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How are projects going?

Problems?
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Successes?
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Questions?
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Hybrid Fuzzing Recap
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What is hybrid fuzzing?

￭ Combining crude fuzzing with smarter fuzzing
￭ E.g., random + concolic execution (Driller, QSYM, Savior)
￭ E.g., random + taint tracking (VUzzer, RedQueen, Angora)

￭ Goal is to balance strengths of both techniques
￭ Use generic fuzzing for most test cases

￭ Use speed to brute-force easy branches
￭ Deploy more elegant approach selectively

￭ Focus its precision on harder branches
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How most hybrid fuzzers work
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Conventional (e.g., AFL) Alternative (e.g., symex)

￭ Leverage AFL-style parallel fuzzing mode with conventional fuzzer as parent

local queue local queue

Solve!
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How most hybrid fuzzers work
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local queue local queue

Conventional (e.g., AFL) Alternative (e.g., symex)

Sync!

￭ Leverage AFL-style parallel fuzzing mode with conventional fuzzer as parent

?

?

✓
New code 
coverage?
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What could go wrong?

￭ Ineffective seed scheduling
￭ There are fundamental differences in speed

￭ AFL can solve basic branch conditionals fast
￭ Fancier approaches generally are much slower

￭ Heavyweight approaches are best applied to a subset of paths
￭ Invoking on all paths will lead to path explosion
￭ E.g., by the time it’s solved, fuzzer is already way past
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Questions?
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Adventures in Hybrid Fuzzing: 
Driller
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Fuzzing
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0. def f (x) {
1. if x > 10 {
2.   if x < 100:
3.     print "You win!"
4.   else:
5.     print "You lose!"
6. }else:
7.   print "You lose!"

1 ⇒ "You lose!" 

593 ⇒ "You lose!" 

183 ⇒ "You lose!" 

4 ⇒ "You lose!" 

498 ⇒ "You lose!" 

48 ⇒ "You win!"

Source: https://www.ndss-symposium.org/wp-content/uploads/2017/09/07_3-ndss2016-slides.pdf
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Where fuzzing falls short
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0. def f (x) {
1. if x > 10 {
2.   if x^2 == 152399025:
3.     print "You win!"
4.   else:
5.     print "You lose!"
6. }else:
7.   print "You lose!"

1 ⇒ "You lose!" 

593 ⇒ "You lose!" 

183 ⇒ "You lose!" 

4 ⇒ "You lose!" 

   … …
57 ⇒ "You lose!" 

Source: https://www.ndss-symposium.org/wp-content/uploads/2017/09/07_3-ndss2016-slides.pdf
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Symbolic Execution to the rescue!
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0. def f (x) {
1. if x > 10 {
2.   if x^2 == 152399025:
3.     print "You win!"
4.   else:
5.     print "You lose!"
6. }else:
7.   print "You lose!"

1 ⇒ "You lose!" 

593 ⇒ "You lose!" 

183 ⇒ "You lose!" 

4 ⇒ "You lose!" 

   … …
57 ⇒ "You lose!" 

Source: https://www.ndss-symposium.org/wp-content/uploads/2017/09/07_3-ndss2016-slides.pdf

x = 12345
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Driller

￭ Idea: invoke concolic execution via demand launch 
￭ Heuristic 1: a pre-determined # of mutations based on test case length
￭ Heuristic 2: after a pre-determined time interval without new coverage

￭ Concolic executor based on angr
￭ Binary-level instrumentation and analysis framework
￭ Heavily maintained and used in many research projects
￭ Translates, analyzes binary in intermediate form (VEXIR)
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Driller in action
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AFL-found 
coverage

AFL-found 
test cases
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Driller in action

16

Execute

AFL-found 
test cases
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Driller in action
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if strcmp(input, “MAGIC”)

Unsolved 
branch

!= “MAGIC”

AFL-found 
test cases

Execute
Fork

Solve
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Driller in action
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if strcmp(input, “MAGIC”)

Unsolved 
branch

!= “MAGIC”

== “MAGIC”

AFL-found 
test cases

Execute
Fork

Solve

Concrete 
test case
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Driller in action
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AFL-found 
coverage
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Driller in action
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Continue 
execution

Unsolved 
branch

if (x^2 == 152399025)

Fork

!= 12345

== 12345

AFL-found 
test cases

Solve

Concrete 
test case
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Driller in action
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AFL-found 
coverage
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When to turn solving elsewhere?

￭ When the path is already fully solved
￭ Track all branches and which have been solved
￭ A fundamental piece of info that is tracked

22

Solved?

Move 
state



Stefan Nagy

When to turn solving elsewhere?

￭ When the path is already fully solved
￭ Track all branches and which have been solved
￭ A fundamental piece of info that is tracked

￭ When symbolic executor cannot solve
￭ Biggest culprit: hashes
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if MD5(input) == “.......”

A very large search space!

Solved?

Move 
state
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Questions?
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Adventures in Hybrid Fuzzing: 
QSYM
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Problem: relying on an IR is costly

26

Source: https://taesoo.kim/pubs/2018/yun:qsym.pdf
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Problem: relying on an IR is costly
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Source: https://taesoo.kim/pubs/2018/yun:qsym.pdf
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QSYM: operate on native instructions  

￭ Omit lifting to intermediate representation
￭ Use Intel PIN dynamic binary instrumentation

￭ Trade-offs: 
￭ A much higher implementation complexity
￭ Significant decrease in symbolic instructions

￭ 4X fewer than Driller

28

Source: https://taesoo.kim/pubs/2018/yun:qsym.pdf
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Problem: incomplete environment modeling
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  x : A+B
  y : B

x : A+B
y : (A+B) - B = A

x : (A+B) - A = B
y : A

x : syscall (...)
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Problem: incomplete environment modeling
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  x : A+B
  y : B

x : A+B
y : (A+B) - B = A

x : (A+B) - A = B
y : A

x : syscall (...)

