_domain_simple_ops; ops = &irq_domain_simple_ops;
#endif Transform all }

preprocessor

int irq = *ops; code blocks int irq = *ops;
} }
#endif }

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

Toward Compile-time Variability-Aware Fuzzing

Idea: transform conditionally-compiled code into conditionally-invoked

if (getenv(“TWL4030_CORE"){
int twl_probe()

{
int *ops = NULL;

if (getenv(“OF_IRQ"){
ops = &irq_domain_simple_ops;

}

int irq = *ops;
}
}

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Use fuzzing to differentially test
different feature combinations

__

1
|
1

TWL4030_CORE && OF_IRQ
I'TWL4030_CORE && !'OF_IRQ
I'TWL4030_CORE && OF_IRQ

. TWL4036_CORE && !OF_IRQ)

Stefan Nagy

24

Toward Compile-time Variability-Aware Fuzzing

Goal: enable a software product line to be
expressed and fuzzed via a single executable

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

25

Current Work: Variability Desugaring

Current support for:

#ifdef

Function decls/defs
Variable decls/defs
Nested macros

Working on:

Other macro types
Duplicate-named vars/funcs
Other non-trivial cases

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

#ifdef FOO

void foo(){
printf("foo");

}

#endif

int main(){
#ifdef FOO
inty = 2;
X =Y,
foo();
#endif

}

void foo(){
assert(“F00");
printf(“foo”);
}

int main(){
int y;
if ("F00"){
y=2;
X=Y;
foo();
}
}

Stefan Nagy

Current Work: Differential Execution

Initial approach: replaying inputs
= Gather high-coverage inputs
= Replay each with instrumentation
= Randomize enabled/disabled macros
= Filter-out invalid configs pre/post fuzzing
= Use standard bug oracles (e.g., ASAN)

Smarter approach: track variability
= Need to identify metrics of “interesting”
= Prioritize configs that execute new paths
= Prioritize configs that change program state

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

Future Directions

AFL + SyzKaller implementations

= Prototype a many-build approach
= Eventually pair with desugaring

Directed Variability Fuzzing
= Pick subset of features to test
= Constrain to specific path/region

Cross-platform Variability
= Test Windows and Linux builds
= Explore other architectures

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Course Wrap-up

Stefan Nagy

29

You've finished the course!

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUU

What did we learn?

Weeks 1 - 3: Systems Research 101

= |deas, writing, presenting, reviewing

Weeks 4 - 9: Fuzzing Fundamentals
= Generation, feedback, bugs & triage,
harnessing, roadblocks, fuzzing science

Weeks 10 - 12: Emergent Enhancements
= Optimization, directed fuzzing, hybrid fuzzing

Weeks 13 - 16: New Frontiers in Fuzzing
= Kernels, compilers, hardware, and more!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Goal #1: become better researchers

Part 1: Course Introduction

Tuesday Meeting

Aug. 23
Course Introduction (slides)

Aug. 30
Research 101: Writing (slides)

Sep. 6
Research 101: Presenting (slides)
Select papers to present by 11:59pm

Thursday Meeting rticulate objectives using absolutely no jargon.

Aug. 25 hat are the limits of current practice?

R h 101: Ideas (S
eseare e h and why do you think it will be successful?

Sep. 1
Research 101: Reviewi
(and a guest lecture by

ssful, what difference will it make?

Sep. 8
Fuzzing Introduction (s
Beginner Fuzzing Lab

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

“
nal “exams” to check for success?

Feel free to bookmark or download the Research 101 slides!
cs.utah.edu/~snagy/courses/cs5963/slides

Stefan Nagy

35

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Goal #2: exposure to different perspectives

Novelty Not Found:

(Registered Report)

