
Stefan Nagy

Week 10: Lecture B
Hybrid Fuzzing II

1

Wednesday, March 20, 2024

Stefan Nagy

How are projects going?

Problems?

2

Successes?

Stefan Nagy

Questions?

3

Stefan Nagy

Hybrid Fuzzing Recap

4

Stefan Nagy

What is hybrid fuzzing?

￭ Combining crude fuzzing with smarter fuzzing
￭ E.g., random + concolic execution (Driller, QSYM, Savior)
￭ E.g., random + taint tracking (VUzzer, RedQueen, Angora)

￭ Goal is to balance strengths of both techniques
￭ Use generic fuzzing for most test cases

￭ Use speed to brute-force easy branches
￭ Deploy more elegant approach selectively

￭ Focus its precision on harder branches

5

Stefan Nagy

How most hybrid fuzzers work

6

Conventional (e.g., AFL) Alternative (e.g., symex)

￭ Leverage AFL-style parallel fuzzing mode with conventional fuzzer as parent

local queue local queue

Solve!

Stefan Nagy

How most hybrid fuzzers work

7

local queue local queue

Conventional (e.g., AFL) Alternative (e.g., symex)

Sync!

￭ Leverage AFL-style parallel fuzzing mode with conventional fuzzer as parent

?

?

✓
New code
coverage?

Stefan Nagy

What could go wrong?

￭ Ineffective seed scheduling
￭ There are fundamental differences in speed

￭ AFL can solve basic branch conditionals fast
￭ Fancier approaches generally are much slower

￭ Heavyweight approaches are best applied to a subset of paths
￭ Invoking on all paths will lead to path explosion
￭ E.g., by the time it’s solved, fuzzer is already way past

8

Stefan Nagy

Questions?

9

Stefan Nagy

Adventures in Hybrid Fuzzing:
Driller

10

Stefan Nagy

Fuzzing

11

0. def f (x) {
1. if x > 10 {
2. if x < 100:
3. print "You win!"
4. else:
5. print "You lose!"
6. }else:
7. print "You lose!"

1 ⇒ "You lose!"

593 ⇒ "You lose!"

183 ⇒ "You lose!"

4 ⇒ "You lose!"

498 ⇒ "You lose!"

48 ⇒ "You win!"

Source: https://www.ndss-symposium.org/wp-content/uploads/2017/09/07_3-ndss2016-slides.pdf

Stefan Nagy

Where fuzzing falls short

12

0. def f (x) {
1. if x > 10 {
2. if x^2 == 152399025:
3. print "You win!"
4. else:
5. print "You lose!"
6. }else:
7. print "You lose!"

1 ⇒ "You lose!"

593 ⇒ "You lose!"

183 ⇒ "You lose!"

4 ⇒ "You lose!"

 … …
57 ⇒ "You lose!"

Source: https://www.ndss-symposium.org/wp-content/uploads/2017/09/07_3-ndss2016-slides.pdf

Stefan Nagy

Symbolic Execution to the rescue!

13

0. def f (x) {
1. if x > 10 {
2. if x^2 == 152399025:
3. print "You win!"
4. else:
5. print "You lose!"
6. }else:
7. print "You lose!"

1 ⇒ "You lose!"

593 ⇒ "You lose!"

183 ⇒ "You lose!"

4 ⇒ "You lose!"

 … …
57 ⇒ "You lose!"

Source: https://www.ndss-symposium.org/wp-content/uploads/2017/09/07_3-ndss2016-slides.pdf

x = 12345

Stefan Nagy

Driller

￭ Idea: invoke concolic execution via demand launch
￭ Heuristic 1: a pre-determined # of mutations based on test case length
￭ Heuristic 2: after a pre-determined time interval without new coverage

￭ Concolic executor based on angr
￭ Binary-level instrumentation and analysis framework
￭ Heavily maintained and used in many research projects
￭ Translates, analyzes binary in intermediate form (VEXIR)

