
Stefan Nagy

Week 9: Lecture A
Client-side Web Security and HTTPS

Tuesday, October 22, 2024

1

Stefan Nagy

Announcements

￭ Project 3: WebSec released
￭ Deadline: Thursday, November 7th by 11:59PM

2

Stefan Nagy 3

Stefan Nagy

Announcements

￭ Project 2 grades are now available on Canvas

￭ Statistics:
￭ Average score across all teams: 91.64%
￭ Three solved one of the extra credit targets

￭ Fantastic job!

4

Stefan Nagy

Announcements

￭ Project 2 grades are now available on Canvas

￭ Think we made an error? Request a regrade!
￭ Valid regrade requests:

￭ You have verified your solution is correct
(i.e., we made an error in grading)

5

Project 2 Regrade Requests (see Piazza pinned link):
Submit by 11:59 PM on Monday 10/28 via Google Form

Stefan Nagy

Announcements

6

See Discord for
meeting info!

utahsec.cs.utah.edu

Stefan Nagy

Questions?

7

Stefan Nagy

Last time on CS 4440…

8

Web Attacks
SQL Injection

Cross-site Scripting
Cross-site Request Forgery

Stefan Nagy

Code Injection in Web Apps

￭ A common and dangerous class of attacks
￭ Shell Injection
￭ SQL Injection
￭ Cross-Site Scripting
￭ Control-flow Hijacking (buffer overflows)

9

GET /?path=$(rm –rf /) HTTP/1.1

Stefan Nagy

Code Injection in Web Apps

￭ A common and dangerous class of attacks
￭ Shell Injection
￭ SQL Injection
￭ Cross-Site Scripting
￭ Control-flow Hijacking (buffer overflows)

10

GET /?path=$(rm –rf /) HTTP/1.1

What is the universal flaw here?

Stefan Nagy

Code Injection in Web Apps

￭ A common and dangerous class of attacks
￭ Shell Injection
￭ SQL Injection
￭ Cross-Site Scripting
￭ Control-flow Hijacking (buffer overflows)

11

GET /?path=$(rm –rf /) HTTP/1.1

What is the universal flaw here?

Confusing input data with code!

Stefan Nagy

SQL Injection Attacks

￭ Attacker goal: ???

12

Stefan Nagy

SQL Injection Attacks

￭ Attacker goal: inject or modify database commands to read or alter info

13

Stefan Nagy

SQL Injection Attacks

￭ Attacker goal: inject or modify database commands to read or alter info

14

Stefan Nagy

Project 3: SQL Injection Tips

1. Identify how the input is processed on the server-side

15

Stefan Nagy

Project 3: SQL Injection Tips

1. Identify how the input is processed on the server-side
￭ E.g., for SQL Inject #0:

16

SELECT * FROM users WHERE username='$username' AND password='$password'

Stefan Nagy

Project 3: SQL Injection Tips

1. Identify how the input is processed on the server-side
￭ E.g., for SQL Inject #0:

2. What input fields are under our control?

17

SELECT * FROM users WHERE username='$username' AND password='$password'

Stefan Nagy

Project 3: SQL Injection Tips

1. Identify how the input is processed on the server-side
￭ E.g., for SQL Inject #0:

2. What input fields are under our control?
￭ The $username and $password fields

18

SELECT * FROM users WHERE username='$username' AND password='$password'

Stefan Nagy

Project 3: SQL Injection Tips

1. Identify how the input is processed on the server-side
￭ E.g., for SQL Inject #0:

2. What input fields are under our control?
￭ The $username and $password fields

3. What is the goal of our SQL injection attack?

19

SELECT * FROM users WHERE username='$username' AND password='$password'

Stefan Nagy

Project 3: SQL Injection Tips

1. Identify how the input is processed on the server-side
￭ E.g., for SQL Inject #0:

2. What input fields are under our control?
￭ The $username and $password fields

3. What is the goal of our SQL injection attack?
￭ A SQL query that logs us in as “victim”

20

SELECT * FROM users WHERE username='$username' AND password='$password'

Stefan Nagy

Project 3: SQL Injection Tips

1. Identify how the input is processed on the server-side
￭ E.g., for SQL Inject #0:

2. What input fields are under our control?
￭ The $username and $password fields

3. What is the goal of our SQL injection attack?
￭ A SQL query that logs us in as “victim”

4. What steps are needed for our attack to work?

21

SELECT * FROM users WHERE username='$username' AND password='$password'

Stefan Nagy

Project 3: SQL Injection Tips

1. Identify how the input is processed on the server-side
￭ E.g., for SQL Inject #0:

2. What input fields are under our control?
￭ The $username and $password fields

3. What is the goal of our SQL injection attack?
￭ A SQL query that logs us in as “victim”

4. What steps are needed for our attack to work?
1. Set $username to “victim”
2. Set $password to their password

22

SELECT * FROM users WHERE username='$username' AND password='$password'

But we do not know
the user’s password!

