Week 11: Lecture A

Directed Fuzzing

Monday, March 25, 2024

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUU

How are semester projects going?

Smoothly? Obstacles?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Recap: Project Schedule

Mar. 27th: in-class project workday
@ Y
Apr. 17th & 22nd: final presentations g

= 15-20 minute slide deck and discussion
= What you did, and why, and what results

4
THATISTANLEXCELLE N
QUESTIONIKENT
FIRST-OFTALLY:

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Directed Fuzzing

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Recap: Coverage-guided Fuzzing

Idea: track some measure of

exploration “progress”

= Coverage of program code
= Stack traces
= Memory accesses

Pinpoint inputs that further
progress over the others

Mutate only those inputs

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

What if | only want to fuzz one location?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

What if | only want to fuzz one location?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

What if | only want to fuzz one location?

Regression testing
= Did my PR break the software?

Patch testing

= Have | actually fixed this vulnerability?

Crash reproduction
= s this random person’s bug report valid?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

“Directed” Fuzzing

Guided fuzzing steered to specific locations o C—flow
= E.g., Patch-changed code lines ; lff((lg)?m < 100) %
= E.g., An ASAN-reported crash line 3 ’
- 4 if (input > 100) 3
. . . 5 if (i t > 200 2
Key differences versus guided fuzzing: P f((lirllf;?lt)) 1
= Instrumentation: ! e
= Track distance relative to targeted site(s) | S Voilfd(i(lzni };)95{)
= Compute this for every generated test case 210 I it 0

= Seed selection: | |
= Pick inputs that get you closer to target(s) e — :
= Progress stalls? Pick a new input and restart

Source: KATCH: High-Coverage Testing of Software Patches

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Directed Fuzzing

Stefan Nagy

1

Recap: Symbolic Execution

X:A
Solve paths as symbolic expressions y:B
A>B A<=B
0. def f (x, y) L X:iAB /\ X:A 5
1. if (x> y) y:B y:B
2. KB \ satisfiable
3. y =x -y 3 X:A+B
4. X =X -Y y:(A+B)-B=A
= if (x -y > 0): v
. 6. assert false x:(A+B) - A= B
7. return (x, y) L y:A
Possible path constraints: B-A> 0/\8 -A<=0
e (A>B)and(B-A>0) =unsatisfiable 5 X:B x:B ¢
e (A>B)and(B-A<=0) =satisfiable y:A y:A
e (A<=B) = satisfiable unsatisfiable satisfiable

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 12

Early directed testing relied on SE
= E.g., KATCH (built atop of KLEE)
= Primarily used for patch testing

Idea: perform SE on specific paths
= Recap: SE models paths symbolically
= Find all satisfiable assignments

= Generates branch-solving inputs

Trade-offs:
= Far too heavyweight to be practical
= Not great on complex programs

SCHOOL OF COMPUTING Stefan N agy

UNIVERSITY OF UTAH

x:(A+B)-A=B
y:A

\5_\

Directed Fuzzing

Direct successor to DSE
= Originator: AFL-Go

Idea: minimize seed-target distance

= Obtain each basic block’s distance to target(s)
= Computed during instrumentation time

= Aggregate seed distance over block distances
= |deally minimize this over time

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

14

Distance Measurements

Source: Directed Greybox Fuzzing

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Distance Measurements

Source: Directed Greybox Fuzzing

Stefan Nagy

16

Distance Measurements

¢ Distinguishes \\
nodes closerto

I one target from

\ equidistant nodes K

N L emmm——~

Source: Directed Greybox Fuzzing

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 17

Function-level Distances

Obtain the program’s call graph

= Relationships among all subroutines
= Here, our target function is E

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

MAIN

/ N\

A <€— B

18

Function-level Di

Obtain the program’s call graph

= Relationships among all subroutines
= Here, our target function is E

Assign each fa harmonic distance

= Relative to the target function(s)
= No path to target? No score (e.g., D)

N/

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

stances

20 ~ MAIN

1.0 A <€— B

o o8

3.0

19

Block-level Distances

Obtain control-flow graph for each f

= Transitions between basic blocks in f
= Here, we have a CFG for function B

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Y\

20

Block-level Distances

Obtain control-flow graph for each f

= Transitions between basic blocks in f
= Here, we have a CFG for function B
. . [] C
Identify basic blocks that call functions T /\
= Here, calls to functions A and C
A

\J
y

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 21

Block-level Distances

Obtain control-flow graph for each f

= Transitions between basic blocks in f
= Here, we have a CFG for function B
. . [] C
Identify basic blocks that call functions /\
= Here, calls to functions A and C
A
Assign distances to each b in f \/

\/
&

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

22

Block-level Distances

Obtain control-flow graph for each f

= Transitions between basic blocks in f
= Here, we have a CFG for function B

Identify basic blocks that call functions
= Here, calls to functions A and C

Assign distances to each b in f
= Callers: 10 * (callee’s function-level distance)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