—~Fuzzar_Restarts to Improve Input Space Coverage

|

A Comprehe

. nsive S,
Fuzzin, . Xinyi Xu Lukas Bernhard egistere udy of Fuz,
& Hardware Like Software CIsPA CIseA b d Report)
Timothy Trippel- Germany Germany uan Pham
ippel’, Kang G. Shi i i ! i [P@unimelp e, Don, i
ampU“Ier Science & Engineeyi‘r:‘g Alex Chernyakhosky, ity of Melboure. donggetng f‘g;:_mm
mf:mz of Michigan Garret Keouy' Dominic Rizzo Matthew Hicks Moritz Schloegel Thorsten Holz "ne, Australia . Goog
nn Arbor, My DpenTitan omputer Science CISPA CISPA M iney, Australiy
i e Gl urra
{1rippe Keshin) @uumich, e Google, L1 Virginia Tech Germany Germany Gunimiyed, Benjamin 1P, Rybinstes
Jachormy C2Prid5e, MA Blacksburg, v i holz@eispa.d iy Nl PPITIR bint eLC
» : e : eduay
R 8 domrizzo) @gongrecom " HR2@V1 el KEYWORDS e, Australia The Uvessy ot Ml ™
e O e e D D oume, Austral
Abstract Vulnerabiliy diseoy o
very. Popular g
- S e
faws, " . Nils Bass, Morit Schloe The s e i 0 ol oyl g
P el Bisp e e R
formally verified sofiyyy g o). In Proceedings o the 2nd In- Publisheg g esearch papers e,
4 ware execy) July 17, 2023 Seatle, WA, USA. oy 10 mprove the techniqun e 0
S s e " Statistical Crash Analosis & Rost G . B s e et e
rndom i, du 1 252..‘2‘3“;’; URORA: Statis rash Analysis for oot Cause a:g;,.,,.(,l,,, 122,25), ot i e
v given its undirected naguge. s e e orcle designs (10,45
wre,this . " attenpied tg %, 451, Additiong
Instead of making et .)) X) e for uncovering bugs i pro- et e o sy o el
iomental improy ‘Tim Blazytko, Moritz Schlogel, Cornelius Aschermann, Ali Abbasi, ined rapid popularity in the SMTsolver 0] a5 116, 43], g
" 2 S encous applicapPIETS [26], dey
Joel Frank, Simon Worner and Thorsten Holz & phsions 4] Ao
Y = Software secnri PIOYC Fuszing ey 4 Bring 33,
Ruhr-Universitit Bochum, Germany eering ~ Softmars TG 55
Given s program v s cpd e
here non s
we kn € of our fuzzers.
o which fuzzer s betterp y e F04S any
overage s provy o fpractice, we ofin|
'® fuzzer which achjeyes more c;,,m' effectiveness 4 Abstract tion both in industry and academia [28,29, 31,47, 49, 53,59].
e e lting 10 urger oy 33 s Pt Given the huge success of automated software testing tech- In essence, fuzzing capitalizes on a high throughput of in-
a”:zm that covers more coge a;:,“} on24 prl nigues, a large amount of crashes is found in practice. Tdenti- puts that are successively modified to uncover different paths I Fuzzing
"g;\imlarwnbztw the popu s more fying the root cause of a crash is a time-intensive endeavor, within a target program. The recent focus on new fuzzing lerating Binary-only
e o2 by & uzser Honeg jy ""W;;:m‘! causing a disproportion between finding a crash and fixing methods has produced a myriad of crashes for software sys- Bloat: Accele ided Tracing \
S in terms of e the underlying software fault. To address this problem, vari- & i i ked ing Coverage-gul
2ims about furser's gyperienee ous apy s have been proposed that rely on techmiques with fixing them [37, 50]. Tn many cases, finding a new crash- eserving jason D. Hiser \
I X‘l’,:i"v::\?;m " e find o ;,m,z“;g,d such as reverse execution and backward taint analysis. Still, ing input has become the easy and fully automated part, while Anh Nguyen-Tuong University of Virginia |
| hieneq m’t ws compared multiple fy, these techniques are either limited to certain fault types or triaging crashes remains a manual, labor-intensive effort. This University of Virginia Chadottesville. YvX%‘“‘“ 1
m:l of er of bugs a provide an analyst with assembly instructions, but no context effort is mostly spent on identifying the actual origin of a Charlottesville, Vug-:“ hiser@virgia.edt 1