14

Stefan Nagy

Driller in action

15

AFL-found
coverage

AFL-found
test cases

Stefan Nagy

Driller in action

16

Execute

AFL-found
test cases

Stefan Nagy

Driller in action

17

if strcmp(input, “MAGIC”)

Unsolved
branch

!= “MAGIC”

AFL-found
test cases

Execute
Fork

Solve

Stefan Nagy

Driller in action

18

if strcmp(input, “MAGIC”)

Unsolved
branch

!= “MAGIC”

== “MAGIC”

AFL-found
test cases

Execute
Fork

Solve

Concrete
test case

Stefan Nagy

Driller in action

19

AFL-found
coverage

Stefan Nagy

Driller in action

20

Continue
execution

Unsolved
branch

if (x^2 == 152399025)

Fork

!= 12345

== 12345

AFL-found
test cases

Solve

Concrete
test case

Stefan Nagy

Driller in action

21

AFL-found
coverage

Stefan Nagy

When to turn solving elsewhere?

￭ When the path is already fully solved
￭ Track all branches and which have been solved
￭ A fundamental piece of info that is tracked

22

Solved?

Move
state

Stefan Nagy

When to turn solving elsewhere?

￭ When the path is already fully solved
￭ Track all branches and which have been solved
￭ A fundamental piece of info that is tracked

￭ When symbolic executor cannot solve
￭ Biggest culprit: hashes

23

if MD5(input) == “.......”

A very large search space!

Solved?

Move
state

Stefan Nagy

Questions?

24

Stefan Nagy

Adventures in Hybrid Fuzzing:
QSYM

25

Stefan Nagy

Problem: relying on an IR is costly

26

Source: https://taesoo.kim/pubs/2018/yun:qsym.pdf

Stefan Nagy

Problem: relying on an IR is costly

27

Source: https://taesoo.kim/pubs/2018/yun:qsym.pdf

Stefan Nagy

QSYM: operate on native instructions

￭ Omit lifting to intermediate representation
￭ Use Intel PIN dynamic binary instrumentation

￭ Trade-offs:
￭ A much higher implementation complexity
￭ Significant decrease in symbolic instructions

￭ 4X fewer than Driller

28

Source: https://taesoo.kim/pubs/2018/yun:qsym.pdf

Stefan Nagy

Problem: incomplete environment modeling

29

 x : A+B
 y : B

x : A+B
y : (A+B) - B = A

x : (A+B) - A = B
y : A

x : syscall (...)

Stefan Nagy

Problem: incomplete environment modeling

30

 x : A+B
 y : B

x : A+B
y : (A+B) - B = A

x : (A+B) - A = B
y : A

x : syscall (...)

Non-trivial
to model
symbolically

Expensive
to emulate
and fork

Stefan Nagy

QSYM: leave the environment as-is

￭ Omit translating the environment
￭ Use concrete execution to model it

￭ Model only relevant system calls
￭ E.g., standard input, reads, etc.

￭ What about kernel state forking?
￭ Avoid—just re-execute from the start

￭ Trade-offs:
￭ Re-execution adds more overhead

￭ Cannot “go back in time” like Driller

31

Solver
stuck?

Re-exec
from start

Stefan Nagy

Problem: overconstrained paths

32

0. def f (x) {
1. if x > 10 {
2. if (x > 1000){
3. if x^2 == 152399025:
4. print "You win!"
5. else:
6. print "You lose!
7. }else:
8. print "You lose!"
9. }else:
10. print "You lose!"

Source: https://www.ndss-symposium.org/wp-content/uploads/2017/09/07_3-ndss2016-slides.pdf

x > 10

x > 1000

x = 12345

You win!

Solver will try
to solve
these first

Really just
need to solve
this last one

Stefan Nagy

Problem: overconstrained paths

33

0. def f (x) {
1. if x > 10 {
2. if (x > 1000){
3. if x^2 == 152399025:
4. print "You win!"
5. else:
6. print "You lose!
7. }else:
8. print "You lose!"
9. }else:
10. print "You lose!"

