Week 13: Lecture A

Compiler Fuzzing

Monday, April 7, 2025

OOOOOOOOOOOOOOOOO

How are semester projects going?

Fuzzing and finding bugs? Can’t compile your harness?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

The Next Few Weeks

/
Part 3: New Frontiers in Fuzzing

Monday Meeting

Mar. 31
Kernel Fuzzing
» Readings:

Apr. 07
Compiler Fuzzing
» Readings:

Apr. 14
Fuzzing Configurable Software
» Readings:

Apr. 21
A Final Presentations (Day 2)

A Final Reports due Tuesday by 11:59pm via Canvas

Wednesday Meeting

Apr. 02
LLM-assisted Fuzzing
» Readings:

Apr. 09
Hardware Fuzzing
» Readings:

Apr. 16
A Final Presentations (Day 1)

Apr. 23
No Class (Reading Day)

Stefan Nagy

Recap: Project Schedule

Apr. 16th & 21st: final presentations
= 5-8 minute slide deck and discussion
= What you did, and why, and what results
= Report any bugs found (and show you did so!)

What's most important:
= High-level technique
= Challenges and workarounds
= Key results (bugs found, other successes, etc.)

4
THATISTANLEXCELLE N
QUESTIONIKENT
FIRST/OFTALL

Project report due by midnight last day of class
= 3-5 pages describing your work and results
= Reports of any bugs found

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Compiler Fuzzing

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

How Software is Built

clang hello.c -0 hello

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

How Software is Built

clang hello.c -0 hello

. Executable
Compiler

Source File

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

How Software is Built

Preprocessor =———p Compiler ——p Linker]
Source Code / N\ Binary

Executable
substitutes #include generates combines binary
directives with content binary machine code and
standard library of included files machine code connects function calls
header file ’
iostream |--- hello.cpp > »| hello.o 4 hello.exe
#include <iostream> .
. cout = cout = .. bﬁmarY
object file
int main() { int main() {
std::cout <« std::cout <«
"Hello World\n"; "Hello World\n";
} }
SCHOOL OF COMPUTING Stefan Nagy 9

UNIVERSITY OF UTAH

How Software is Built

Source Code

standard library

header file
iostream |--- hello.cpp
- #include <iostream>
. cout = .
int main() {
std::cout <«
"Hello World\n";
}
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

How Software is Built

Preprocessor

substitutes #include
directives with content
of included files

\ 4

.. cout = ..

int main() {
std::cout <«
"Hello World\n";

}

Stefan Nagy 1

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

How Software is Built

Compiler

generates
binary
machine code

—p! hello.o

binary
object file

Stefan Nagy

12

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

How Software is Built

Stefan Nagy

Linker
N\

combines binary
machine code and
connects function calls

Binary
Executable

oo

13

Compilation involves many steps...

/ Preprocessor sy Compiler Linker \]
Source Code Binary
Executable
substitutes #include generates combines binary
directives with content binary machine code and
standard library of included files machine code connects function calls
header file ’
iostream |--- hello.cpp > »| hello.o g hello.exe
#include <iostream> .
. cout = . . cout = .. binary
object file
int main() { int main() {
std::cout <« std::cout <«
"Hello World\n"; "Hello World\n";
} }
SCHOOL OF COMPUTING Stefan Nagy 14

UNIVERSITY OF UTAH

Where could things go wrong?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Where could things go wrong?

Front-end parsing

= 72

Optimization

= 72

Gode generation

= 72

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

16

Where could things go wrong?

Front-end parsing
= Bad: crash the compiler
= Worse: memory corruption

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

4] : X
1 II<bU11t—ln>ll

1 "testlu C" gf“",;:‘;vwﬁ.

a; L 38 &

char b; sl

a =0 > calloc;
= (struct {int e} x)0 - 30;

\ y,
https://bugs.llvm.org/show_bug.cgi?id=44750

Stefan Nagy

17

Where could things go wrong?

Optimization
= Bad: mis-optimizations
= Worse: memory corruption

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

(o Copy propagation:

Consider this code segment:
A=B

C=20+A

The compiler may change this code to:
A=B
C=20+B

This is done so that the CPU can run both the instructions in paraIIeI.)

https://www.redhat.com/en/blog/security-flaws-caused-compiler-optimizations

Stefan Nagy

18

Where could things go wrong?

-
void GetData(char *MFAddr) {

char pwd[64];
if (GetPasswordFromUser(pwd, sizeof(pwd))) {
if (ConnectToMainframe(MFAddr, pwd)) {

// Interaction with mainframe

}
memset(pwd, 0, sizeof(pwd));

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Where could things go wrong?