! e Format 8€ May not be begt 47 ﬁnj information or explanation of the underlying fault. crash [58]. The situation is worsened as fuzzing campaigns nguyen@virginiaedt 1
! 5 In this paper, we propose an automated analysis approach often result in & large number of crashing inputs, even if only tthew Hicks
6 Stekeres,ang Mat 1
] ased mm'ne..cﬁf_':”'m Metzmian, 20, g that does not only identify the root cause of a given crash- one actual bug is found: a fuzzer can identify multiple paths avidson Virginia Tech
] Ao o Foware Enginceing s) Mrku.g 10 44tk Internatiy ing input for a binary executable, but also provides the ana- to a crash, while the fault is always the same. Thus, an ana- Virginia ‘Blacksburg, Virginia 1
i P NewYork NY.USA, 13 pagen g2 - B > ' . - Virginia ‘mdhicks2@vEeds B [}
| " — 1011457351003 3510759 which s beter i or Tesonable {0 conectue the e g, wa@virginia edt oM Reerene Format Sl oy S N s A \
In the recent OFbug inding—puy g g oo “2VeTI8E i5 also better iy rerre o an s ks 2S8R L et
L et e P TN gty i S
I 100k, e B8 COtinuous e erest. In 8¢ achicved and the ayerggy p s I €738 of the. e guided fusaings ogEresve MEC L wiile L psengtof e 0 5t
p S £0r automatic bug fingine 1o 21 1OTS employ benchmark. aVerage number of average Coverag 1 of thousands of softwar overage tFaciog. e Communicatins Seeurit . 15485 |
] R 2020 alone, almost 50 gy o408 (23, 24, 4], 1 ing. condy ¢ ranks are visibyy, g gs found in each Telped reveal tens ‘s mandates fast code for. "ACM, New York NY. U
conferences pers were - In academia, tucted a pair-wige ¢, 'y different. To e gy, “pillions of test case \ends to reduced tracide X Republic of Koree- 0120 484781 1
1 for Security and Softy °re published iy the g, e differen, OMparison between e we also | of binary-onty 1TECtS furzing PeriOTIPANCE Iy poiorg/ 101145
ine, we have seye, ‘e Engineering [4; P stati ¢ in coverage gng o LAY WO fuzzers i the mature e advancemeat in binary 1 f-magnitude 1
I Hoperi e B s s e] il signfca, T pe e, TIENE i b g o | mnce. Tt O RTCT) which b ot T TRODUCTION —
— ™52 Bugs. inded ooy g E™ of e entity o strong agpgumeny 1 7" g are Corageguded T et he cxpese o oy 1 INTRO D g beome ne of he mes B0 1
‘ on't, e OFa fuzzer when cory €0t on the superi wia o rage is guaranteed UnEY ersrer - Coverage UM PR socuty avditing oA 1
bug fing;, ‘pared in terms of peq, ity of ranking " only when new cOverae 18 Bt most + successiul techmiques © Sevealed couatless security
£ Bnding Lnter ey agpeaens o120 COvernge vrgye s o o bk overai G Ty s s S ey s eyl
Ssesses the deg i ° coverage metrics: edE! te-of the-art vare, and helped Pr¢
o + st o
gree to which quisefuerbeel B s nealy a of “’;’ﬂfcc-r ‘perabilities in s0
‘s lnitation vhich Pr formance beneBts .
- e ataining the e o

Stefan Nagy

36

Goal #3: learn state-of-the-art tools

== ASAN: heap-use-after-free on address \
0x61900000047f at pc 0x00000040a52c bp :
0x7£f££9200dbf0 sp 0x7£f£9200dbe0 i
READ of size 1 at 0x61900000047f thread TO
#0 0x40a52b in src/main.cpp:30 :
#1 0x40e088 in std function.h:297
#2 0x40d605 in std function h:687 5
#3 0x40b8d5 in src/z i
\\\» #4 0x7£9a498ff412 /

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

25000

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

999 2000 2001 2002 2003 2004 20

Now go forth and teach others!

Stefan Nagy

20,141

2014 2015 2016 2017 2018 2019 2020 2021

38

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Thank you!

A

Stefan Nagy

39