Source: https://www.ndss-symposium.org/wp-content/uploads/2017/09/07_3-ndss2016-slides.pdf

x > 10

x > 1000

x = 12345

You win!

Stefan Nagy

QSYM: optimistically solve last constraint

34

0. def f (x) {
1. if x > 10 {
2. if (x > 1000){
3. if x^2 == 152399025:
4. print "You win!"
5. else:
6. print "You lose!
7. }else:
8. print "You lose!"
9. }else:
10. print "You lose!"

Source: https://www.ndss-symposium.org/wp-content/uploads/2017/09/07_3-ndss2016-slides.pdf

x > 10

x > 1000

x = 12345

You win!

￭ Trade-offs:
○ Does not always work
○ Can just let the fuzzer

quickly rule these out

Stefan Nagy

Questions?

35

Stefan Nagy

Adventures in Hybrid Fuzzing:
RedQueen

36

Stefan Nagy

Problem: symbolic and concolic execution is slow

37

Source: https://www.ndss-symposium.org/wp-content/uploads/ndss2019_04A-2_Aschermann_slides.pdf

1. if(u64(input) == hash(input[8..len]))
2. if(u64(input+8) == hash(input[16..len]))
3. if(input[16] == ’R’ && input[17] == ’Q’)
4. print "You win!"

Stefan Nagy

Problem: symbolic and concolic execution is slow

38

1. if(u64(input) == hash(input[8..len]))
2. if(u64(input+8) == hash(input[16..len]))
3. if(input[16] == ’R’ && input[17] == ’Q’)
4. print "You win!"

Source: https://www.ndss-symposium.org/wp-content/uploads/ndss2019_04A-2_Aschermann_slides.pdf

Stefan Nagy

RedQueen’s solution: input-to-state tracking

￭ Idea: hook comparison instructions and identify their input bytes
￭ Replace with compared-to value (lifted directly from the operand)

39

if (x[0:3] == “ABCD”) CMP (eax, 0x44434241)source binary

W W J D X

x[0] x[1] x[2] x[3] …

Stefan Nagy

RedQueen’s solution: input-to-state tracking

￭ Idea: hook comparison instructions and identify their input bytes
￭ Replace with compared-to value (lifted directly from the operand)

40

if (x[0:3] == “ABCD”) CMP (eax, 0x44434241)source binary

W W J D X

A B C D X

x[0] x[1] x[2] x[3] …

Stefan Nagy

Supporting other comparisons

￭ Idea: hook comparison instructions and identify their input bytes
￭ Replace with compared-to value (lifted directly from the operand)

41

if (x[0:3] < 1234)source

W W J D E

1 2 3 3 E

x[0] x[1] x[2] x[3] …

1 2 3 5 E

Replace(x[0:3], 1234 - 1)

Replace(x[0:3], 1234 + 1)

Stefan Nagy

What about checksums?

￭ Finding these at the binary-level is difficult
￭ Assumption: can identify input bytes that affect the checksum hash
￭ Colorize the input: inject random bytes and see if they influence the outcome

42

if(u64(input) == hash(input[8..len]))

Stefan Nagy

What about checksums?

￭ Then, patch-out the checksum with an always-true operation
￭ Assumption: checksum is only passed if the input is well-formed

43

[Field 1] [Field 2] [Field 3] [Checksum] [Field 4]

[Field 1] [Field 2] [Field 3] [Checksum] [Field 4]malformed

well-formed

Stefan Nagy

What about checksums?

￭ Then, patch-out the checksum with an always-true operation
￭ Assumption: checksum is only passed if the input is well-formed

￭ Thus, skipping over checksum won’t matter if well-formed
￭ New input found afterwards? Great—restore the checksum

44

[Field 1] [Field 2] [Field 3] [Checksum] [Field 4]

[Field 1] [Field 2] [Field 3] [Checksum] [Field 4]

[Field 1] [Field 2] [Field 3] [Field 4]

malformed

well-formed

well-formed patched-out

Stefan Nagy

Questions?

45