Vs)
void GetData(char *MFAddr) {

- A
char pwd[64]; { dbufi
Pwd buf isn’t
if P F ' f
i (get assword roszer(pwd, sizeof(pwd))) { read later..
if (ConnectToMainframe(MFAddr, pwd)) { \ S0 why keep
// Interaction with mainframe 1 this memset?
} 1
i
} L/
memset{pwd—8—sizeef{pwd))+ // Optimize out! 4
}
\. /

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Where could things go wrong?

ﬁ@j

OOOOOOOOOOOOOOOOO

Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Where could things go wron

Breaking Bad: How
Compilers Break Constant-Time Implementations

Moritz Schneider Daniele Lain Ivan Puddu Nicolas Dutly Srdjan éapkun
ETH Zurich ETH Zurich ETH Zurich ETH Zurich ETH Zurich

Abstract—The implementations of most hardened crypto-
graphic libraries use defensive programming techniques for side-
channel resistance. These techniques are usually specified as
guidelines to developers on specific code patterns to use or avoid.
Examples include performing arithmetic operations to choose
between two variables instead of executing a secret-dependent
branch. such i are only i if they
persist across compilation. In this paper, we investigate how
optimizations used by modern compllers break the protectwns in-

ive pre how
compilers break high-level constant-time implementations used to
mitigate timing side-channel attacks. We run a large-scale exper-
iment to see if such compiler-induced issues manifest in state-
of-the-art cryptographic libraries. We develop a tool that can
profile virtually any architecture, and we use it to run trace-based
dynamic analysis on 44,604 different targets. Particularly, we
focus on the most widely deployed cryptographic libraries, which
aim to provide side-channel resistance. We are able to evaluate
whether their claims hold across various CPU architectures, in-
cluding x86-64, x86-i386, armv7, aarch64, RISC-V, and MIPS-32.

Our large-scale study reveals that several compiler-induced
secret-dependent operations occur w1thm some of the most
highly cr libraries — even when
the high-level source code was formally verified to be free of side
channels. To the best of our knowledge, such findings rep;

be deployed everywhere, leaving less vetted architectures as
second-class citizens in terms of security and hence potentially
more susceptible to attacks. A solution to this problem is
to compile the portable source code of security-critical
libraries with special compilers that automatically remove
side channels [12], [38]. However, these compilers suffer from
a set of shortcomings: support for processor architectures is
poor, they might require expert knowledge (e.g., to annotate
the code), and they struggle to provide support for modern
features of the processor or the employed source code

As a cc this approach is rarely used
in practice, e.g., the binaries of security-critical libraries
provided by Linux packaging repositories are compiled with
commodity compilers such as GCC and LLVM. The third and
final h relies on hardening the higher-level source code

using defensive prc i i such as constant-
time programming and then compiling the hardened code
using commodity compilers. The advantage of this approach
is that commodity compilers, as opposed to special compilers,
offer support for many architectures, are maintained and get

the first time these issues have been systematically observed
in the wild and provlde concrete data that confirms prevlous
4 o of A

impro by hundreds of developers, and support the
latest CPU features. Some projects even go as far as formally
venfymg the hardened higher-level code [49]. However,

about

techniques. One of the key takeaways of this paper is that the
state-of-the- art defenslve programmmg l,edmlques employed
for side-ch: are still i and
bound to fail when paired with the optimizations that compilers
continuously introduce.

il might apply transformations or
optimizations that re-introduce side-channel vulnerabilities—
an issue that surveyed developers of security-critical libraries
are aware and afraid of [21], and that has been previously
observed in small manually crafted examples [14], [41].

Stefan Nagy

22

Where could things go wrong?

Gode generation
= Bad: semantically wrong code
= Worse: memory corruption

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

23

Where could things go wrong?

Gode generation

= Bad: semantically wrong code
= Worse: memory corruption

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Silent Bugs Matter: A Study of Compiler-Introduced Security Bugs

Jianhao Xu'! Kangjie Lu? Zhengjie Du! Zhu Ding! Linke Li' Qiushi Wu? Mathias Payer® Bing Mao!

IState Key Laboratory for Novel Software Technology, Nanjing University
2University of Minnesota 3EPFL

Abstract

Compilers assure that any produced optimized code is se-
mantically equivalent to the original code. However, even
“correct” compilers may introduce security bugs as security
properties go beyond translation correctness. Security bugs
introduced by such correct compiler behaviors can be dis-
putable; compiler developers expect users to strictly follow
1 pecifications and und d all assumptions, while
compiler users may incorrectly assume that their code is se-
cure. Such bugs are hard to find and prevent, especially when
it is unclear whether they should be fixed on the compiler or
user side. Nevertheless, these bugs are real and can be severe,
thus should be studied carefully.

