Week 10: Lecture B

Hybrid Fuzzing Ii
Wednesday, March 20, 2024

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUU

How are projects going?

Problems? Successes?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Hybrid Fuzzing Recap

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

What is hybrid fuzzing?

Combining crude fuzzing with smarter fuzzing

= E.g., random + concolic execution (Driller, QSYM, Savior)
= E.g., random + taint tracking (VUzzer, RedQueen, Angora)

Goal is to balance strengths of both techniques
= Use generic fuzzing for most test cases
= Use speed to brute-force easy branches
= Deploy more elegant approach selectively
= Focus its precision on harder branches

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

How most hybrid fuzzers work

Leverage AFL-style parallel fuzzing mode with conventional fuzzer as parent

Conventional (e.g.,, AFL) Alternative (e.g., symex)

local queue

local queue

SO @)
- (@)
-~ o
S\)
k//
~ 4

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

How most hybrid fuzzers work

Leverage AFL-style parallel fuzzing mode with conventional fuzzer as parent

Conventional (e.g.,, AFL)

local queue

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

— —
e

Stefan Nagy

Alternative (e.g., symex)

=2 ey
—

New code
coverage?

What could go wrong?

Ineffective seed scheduling
= There are fundamental differences in speed
= AFL can solve basic branch conditionals fast
= Fancier approaches generally are much slower

= Heavyweight approaches are best applied to a subset of paths
= Invoking on all paths will lead to path explosion
= E.g, by the time it's solved, fuzzer is already way past

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Adventures in Hybrid Fuzzing:
Driller

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Fuzzing

|

... ! 1T =
def f (x) { !

if x > 10 { ; 503 =
if x < 100: !

print "You win!" n 183 =
else: :

print "You lose!" ; 4L =
telse: !

print "You lose!" ; 498 =
.. ,

i 48 =

Source: https://www.ndss-symposium.org/wp-content/uploads/2017/09/07_3-ndss2016-slides.pdf

Stefan Nagy

"You lose!"
"You lose!"
"You lose!"
"You lose!"
"You lose!"

"You win!"

1

Where fuzzing falls short

.. 1 = "You lose!"
. def f (x) {
if x > 10 {
if x*2 == 152399025:
print "You win!"

5]

1 593 = "You lose!"
2

3.

4. else:

5

6

7

183 = "You lose!"

print "You lose!” 4L = "ou lose!
}else:

print "You lose!"

57 = "You lose!"

Source: https://www.ndss-symposium.org/wp-content/uploads/2017/09/07_3-ndss2016-slides.pdf

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Symbolic Execution to the rescue!

0. def f (x) {

1 if x > 10 { L
2 if x*2 == 152399025:
3. print "You win!"
4. else:

5 print "You lose!”

6 }else:

7 print "You lose!"

S
\
j
\
ilf
/
/7

Source: https://www.ndss-symposium.org/wp-content/uploads/2017/09/07_3-ndss2016-slides.pdf

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

13

Driller

Idea: invoke concolic execution via demand launch

= Heuristic 1: a pre-determined # of mutations based on test case length
= Heuristic 2: after a pre-determined time interval without new coverage

Concolic executor based on angr N ;
= Binary-level instrumentation and analysis framework i anar i
= Heavily maintained and used in many research projects g |

= Translates, analyzes binary in intermediate form (VEXIR)

__

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

14

AFL-found
coverage

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Driller in action

P —— -~

AFL-found
test cases

Stefan Nagy

15

Execute

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Driller in action

Stefan Nagy

P —— ~-<

AFL-found
test cases

16

Execute

1
/
/

/
Unsolved

‘{;7"<;§\"
branch

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Driller in action

/

/
/

----»:if stremp(input, “MAGIC")

S s
N
\
/ . Solve
a

I= “MAGIC"

AFL-found
test cases

Stefan Nagy

17

Driller in action

Execute
/l FOI’k
R _----»1if strcmp(input, “MAGIC”)
/\ Unsolved //
branch Solve
o 1= “MAGIC”
i @% @ ': == “MAGIC”
AFL-found @ ;
\ test cases T
Concrete
I test case

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

AFL-found Driller in action

coverage

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Driller in action

COﬂtIﬂue .. :

execution _----»1f (x*2

\ b
//
/\ \ ¢ Fork

- Unsolved / I= 12345

branch e

AFL-found
Concrete
test case

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

test cases 0 TTtee-o-

=~
\
1
1
\ 1
\ 1
\ 1 - -~
N - ~
’ -
~ - \
S ____ P //
\
1
\
N K
~ ’

20

AFL-found
coverage
\

Y\
N\

L

\
\
\
\
\
\
\
\
\
\
\
\
\
N
]
/
7/
v 7
/7
/7
/7
/
1
1
/
7/
-~

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

Driller in action

Stefan Nagy

21

When to turn solving elsewhere?

