
Stefan Nagy

Week 11: Lecture A
Directed Fuzzing

1

Monday, March 25, 2024

Stefan Nagy

How are semester projects going?

Smoothly?

2

Obstacles?

Stefan Nagy

Recap: Project Schedule

￭ Mar. 27th: in-class project workday

￭ Apr. 17th & 22nd: final presentations
￭ 15–20 minute slide deck and discussion
￭ What you did, and why, and what results

3

Stefan Nagy

Questions?

4

Stefan Nagy

Directed Fuzzing

5

Stefan Nagy

Recap: Coverage-guided Fuzzing

6

￭ Idea: track some measure of
exploration “progress”
￭ Coverage of program code
￭ Stack traces
￭ Memory accesses

￭ Pinpoint inputs that further
progress over the others

￭ Mutate only those inputs

Stefan Nagy

What if I only want to fuzz one location?

7

Stefan Nagy

What if I only want to fuzz one location?

8

Stefan Nagy

What if I only want to fuzz one location?

￭ Regression testing
￭ Did my PR break the software?

￭ Patch testing
￭ Have I actually fixed this vulnerability?

￭ Crash reproduction
￭ Is this random person’s bug report valid?

9

Stefan Nagy

“Directed” Fuzzing

￭ Guided fuzzing steered to specific locations
￭ E.g., Patch-changed code lines
￭ E.g., An ASAN-reported crash line

￭ Key differences versus guided fuzzing:
￭ Instrumentation:

￭ Track distance relative to targeted site(s)
￭ Compute this for every generated test case

￭ Seed selection:
￭ Pick inputs that get you closer to target(s)
￭ Progress stalls? Pick a new input and restart

10

Source: KATCH: High-Coverage Testing of Software Patches

Stefan Nagy

Directed Fuzzing

11

Stefan Nagy

Recap: Symbolic Execution

12

0. def f (x, y):
1. if (x > y):
2. x = x + y
3. y = x - y
4. x = x - y
5. if (x - y > 0):
6. assert false
7. return (x, y)

 x : A
 y : B

 x : A+B
 y : B

A > B A <= B

 x : A
 y : B

x : A+B
y : (A+B) - B = A

x : (A+B) - A = B
y : A

 x : B
 y : A

B - A > 0 B - A <= 0

L2

L3

L4

L7

L6 x : B
 y : A L6

unsatisfiable satisfiable

satisfiable

Possible path constraints:
● (A > B) and (B-A > 0) = unsatisfiable
● (A > B) and (B-A <= 0) = satisfiable
● (A <= B) = satisfiable

￭ Solve paths as symbolic expressions

Stefan Nagy

Directed Symbolic Execution

13

￭ Early directed testing relied on SE
￭ E.g., KATCH (built atop of KLEE)
￭ Primarily used for patch testing

￭ Idea: perform SE on specific paths
￭ Recap: SE models paths symbolically

￭ Find all satisfiable assignments
￭ Generates branch-solving inputs

￭ Trade-offs:
￭ Far too heavyweight to be practical

￭ Not great on complex programs

 x : A
 y : B

 x : A+B
 y : B

 x : A
 y : B

x : A+B
y : (A+B) - B = A

x : (A+B) - A = B
y : A

 x : B
 y : A

 x : B
 y : A

Stefan Nagy

Directed Fuzzing

14

￭ Direct successor to DSE
￭ Originator: AFL-Go

￭ Idea: minimize seed–target distance
￭ Obtain each basic block’s distance to target(s)

￭ Computed during instrumentation time

￭ Aggregate seed distance over block distances
￭ Ideally minimize this over time

Stefan Nagy

Distance Measurements

15

Source: Directed Greybox Fuzzing

Stefan Nagy

Distance Measurements

16

Source: Directed Greybox Fuzzing

Stefan Nagy

Distance Measurements

17

Distinguishes
nodes closer to
one target from

equidistant nodes

Source: Directed Greybox Fuzzing

Stefan Nagy

Function-level Distances

￭ Obtain the program’s call graph
￭ Relationships among all subroutines
￭ Here, our target function is E

18

MAIN

A B

D E C

Stefan Nagy

Function-level Distances

￭ Obtain the program’s call graph
￭ Relationships among all subroutines
￭ Here, our target function is E

￭ Assign each f a harmonic distance
￭ Relative to the target function(s)
￭ No path to target? No score (e.g., D)

19

MAIN

A B

D E C

2.0

1.0

N/A 3.0

2.0

Stefan Nagy

￭ Obtain control-flow graph for each f
￭ Transitions between basic blocks in f
￭ Here, we have a CFG for function B

20

Block-level Distances

Stefan Nagy

￭ Obtain control-flow graph for each f
￭ Transitions between basic blocks in f
￭ Here, we have a CFG for function B