‘We perform a comprehensive study on compiler-introduced
security bugs (CISB) and their root causes. We collect a large
set of CISB in the wild by manually analyzing 4,827 potential
bug reports of the most popular compilers (GCC and Clang),
distilling them into a taxonomy of CISB. We further conduct
a user study to understand how compiler users view compiler
behaviors. Our study shows that compiler-introduced security
bugs are common and may have serious security impacts. It is
unrealistic to expect compiler users to understand and comply
with compiler assumptions. For example, the “no-undefined-
behavior” assumption has become a nightmare for users and
a major cause of CISB.

the scope of semantic functionalities of language specifica-
tions. The abstraction of source code can cover program states
related to security but not semantic functionalities, e.g., the
lifetime/region of sensitive data. Correctly implemented com-
piler optimizations, however, cannot preserve such program
states by design. Figure 1 shows an example in the Linux
kernel; the memset at line 5 is supposed to scrub sensitive
data on memory to prevent information leaks. However, with-
out specification on how to prevent information leaks (which
is orthogonal to functional semantics), compilers may elimi-
nate this memset after inferring that the stored variable hash
is never read later. As a countermeasure, developers must
resort to memzero_explicit at line 6 which prohibits com-
piler optimization. (2) The specifications can be implicit. The
specifications permit a compiler to provide the correctness as-
surance just for so-called “well-defined” code. However, pro-
gram states outside the scope (such as some undefined behav-
iors) can also be used to represent security properties. These
implicit specifications allow the piler to do aggressive op-
timizations that may break security properties. For example,
a programmer may add a bound check like if(x+10<x) to
detect a signed integer overflow of x, but the compiler may as-
sume (according to the language specification) that the source
code is free of signed overflows and thus eliminates the check.

Such manipulation of security-related program states can

Stefan Nagy

24

Where could things go wrong?

Front-end parsing
= Bad: crash the compiler
= Worse: memory corruption

Optimization
= Bad: mis-optimizations
= Worse: memory corruption

Gode generation
= Bad: semantically wrong code
= Worse: memory corruption

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

TURING AWARD LECTURE

Reflections on Trusting Trust

To what extent should one trust a statement that a program is free of Trojan
horses? Perhaps it is more important to trust the people who wrote the
software.

KEN THOMPSON

INTRODUCTION

I thank the ACM for this award. I can’t help but feel
that I am receiving this honor for timing and serendip-
ity as much as technical merit. UNIX' swept into popu-
larity with an industry-wide change from central main-
frames to autonomous minis. I suspect that Daniel Bob-
row [1] would be here instead of me if he could not
afford a PDP-10 and had had to “settle” for a PDP-11.
Moreover, the current state of UNIX is the result of the
labors of a large number of people.

There is an old adage, “Dance with the one that
brought you,” which means that I should talk about
UNIX. I have not worked on mainstream UNIX in many
years, yet I continue to get undeserved credit for the
work of others. Therefore, I am not going to talk about
UNIX, but I want to thank everyone who has contrib-
uted.

That brings me to Dennis Ritchie. Our collaboration
has been a thing of beauty. In the ten years that we
have worked together, I can recall only one case of
miscoordination of work. On that occasion, 1 discovered
that we both had written the same 20-line assembly
language program. I compared the sources and was as-
tounded to find that they matched character-for-char-
acter. The result of our work together has been far
greater than the work that we each contributed.

Tam a programmer. On my 1040 form, that is what I
put down as my occupation. As a programmer, [write

programs. I would like to present to you the cutest
program I ever wrote. I will do this in three stages and
try to bring it together at the end.

STAGE 1

In college, before video games, we would amuse our-
selves by posing programming exercises. One of the
favorites was to write the shortest self-reproducing pro-
gram. Since this is an exercise divorced from reality,
the usual vehicle was FORTRAN. Actually, FORTRAN
was the language of choice for the same reason that
three-legged races are popular.

More precisely stated, the problem is to write a
source program that, when compiled and executed, will
produce as output an exact copy of its source. If you
have never done this, I urge you to try it on your own.
The discovery of how to do it is a revelation that far
surpasses any benefit obtained by being told how to do
it. The part about “shortest” was just an incentive to
demonstrate skill and determine a winner.

Figure 1 shows a self-reproducing program in the C*
programming language. (The purist will note that the
program is not precisely a self-reproducing program,
but will produce a self-reproducing program.) This en-
try is much too large to win a prize, but it demonstrates
the technique and has two important properties that I
need to complete my story: 1) This program can be
easilv written by another program. 2) This prog

Fundamental Forms of Compiler Fuzzing

Front-end Fuzzing (e.g., Polyglot):
= AFL-style test case generation
= Syntax-aware + string mutation
= Rain SEGFAULTSs, but not much else
= Oracle: does the compiler crash?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

27

Fundamental Forms of Compiler Fuzzing

Middle- and Back-end Fuzzing:
= E.g., Csmith, YARPGen, many others
= Must be syntax- AND semantics-aware
= Avoid things like undefined behavior
= Oracle: do multiple compiles agree?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

28

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