Non-trivial 
to model 
symbolically

Expensive 
to emulate 
and fork
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QSYM: leave the environment as-is

￭ Omit translating the environment
￭ Use concrete execution to model it

￭ Model only relevant system calls
￭ E.g., standard input, reads, etc.

￭ What about kernel state forking? 
￭ Avoid—just re-execute from the start

￭ Trade-offs:
￭ Re-execution adds more overhead

￭ Cannot “go back in time” like Driller

31

Solver 
stuck?

Re-exec 
from start
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Problem: overconstrained paths
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0. def f (x) {
1. if x > 10 {
2.   if (x > 1000){ 
3.     if x^2 == 152399025:
4.       print "You win!"
5.     else:
6.       print "You lose!
7.   }else:
8.     print "You lose!"
9. }else:
10.   print "You lose!"

Source: https://www.ndss-symposium.org/wp-content/uploads/2017/09/07_3-ndss2016-slides.pdf

x > 10

x > 1000

x = 12345

You win!

Solver will try 
to solve 
these first

Really just 
need to solve 
this last one
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Problem: overconstrained paths
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0. def f (x) {
1. if x > 10 {
2.   if (x > 1000){ 
3.     if x^2 == 152399025:
4.       print "You win!"
5.     else:
6.       print "You lose!
7.   }else:
8.     print "You lose!"
9. }else:
10.   print "You lose!"

Source: https://www.ndss-symposium.org/wp-content/uploads/2017/09/07_3-ndss2016-slides.pdf

x > 10

x > 1000

x = 12345

You win!
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QSYM: optimistically solve last constraint
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0. def f (x) {
1. if x > 10 {
2.   if (x > 1000){ 
3.     if x^2 == 152399025:
4.       print "You win!"
5.     else:
6.       print "You lose!
7.   }else:
8.     print "You lose!"
9. }else:
10.   print "You lose!"

Source: https://www.ndss-symposium.org/wp-content/uploads/2017/09/07_3-ndss2016-slides.pdf

x > 10

x > 1000

x = 12345

You win!

￭ Trade-offs:
○ Does not always work
○ Can just let the fuzzer 

quickly rule these out
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Questions?
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Adventures in Hybrid Fuzzing: 
RedQueen
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Problem: symbolic and concolic execution is slow
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Source: https://www.ndss-symposium.org/wp-content/uploads/ndss2019_04A-2_Aschermann_slides.pdf

1. if( u64(input) == hash(input[8..len]) )
2.    if( u64(input+8) == hash(input[16..len]) )
3.       if( input[16] == ’R’ && input[17] == ’Q’)
4.          print "You win!"
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Problem: symbolic and concolic execution is slow
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1. if( u64(input) == hash(input[8..len]) )
2.    if( u64(input+8) == hash(input[16..len]) )
3.       if( input[16] == ’R’ && input[17] == ’Q’)
4.          print "You win!"

Source: https://www.ndss-symposium.org/wp-content/uploads/ndss2019_04A-2_Aschermann_slides.pdf
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RedQueen’s solution: input-to-state tracking

￭ Idea: hook comparison instructions and identify their input bytes 
￭ Replace with compared-to value (lifted directly from the operand) 
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if (x[0:3] == “ABCD”) CMP (eax, 0x44434241)source binary

W W J D X

x[0] x[1] x[2] x[3] …



Stefan Nagy

RedQueen’s solution: input-to-state tracking

￭ Idea: hook comparison instructions and identify their input bytes 
￭ Replace with compared-to value (lifted directly from the operand) 

40

if (x[0:3] == “ABCD”) CMP (eax, 0x44434241)source binary

W W J D X

A B C D X

x[0] x[1] x[2] x[3] …
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Supporting other comparisons

￭ Idea: hook comparison instructions and identify their input bytes 
￭ Replace with compared-to value (lifted directly from the operand) 
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if (x[0:3] < 1234)source

W W J D E

1 2 3 3 E

x[0] x[1] x[2] x[3] …

1 2 3 5 E

Replace( x[0:3], 1234 - 1)

Replace( x[0:3], 1234 + 1)
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What about checksums?

￭ Finding these at the binary-level is difficult
￭ Assumption: can identify input bytes that affect the checksum hash
￭ Colorize the input: inject random bytes and see if they influence the outcome
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if( u64(input) == hash(input[8..len]) )
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What about checksums?

￭ Then, patch-out the checksum with an always-true operation
￭ Assumption: checksum is only passed if the input is well-formed

43

[ Field 1 ] [ Field 2 ] [ Field 3 ] [ Checksum ] [ Field 4 ]

[ Field 1 ] [ Field 2 ] [ Field 3 ] [ Checksum ] [ Field 4 ]malformed

well-formed
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What about checksums?

￭ Then, patch-out the checksum with an always-true operation
￭ Assumption: checksum is only passed if the input is well-formed

￭ Thus, skipping over checksum won’t matter if well-formed
￭ New input found afterwards? Great—restore the checksum
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[ Field 1 ] [ Field 2 ] [ Field 3 ] [ Checksum ] [ Field 4 ]

[ Field 1 ] [ Field 2 ] [ Field 3 ] [ Checksum ] [ Field 4 ]

[ Field 1 ] [ Field 2 ] [ Field 3 ] [ Field 4 ]

malformed

well-formed

well-formed patched-out



Stefan Nagy

Questions?
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