When the path is already fully solved ,’I
= Track all branches and which have been solved /'/\ Move ,-~_
/
/

= Afundamental piece of info that is tracked state N
// I/ \\
’ ,' \
\
FNTN /\ v
Solved? h

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 22

When to turn solving elsewhere?

When the path is already fully solved /I
= Track all branches and which have been solved K Move -~
= Afundamental piece of info that is tracked . state /,/ \\
l/ / \\
. /
When symbolic executor cannot solve *’/\/\ Y /\)
= Biggest culprit: hashes L v
Solved? ‘
S g ,
if MD5(input) == “....... "t 'N\
b \\
\
\
pl
A very large search space!
SCHOOL OF COMPUTING Stefan Nagy 23

UNIVERSITY OF UTAH

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Adventures in Hybrid Fuzzing:
QSYM

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

Stefan Nagy

Problem: relying on an IR is costly

Executor chksum mdSsum shalsum mdSsum(mosml)

Native 0.008 0.014 0.014 0.001
KLEE 26.243 32.212 73.675 0.285
angr - - - 462.418

Table 1: The emulation overhead of KLEE and angr compared
to native execution, which are underlying symbolic executors
of S2E and Driller, respectively. We used chksum, md5sum, and
shalsum in coreutils to test KLEE, and md5sum (mosml) [12]
to test angr because angr does not support the fadvise syscall,
which is used in the coreutils applications.

Source: https://taesoo.kim/pubs/2018/yun:gsym.pdf

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

Problem: relying on an IR is costly

Executor chksum mdSsum shalsum mdSsum(mosml)

Native 0.008 0.014 0.014 _0.001
KLEE 26.243 32.212 73.675 7T 0.285 -
angr - - - \ _462.418 l

Table 1: The emulation overhead of KLEE and angr compared
to native execution, which are underlying symbolic executors
of S2E and Driller, respectively. We used chksum, md5sum, and
shalsum in coreutils to test KLEE, and md5sum (mosml) [12]
to test angr because angr does not support the fadvise syscall,
which is used in the coreutils applications.

Source: https://taesoo.kim/pubs/2018/yun:gsym.pdf

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 27

QSYM: operate on native instructions

Omit lifting to intermediate representation
= Use Intel PIN dynamic binary instrumentation

Trade-offs:
= A much higher implementation complexity
= Significant decrease in symbolic instructions
= 4X fewer than Driller

Source: https://taesoo.kim/pubs/2018/yun:gsym.pdf

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Instructions

Qsym Driller

28

Problem: incomplete environment modeling

X:A+B
y:B

,
7/
7/
/7
7’
s
’
7’
’
s
/7
X : A+B
)

_________________ y:(A+B)-B=A

/\ v
:(A+B) - A= B

y:A
v

: syscall (...)

x

x

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Problem: incomplete environment modeling

X :A+B
y:B
/\ X : A+B Non-trivial
e y:(A+B)-B=A to model
T /\ v symbolically
x:(A+B)-A=B p 4
y:A /7
\\\ * /
v | V4
x:syscall (..) ¢
\
\ - \
\ .

s, Expensive
to emulate
and fork

SCHOOL OF COMPUTING Stefan Nagy 30

UNIVERSITY OF UTAH

QSYM: leave the environment as-is

Omit translating the environment

= Use concrete execution to model it

= Model only relevant system calls
E.g., standard input, reads, etc.
What about kernel state forking?

= Avoid—just re-execute from the start

Trade-offs:

Re-execution adds more overhead
= Cannot “go back in time” like Driller

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

- s\
\ Re-exec
v from start

NEEERN

AN AN
AN N

Solver
stuck?

31

Problem: overconstrained paths

e \
0. def f (x) { : x>10

1. if x > 10 { : AW

2 if (x > 1000) ! > 1000

= if x"2 == 152399025 !