The correct password
would log us in…

Stefan Nagy

Project 3: SQL Injection Tips

￭ Solution: craft a query that closes-out unknowable fields, resolves to TRUE

23

Example Attack:

... AND password='$password'

SELECT * FROM users WHERE username='$username' AND password='$password'

Stefan Nagy

Project 3: SQL Injection Tips

￭ Solution: craft a query that closes-out unknowable fields, resolves to TRUE

24

SELECT * FROM users WHERE username='$username' AND password='$password'

￭ Closes-out unknowable password

Example Attack:

... AND password='$password'

... AND password=''

Stefan Nagy

Project 3: SQL Injection Tips

￭ Solution: craft a query that closes-out unknowable fields, resolves to TRUE

25

￭ Closes-out unknowable password
￭ '1'='1' always resolves TRUE

... AND password='$password'

... AND password='' OR '1'='1'

Example Attack:

SELECT * FROM users WHERE username='$username' AND password='$password'

Stefan Nagy

Project 3: SQL Injection Tips

￭ Solution: craft a query that closes-out unknowable fields, resolves to TRUE

26

￭ Closes-out unknowable password
￭ '1'='1' always resolves TRUE

... AND password='$password'

... AND password='' OR '1'='1'

Example Attack:

SELECT * FROM users WHERE username='$username' AND password='$password'

... AND password='$password'

... AND password='foo'

Example Attack:

Stefan Nagy

Project 3: SQL Injection Tips

￭ Solution: craft a query that closes-out unknowable fields, resolves to TRUE

27

￭ Closes-out unknowable password
￭ '1'='1' always resolves TRUE

... AND password='$password'

... AND password='' OR '1'='1'

Example Attack:

SELECT * FROM users WHERE username='$username' AND password='$password'

... AND password='$password'

... AND password='foo'

Example Attack:

￭ Creates a FALSE string comparison

Stefan Nagy

Project 3: SQL Injection Tips

￭ Solution: craft a query that closes-out unknowable fields, resolves to TRUE

28

￭ Closes-out unknowable password
￭ '1'='1' always resolves TRUE

... AND password='$password'

... AND password='' OR '1'='1'

Example Attack:

SELECT * FROM users WHERE username='$username' AND password='$password'

... AND password='$password'

... AND password='foo' = ''

Example Attack:

￭ Creates a FALSE string comparison

Stefan Nagy

Project 3: SQL Injection Tips

￭ Solution: craft a query that closes-out unknowable fields, resolves to TRUE

29

￭ Closes-out unknowable password
￭ '1'='1' always resolves TRUE

... AND password='$password'

... AND password='' OR '1'='1'

Example Attack:

SELECT * FROM users WHERE username='$username' AND password='$password'

... AND password='$password'

... AND password='foo' = ''

Example Attack:

￭ Creates a FALSE string comparison
￭ But FALSE == '' ends up TRUE

Stefan Nagy

Project 3: SQL Injection Tips

￭ Solution: craft a query that closes-out unknowable fields, resolves to TRUE

30

￭ Closes-out unknowable password
￭ '1'='1' always resolves TRUE

... AND password='$password'

... AND password='' OR '1'='1'

Example Attack:

SELECT * FROM users WHERE username='$username' AND password='$password'

... AND password='$password'

... AND int(FALSE) == int('')

Example Attack:

￭ Creates a FALSE string comparison
￭ But FALSE == '' ends up TRUE

Stefan Nagy

Project 3: SQL Injection Tips

￭ Solution: craft a query that closes-out unknowable fields, resolves to TRUE

31

￭ Closes-out unknowable password
￭ '1'='1' always resolves TRUE

... AND password='$password'

... AND password='' OR '1'='1'

Example Attack:

SELECT * FROM users WHERE username='$username' AND password='$password'

... AND password='$password'

... AND int(FALSE) == int('')

Example Attack:

￭ Creates a FALSE string comparison
￭ But FALSE == '' ends up TRUE

Key idea: identify how you can
exploit SQL’s command syntax
and queries that resolve TRUE

Result: Attacker does not need
to know the victim’s password!

Stefan Nagy

Project 3: SQL Injection Tips

￭ Write-out your query and how the server processes it
￭ Are you closing-out fields? Commenting-out the line?