￭ Identify basic blocks that call functions
￭ Here, calls to functions A and C

21

C

A

Block-level Distances

Stefan Nagy

￭ Obtain control-flow graph for each f
￭ Transitions between basic blocks in f
￭ Here, we have a CFG for function B

￭ Identify basic blocks that call functions
￭ Here, calls to functions A and C

￭ Assign distances to each b in f

22

C

A

Block-level Distances

Stefan Nagy

￭ Obtain control-flow graph for each f
￭ Transitions between basic blocks in f
￭ Here, we have a CFG for function B

￭ Identify basic blocks that call functions
￭ Here, calls to functions A and C

￭ Assign distances to each b in f
￭ Callers: 10 * (callee’s function-level distance)

23

C

A

M

A B

D E C

1.0

3.0

Block-level Distances

Stefan Nagy

￭ Obtain control-flow graph for each f
￭ Transitions between basic blocks in f
￭ Here, we have a CFG for function B

￭ Identify basic blocks that call functions
￭ Here, calls to functions A and C

￭ Assign distances to each b in f
￭ Callers: 10 * (callee’s function-level distance)

￭ Choice of 10 seems arbitrary

24

30

10

M

A B

D E C

1.0

3.0

Block-level Distances

Stefan Nagy

Block-level Distances

￭ Obtain control-flow graph for each f
￭ Transitions between basic blocks in f
￭ Here, we have a CFG for function B

￭ Identify basic blocks that call functions
￭ Here, calls to functions A and C

￭ Assign distances to each b in f
￭ Callers: 10 * (callee’s function-level distance)

￭ Choice of 10 seems arbitrary
￭ Rest: harmonic distances to caller blocks

￭ No path to a caller? No score

25

30 11

N/A

13 10

8.7

12

 = 1 / (1/(1+30) + 1/(2+10))

Stefan Nagy 26

￭ Normalize cumulative block
distances over edges taken

Aggregating Distance

Stefan Nagy 27

￭ Normalize cumulative block
distances over edges taken

￭ E.g., seed one = (8.7 + 30) / 2
￭ Seed Distance = 19.35

30 11

N/A

13 10

8.7

12

Aggregating Distance

Stefan Nagy

Aggregating Distance

28

￭ Normalize cumulative block
distances over edges taken

￭ E.g., seed one = (8.7 + 30) / 2
￭ Seed Distance = 19.35

￭ E.g., seed two = (8.7 + 11 + 10 + 12) / 4
￭ Seed Distance = 10.42

30 11

N/A

13 10

8.7

12

30 11

N/A

13 10

8.7

12

Stefan Nagy

￭ By minimizing distance, we are treating programs as gradients
￭ Want to converge on this gradient’s global minima

29

Closing the Distance

Stefan Nagy

￭ By minimizing distance, we are treating programs as gradients
￭ Want to converge on this gradient’s global minima

￭ Problem: programs are spaghetti code
￭ More likely to reach a local minima at first
￭ Can get stuck really easily on bad paths

30

Closing the Distance

Stefan Nagy

Closing the Distance

￭ By minimizing distance, we are treating programs as gradients
￭ Want to converge on this gradient’s global minima

￭ Problem: programs are spaghetti code
￭ More likely to reach a local minima at first
￭ Can get stuck really easily on bad paths

￭ Solution: simulated annealing
￭ Mutate candidate inputs at random
￭ Eventually converge on global minima

31

Simulated annealing for a global maxima

Stefan Nagy

Results

32

￭ Unsurprisingly, significantly faster than Directed Symbolic Execution
￭ Cool finding: able to reproduce the HeartBleed bug in 20 minutes!

Source: Directed Greybox Fuzzing

Stefan Nagy 33

￭ Indirect control-flow edges:
￭ E.g., CALL $R1, JMP $R1

￭ Cannot be recovered statically
￭ Destinations resolved only at runtime
￭ General case is undecidable
￭ Potentially miss shorter paths

MAIN

A B

D E C

?
? ?

?

Problem: Indirect Control Flow

Stefan Nagy

Problem: Indirect Control Flow

34

￭ Solution 1: dynamic control-flow graph
￭ Initialize CFG with whatever edges

are obtainable statically
￭ As fuzzing continues, incorporate

indirect edges as they are covered

￭ Trade-offs:
￭ Higher runtime overhead

￭ Tracking, bookkeeping
￭ Only considers seen paths

￭ CFG still incomplete

MAIN

A B

D E C

?
?

?

Stefan Nagy 35

￭ Solution 2: value set analysis
￭ Statically determine possible values

that flow into all indirect calls, jumps

￭ Trade-offs:
￭ Very high analysis cost

￭ Enumerate all instructions
￭ Track all memory accesses

￭ Most severely over-approximate
￭ E.g., D’s set may be all functions

MAIN

A B

D E C

Problem: Indirect Control Flow

Stefan Nagy

Questions?