4. print "You win!" . N T
5. else: i X = 12345

6 print "You lose! L S——
-7 }else: ; ~

8 print "You lose!" ! U
9 }else: !

10 print "You lose!” !

UNIVERSITY OF UTAH Stefan Nagy

S——
-

Solver will try
to solve
these first

Really just
need to solve
this last one

32

Problem: overconstrained paths

print "You lose!”
}else:
print "You lose!"

3 |

0. def f (x) { : x>10

1. if x > 10 { : AW

2 if (x > 1000) ! > 1000
s if x*2 == 152399025: !

4. print "You win!" . ;i
5. else: i X = 12345
6 print "You lose! :

-7 }else: ; ~
' 8 I You win!
9 |

10 |

Source: https://www.ndss-symposium.org/wp-content/uploads/2017/09/07_3-ndss2016-slides.pdf

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

33

QSYM: optimistically solve last constraint

. def f (x) {
if x > 10 {
if (x > 1000)

0

1

2

3

4. print "You win!"
5. else:

6 print "You lose!
7 }else:

8 print "You lose!”
9 }else:

0 print "You lose!"

if x*2 == 152399025

= Trade-offs:

AW o Does not always work
o Canjust let the fuzzer
quickly rule these out

—————

Source: https://www.ndss-symposium.org/wp-content/uploads/2017/09/07_3-ndss2016-slides.pdf

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

34

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Adventures in Hybrid Fuzzing:
RedQueen

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

Stefan Nagy

Problem: symbolic and concolic execution is slow

1. if(u64(input) == hash(input[8..len]))

2. if(u64(input+8) == hash(input[16..len]))
3. if(input[16] == 'R’ && input[17] == 'Q’)
4 print "You win!"

Source: https://www.ndss-symposium.org/wp-content/uploads/ndss2019_04A-2_Aschermann_slides.pdf

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

37

Problem: symbolic and concolic execution is slow

1. if(u64(input) == hash(input[8..len]))

2. if(u64(input+8) == hash(input[16..1len]))
3. if(input[16] == 'R’ && input[17] == 'Q’)
4 print "You win!"

Source: https://www.ndss-symposium.org/wp-content/uploads/ndss2019_04A-2_Aschermann_slides.pdf

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

38

RedQueen’s solution: input-to-state tracking

Idea: hook comparison instructions and identify their input bytes
= Replace with compared-to value (lifted directly from the operand)

source if (x[@:3] == “ABCD”) CMP (eax, Ox44434241) binary

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

39

RedQueen’s solution: input-to-state tracking

Idea: hook comparison instructions and identify their input bytes
= Replace with compared-to value (lifted directly from the operand)

source if (x[@:3] == "ABCD”) CMP (eax, 0x44434241) binary

s x(0] x1] x(2] x[3]
Tt~
W W J D X
s

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

40

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Supporting other comparisons

Idea: hook comparison instructions and identify their input bytes
= Replace with compared-to value (lifted directly from the operand)

source if (x[0:3] < 1234)

. wow) D E
\
“a v VvV Y
" Replace(x[0:3], 1234 - 1) 1 2 3 3 E
\\
4 Replace(x[0:3], 1234 +1) 1 2 3 5 E

Stefan Nagy

41

What about checksums?

Finding these at the binary-level is difficult

= Assumption: can identify input bytes that affect the checksum hash
= Colorize the input: inject random bytes and see if they influence the outcome

..

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

42

What about checksums?

Then, patch-out the checksum with an always-true operation
= Assumption: checksum is only passed if the input is well-formed

malformed [Field 1] [Field 2] [Field 3] [Checksum] [Field 4]

well-formed [Field 1] [Field 2] [Field 3] [Checksum] [Field 4]
N AN AN <

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

What about checksums?

Then, patch-out the checksum with an always-true operation
= Assumption: checksum is only passed if the input is well-formed
= Thus, skipping over checksum won’t matter if well-formed
= New input found afterwards? Great—restore the checksum

malformed [Field 1] [Field 2] [Field 3] [Checksum] [Field 4]

well-formed [Field1] [Field 2] [Field 3] [Checksum] [Field 4]
RS LA LA v

well-formed [Field1] [Field 2] [Field3] patched-out [Field 4]
\\ /4\\\ /4\\~ A 4

§~~
S~ S~ S, _—_— -

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

L4

Questions?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