￭ Trial-and-error with different TRUE-resolving queries
￭ Pay attention to what server tells you!

￭ E.g., “Incorrect username or password” versus “Error in MySQL query”

32

AND password='' OR '1'='1'

AND password='' OR '12345'

AND password='' = ''

Stefan Nagy

Interacting with Web Applications

￭ GET request: parameters in ???

33

Stefan Nagy

Interacting with Web Applications

￭ GET request: parameters in URL

34

www.bank.com/send.asp?to=snagy&amt=100

Ok! Sent $100 to snagy

2

1

￭ POST request: parameters in ???

Stefan Nagy

Interacting with Web Applications

￭ GET request: parameters in URL

35

￭ POST request: parameters in body

www.bank.com/send.asp?to=snagy&amt=100 www.bank.com/send.asp

Ok! Sent $100 to snagy

Ok! Sent $100 to snagy

2

1 1

3

<input name="to" value=”snagy”>
<input name="amt" value=”100”>

2

Stefan Nagy

￭ Attacker goal: ???

Cross-site Request Forgery (CSRF)

36

Stefan Nagy

￭ Attacker goal: leverage user’s session to execute malicious commands
￭ Trick user into accessing specially-crafted URLs (GET) or HTML pages (POST)

Cross-site Request Forgery (CSRF)

37

Stefan Nagy

CSRF Attacks

38

￭ POST-based CSRF (evil webpage)

<input name="to" value=”evil”>
<input name="amt" value=”100”>

Ok! Sent $100 to evil

1

3

2

Stefan Nagy

CSRF Attacks

39

￭ POST-based CSRF (evil webpage) ￭ GET-based CSRF (evil URL)

www.bank.com/send.asp?to=evil&amt=100

Ok! Sent $100 to evil

1

3

2

<input name="to" value=”evil”>
<input name="amt" value=”100”>

Ok! Sent $100 to evil

1

3

2

Stefan Nagy

Interacting with Dynamic Web Applications

￭ A powerful, popular web programming language
￭ Transmitted as text, rendered by client’s browser

￭ Can alter webpage contents, track events, read/set
cookies, issue requests, read requests’ replies, etc.

40

<script type="text/javascript">
function hello() { alert("Hello world!"); }

</script>

<img src="picture.gif"
onMouseOver="javascript:hello()">

Stefan Nagy

Cross-site Scripting (XSS)

￭ Attacker goal: ???

41

Stefan Nagy

Cross-site Scripting (XSS)

￭ Attacker goal: submit code as data to website, get victim to execute it

42

Stefan Nagy

Cross-site Scripting (XSS)

￭ Attacker goal: submit code as data to website, get victim to execute it

43

What are the two forms of
Cross-site Scripting?

Persistent: malicious code
embedded on the website

Reflected: malicious code part
of the request sent to the site

Stefan Nagy

Cross-site Scripting (XSS)

￭ Attacker goal: submit code as data to website, get victim to execute it

44

What are the two forms of
Cross-site Scripting?

Persistent: malicious code
embedded on the website

Reflected: malicious code part
of the request sent to the site

<script>
 evil
</script>

serve

render

execute

Stefan Nagy

Project 3: Beginner CSRF & XSS Tips

￭ Understand how your target takes input
￭ LOGIN page: POST requests
￭ SEARCH page: GET requests

45

Stefan Nagy

Project 3: Beginner CSRF & XSS Tips

￭ Understand how your target takes input
￭ LOGIN page: POST requests
￭ SEARCH page: GET requests

￭ Set up your attack parameters accordingly
￭ Desired username, password, method, etc.
￭ Template makes this easy—use the form!

46

Stefan Nagy

Project 3: Beginner CSRF & XSS Tips

￭ Understand how your target takes input
￭ LOGIN page: POST requests
￭ SEARCH page: GET requests

￭ Set up your attack parameters accordingly
￭ Desired username, password, method, etc.
￭ Template makes this easy—use the form!

￭ BSF 1–3: exploiting the SEARCH page
￭ Weakness: improperly filters search terms…

￭ Can we leverage this to inject code?

47

<input name="q" value="

<script>

alert(0);

</script>

">

Example SEARCH Input:

Stefan Nagy

Project 3: Beginner CSRF & XSS Tips

￭ Understand how your target takes input
￭ LOGIN page: POST requests
￭ SEARCH page: GET requests

￭ Set up your attack parameters accordingly
￭ Desired username, password, method, etc.
￭ Template makes this easy—use the form!