36

Stefan Nagy

Bug-tailored Directed Fuzzing

37

Stefan Nagy

￭ Sometimes must fuzz multiple targets
￭ E.g., patch-changed source lines
￭ E.g., reproducing specific bugs

￭ General-purpose directed fuzzing
￭ Distances relative to these sites
￭ No ranking or sequential order

￭ Tries to reach all sites at once

38

Motivation

Stefan Nagy

Recap: “Spatial” Memory Safety

￭ Spatial = relating to occupying space

￭ Spatial memory safety violations
￭ Buffer overflows
￭ Heap overflows
￭ Underflows
￭ Invalid reads/writes
￭ Uninitialized data
￭ …

￭ Directed fuzzing on limited target set

39

Stefan Nagy

Recap: “Temporal” Memory Safety

￭ Temporal = relates to time

￭ Temporal memory safety violations
￭ Dangling pointers

￭ Heap use-after-free (UAF)
￭ Double free (DF)

￭ Requires a sequence of events
￭ Thus, must fuzz multiple targets in order

40

Stefan Nagy

Recap: Use-After-Frees (UAFs)

￭ Over one third of Chromium vulnerabilities

41

Source: https://www.chromium.org/Home/chromium-security/memory-safety/

Stefan Nagy

A (crash) course on UAFs

￭ The Heap = dynamically-allocated memory
￭ Allocated via malloc(), and freed via free()
￭ Chunks may get allocated, freed, split, coalesced
￭ Regions accessed via pointers

￭ Management is programmer’s job
￭ Pointers must point to live objects
￭ Must point to objects of the right type
￭ Only pointers to functions can be executed
￭ …

42

Stefan Nagy

A (crash) course on UAFs

￭ Are use-after-frees exploitable?
￭ Overwrite a free’d chunk

￭ Leak information
￭ Redirect execution
￭ Type confusion
￭ Other evil things

￭ Short answer: very much so!

43

Stefan Nagy

Fuzzing for UAFs

￭ What call sequence is required for a UAF?
￭ An object allocation (e.g., malloc())
￭ A free() of that same object
￭ A use (dereference) of that same object

￭ E.g., calling a function pointer

44

Stefan Nagy

Directed Fuzzing for UAFs

￭ What call sequence is required for a UAF?
￭ An object allocation (e.g., malloc())
￭ A free() of that same object
￭ A use (dereference) of that same object

￭ E.g., calling a function pointer

￭ Pick inputs that match this call sequence
￭ Mine their locations statically
￭ Pick inputs that hit them in order

45

Source: https://i.blackhat.com/USA-20/Thursday/us-20-Bardin-About-Directed-Fuzzing-And-Use-After-Free-How-To-Find-Complex-And-Silent-Bugs.pdf

Stefan Nagy

Sequence Awareness

￭ AFL-Go: biases exploration
toward single target func E
￭ No sequential ordering

￭ For UAFs, must bias toward
hitting correct sequence

46

MAIN

A B

D E C

Stefan Nagy

Sequence Awareness

47

MAIN

free B

D use alloc

￭ Solution: weight the edges
between allocs, uses, frees
￭ Small weights = more priority
￭ Bias the fuzzer to move from

one state to the other

Stefan Nagy

Sequence Awareness

48

MAIN

free B

D free alloc

￭ Solution: weight the edges
between allocs, uses, frees
￭ Small weights = more priority
￭ Bias the fuzzer to move from

one state to the other

￭ What about double frees?
￭ Just hit a second free()

Stefan Nagy

Results

￭ UAFuzz: binary-level fuzzer for use-after-frees

49

Source: https://i.blackhat.com/USA-20/Thursday/us-20-Bardin-About-Directed-Fuzzing-And-Use-After-Free-How-To-Find-Complex-And-Silent-Bugs.pdf

Stefan Nagy

Results

￭ UAFuzz: binary-level fuzzer for use-after-frees

￭ Discovered many new dangling pointer vulnerabilities

50

Source: https://i.blackhat.com/USA-20/Thursday/us-20-Bardin-About-Directed-Fuzzing-And-Use-After-Free-How-To-Find-Complex-And-Silent-Bugs.pdf

Stefan Nagy

Trade-offs

￭ The more program introspection, the better
￭ Open-source is always easier than closed-source

￭ Likely won’t scale to many closed-source targets
￭ E.g., Microsoft Word

￭ Static analysis becomes very costly
￭ Target identification
￭ Distance computation

￭ Can this be extended to other bug types?
￭ Yes… if it can be expressed as a temporal ordering

￭ E.g., heap overflows (allocation + access)
￭ Others? (open research problem)

51

Stefan Nagy

Questions?

52