—
. =~

o e e o o e o o ==

23

Block-level Distances

Obtain control-flow graph for each f

= Transitions between basic blocks in f
= Here, we have a CFG for function B

Identify basic blocks that call functions
= Here, calls to functions A and C

Assign distances to each b in f

= Callers: 10 * (callee’s function-level distance)
= Choice of 10 seems arbitrary

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

—
. =~

o o e e o o - =

24

Block-level Distances

Obtain control-flow graph for each f

= Transitions between basic blocks in f
= Here, we have a CFG for function B

Identify basic blocks that call functions
= Here, calls to functions A and C

Assign distances to each b in f

= Callers: 10 * (callee’s function-level distance)
= Choice of 10 seems arbitrary

= Rest: harmonic distances to caller blocks
= No path to a caller? No score

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

87 =1/(1/(1+30) + 1/(2+10))

Y\

30 1"

P

13 10

N

v 12
N

25

Aggregating Distance

Normalize cumulative block
distances over edges taken

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

26

Aggregating Distance

Normalize cumulative block 8.7
distances over edges taken /\
= E.g,seedone=(87+30)/2 30 B
= Seed Distance = 19.35 /\
13 10
v 12
N/A &

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 27

Aggregating Distance

Normalize cumulative block
distances over edges taken

= FE.g.,seedone=(8.7+30)/2
= Seed Distance = 19.35

= Eg,seedtwo=(87+11+10+12)/ 4
= Seed Distance = 10.42

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

8.7

YN\

Stefan Nagy

T

28

Closing the Distance

By minimizing distance, we are treating programs as gradients
= Want to converge on this gradient’s global minima

\ -
\ - ¢
- S /
' o y @' !
\ \ & LS
_,/ \ ‘%y [I
3 v,
\~_-*__,

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

29

Closing the Distance

By minimizing distance, we are treating programs as gradients
= Want to converge on this gradient’s global minima

Problem: programs are spaghetti code
= More likely to reach a local minima at first
= Can get stuck really easily on bad paths

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

30

Closing the Distance

By minimizing distance, we are treating programs as gradients
= Want to converge on this gradient’s global minima

Problem: programs are spaghetti code
= More likely to reach a local minima at first
= Can get stuck really easily on bad paths

Solution: simulated annealing

= Mutate candidate inputs at random
= Eventually converge on global minima

Simulated annealing for a global maxima

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 31

Results

Unsurprisingly, significantly faster than Directed Symbolic Execution
= Cool finding: able to reproduce the HeartBleed bug in 20 minutes!

CVE Fuzzer Runs Mean TTE Median TTE
AFLGo 30 19m19s 17m04s
KATcH 1 > 1 day > 1 day

Figure 3: Time-to-Exposure (TTE), AFLGo versus KaTcH.

Source: Directed Greybox Fuzzing

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

32

Problem: Indirect Control Flow

Indirect control-flow edges: MAIN

= E.g, CALL $R1, JMP SR1 /\

Cannot be recovered statically P 5
= Destinations resolved only at runtime

= General case is undecidable /\ \
= Potentially miss shorter paths
D E C

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 33

Problem: Indirect Control Flow

Solution 1: dynamic control-flow graph MAIN
= [Initialize CFG with whatever edges
are obtainable statically
= As fuzzing continues, incorporate
indirect edges as they are covered

Trade-offs:
= Higher runtime overhead
= Tracking, bookkeeping
= Only considers seen paths
= CFGstill incomplete

SCHOOL OF COMPUTING Stefan N agy

UNIVERSITY OF UTAH

34

Problem: Indirect Control Flow

Solution 2: value set analysis MAIN
= Statically determine possible values .
that flow into all indirect calls, jumps
’ A <«— B

Trade-offs: V4 i
= Very high analysis cost Vo

= Enumerate all instructions

= Track all memory accesses ;o

! D E C

= Most severely over-approximate
= E.g., D’s set may be all functions

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

35

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

OOOOOOOOOOOOOOOOO

Bug-tailored Directed Fuzzing

Stefan Nagy

37

Motivation

Sometimes must fuzz multiple targets

= E.g., patch-changed source lines
= E.g., reproducing specific bugs

General-purpose directed fuzzing
= Distances relative to these sites
= No ranking or sequential order
= Tries to reach all sites at once

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

@ -1,5 +1,6 @@
 #include<stdio.h>

é—main(){

§+int main(void){ |
; printf("Hello, world!\n");é
§+ return 0; |

38

Recap: “Spatial” Memory Safety

Spatial = relating to occupying space

© Stack somewhere

frame of in caller
© caller
Spatial memory safety Vi O l.ati O n S Return address / Return address

= Buffer overflows ' stack
. frame of

= Heap overflows - ourent —
. unction

: Underflows e |

= |nvalid reads/writes
After overflow

u U nin |t| al.|Z€d d ata Normal memory layout All red values written by the attacker
: Return address now points to shellcode :

Directed fuzzing on limited target set

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 39

Recap: “Temporal” Memory Safety

Temporal = relates to time

Temporal memory safety violations
= Dangling pointers

= Heap use-after-free (UAF) |

= Double free (DF) alloc

Requires a sequence of events
= Thus, must fuzz multiple targets in order

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 40

Recap: Use-After-Frees (UAFs)

= Over one third of Chromium vulnerabilities

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

High+, impacting stable

Security-related assert
71%

Use-after-free
36.1%

Other
23.9%

Other memory unsafety
32.9%

Source: https://www.chromium.org/Home/chromium-security/memory-safety/

Stefan Nagy

41

A (crash) course on UAFs

The Heap = dynamically-allocated memory
= Allocated via malloc(), and freed via free()

= Chunks may get allocated, freed, split, coalesced
= Regions accessed via pointers

Management is programmer’s job
= Pointers must point to live objects
= Must point to objects of the right type

= Only pointers to functions can be executed

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

42

A (crash) course on UAFs

Are use-after-frees exploitable? 81l BBILA 25755 GBILA
= Qverwrite a free'd chunk
= Leak information
Redirect execution
Type confusion

Other evil thil‘lgS _ 4. use obj_X as
3. alloc obj_X obj_A (BOOM!)

= Short answer: very much so!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Fuzzing for UAFs

What call sequence is required for a UAF?
= An object allocation (e.g., malloc())
= A free() of that same object
= Ause (dereference) of that same object
= E.g, calling a function pointer

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

L4

Directed Fuzzing for UAFs

What call sequence is required for a UAF?
= An object allocation (e.g., malloc()) 5 o
= A free() of that same object
= Ause (dereference) of that same object

= E.g, calling a function pointer

Pick inputs that match this call sequence

= Mine their locations statically
= Pick inputs that hit them in order

: use :
EBug Trace : 0 (alloc) — 1 — 2 (free) — 3 — 4 — 5 (use):

Source: https://i.blackhat.com/USA-20/Thursday/us-20-Bardin-About-Directed-Fuzzing-And-Use-After-Free-How-To-Find-Complex-And-Silent-Bugs.pdf

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 45

Sequence Awareness

AFL-Go: biases exploration

toward single target func E MAIN
= No sequential ordering

For UAFs, must bias toward
hitting correct sequence

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

46

Sequence Awareness

Solution: weight the edges

between allocs, uses, frees

= Small weights = more priority

= Bias the fuzzer to move from
one state to the other

MAIN

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

47

Sequence Awareness

Solution: weight the edges

between allocs, uses, frees

= Small weights = more priority

= Bias the fuzzer to move from
one state to the other

MAIN

~—

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

48

Results

UAFuzz: binary-level fuzzer for use-after-frees

25

150

119 18.6 2

16.1 16.6
el \ 15

100 g5 89

7 6T

........

........

bt 9.0 10

........

........

oooooooooooooooo

Total Success Runs Total uTTE (h)
(higher is better) (lower is better)

50

Source: https://i.blackhat.com/USA-20/Thursday/us-20-Bardin-About-Directed-Fuzzing-And-Use-After-Free-How-To-Find-Complex-And-Silent-Bugs.pdf

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

UAFuzz: binary-level fuzzer for use-after-frees

Results

| Program l Code Size I Version (Commit) I Bug ID ‘ Vulnerability Type ‘ Crash I Vulnerable Function Status | CVE }

0.7.1 (987169b) #1269 User after free X gf__m2ts_ process_ pmt Fixed CVE-2019-20628
0.8.0 (56eaea8) #1440-1 User after free X gf isom_box_del Fixed
0.8.0 (56eaeca8) #1440-2 User after free X gf isom box_del Fixed CVE-2020-11558
0.8.0 (56eaead) #1440-3 User after free X gf_isom_ box_del Fixed
0.8.0 (5b37b21) #1427 User after free v gf _m2ts_ process_ pmt Fixed

MuPDF 539K 1.16.1 (6566de7) #702253 Use after free X fz__drop_band_ writer Fixed CVE-2020-16600
5.31.3 (a3c7756) #134324 Use after free v S_reg Confirmed
5.31.3 (a3c7756) | #134326 Use after free v Perl_regnext Fixed
5.31.3 (a3c7756) #134329 User after free v Perl_regnext Fixed

readelf 1.0 M 2.34 (f717994) #25821 Double free v process_symbol _table Fixed CVE-2020-16590

nm-new 6.7 M 2.34 (c98a454) #25823 Use after free v bfd_hash _lookup Fixed CVE-2020-16592

Discovered many new dangling pointer vulnerabilities

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Source: https://i.blackhat.com/USA-20/Thursday/us-20-Bardin-About-Directed-Fuzzing-And-Use-After-Free-How-To-Find-Complex-And-Silent-Bugs.pdf

Stefan Nagy

50

Trade-offs

The more program introspection, the better
= Open-source is always easier than closed-source
Likely won’t scale to many closed-source targets
E.g., Microsoft Word
= Static analysis becomes very costly
Target identification
Distance computation

Can this be extended to other bug types?
= Yes... if it can be expressed as a temporal ordering
E.g., heap overflows (allocation + access)
Others? (open research problem)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

51

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