￭ BSF 1–3: exploiting the SEARCH page
￭ Weakness: improperly filters search terms…

￭ Can we leverage this to inject code?

￭ Test out simple payloads first, then move on to building your full attacks!

48

<input name="q" value="

<script>

alert(0);

</script>

">

Example SEARCH Input:

Stefan Nagy

Project 3: Advanced XSS Tips

￭ Builds off your skills from Part 2
￭ Master those first before attempting these!

49

Stefan Nagy

Project 3: Advanced XSS Tips

￭ Builds off your skills from Part 2
￭ Master those first before attempting these!

￭ Part 2: page-reflected XSS
￭ Attack embedded in a static page

50

<input name="q" value="
 <script>alert(0);</script>
">

Stefan Nagy

Project 3: Advanced XSS Tips

￭ Builds off your skills from Part 2
￭ Master those first before attempting these!

￭ Part 2: page-reflected XSS
￭ Attack embedded in a static page

￭ Part 3: URL-reflected XSS
￭ Attack embedded in a URL

51

<input name="q" value="
 <script>alert(0);</script>
">

http://cs4440.eng.utah.edu/project3
/search?q=%3Cscript%3E...

Stefan Nagy

Project 3: Advanced XSS Tips

￭ Builds off your skills from Part 2
￭ Master those first before attempting these!

￭ Part 2: page-reflected XSS
￭ Attack embedded in a static page

￭ Part 3: URL-reflected XSS
￭ Attack embedded in a URL

￭ Test your attack by first embedding it in an HTML page, then move to a URL!

52

<input name="q" value="
 <script>alert(0);</script>
">

http://cs4440.eng.utah.edu/project3
/search?q=%3Cscript%3E...

Stefan Nagy

Project 3: Advanced XSS Tips

￭ Builds off your skills from Part 2
￭ Master those first before attempting these!

￭ Part 2: page-reflected XSS
￭ Attack embedded in a static page

￭ Part 3: URL-reflected XSS
￭ Attack embedded in a URL

￭ Test your attack by first embedding it in an HTML page, then move to a URL!
￭ Hint: write a program to convert JavaScript code characters to a URL-friendly encoding

￭ See https://www.w3schools.com/tags/ref_urlencode.ASP

53

<input name="q" value="
 <script>alert(0);</script>
">

http://cs4440.eng.utah.edu/project3
/search?q=%3Cscript%3E...

https://www.w3schools.com/tags/ref_urlencode.ASP

Stefan Nagy

Questions?

54

Stefan Nagy

This time on CS 4440…

55

Browser-side Web Security
Isolation and Sandboxing

The Same-origin Policy
HTTPS, SSL, and TLS

Stefan Nagy

Principles of Web Security

￭ Privacy
￭ ???

56

Stefan Nagy

Principles of Web Security

￭ Privacy
￭ Malicious websites should not be able

to spy on me or my activities online

￭ Integrity
￭ ???

57

Stefan Nagy

Principles of Web Security

￭ Privacy
￭ Malicious websites should not be able

to spy on me or my activities online

￭ Integrity
￭ Malicious websites should not be able

to violate the integrity of my computer
or my information on other websites

￭ Confidentiality
￭ ???

58

Stefan Nagy

Principles of Web Security

￭ Privacy
￭ Malicious websites should not be able

to spy on me or my activities online

￭ Integrity
￭ Malicious websites should not be able

to violate the integrity of my computer
or my information on other websites

￭ Confidentiality
￭ Malicious websites should not be able

to learn confidential information from
my computer or from other websites

59

Stefan Nagy

￭ Risk #1: TotallySafeSite.com should keep my information secure
￭ E.g., database breaches, stolen login credentials, disgruntled employee, etc.

￭ Defenses: server-side security
￭ ???

Web Security Risks

60

Stefan Nagy

￭ Risk #1: TotallySafeSite.com should keep my information secure
￭ E.g., database breaches, stolen login credentials, disgruntled employee, etc.

￭ Defenses: server-side security
￭ Not storing info in plaintext
￭ Principle of Least Privilege
￭ Multi-factor authentication
￭ Fix all server security bugs

Web Security Risks

61

Stefan Nagy

Web Security Risks

￭ Risk #2 visiting TotallySafeSite.com may access my files and programs
￭ E.g., install malware, read sensitive information, alter local files, etc.

￭ Defenses: browser-side security
￭ ???

62

Stefan Nagy

Web Security Risks

￭ Risk #2 visiting TotallySafeSite.com may access my files and programs
￭ E.g., install malware, read sensitive information, alter local files, etc.

￭ Defenses: browser-side security
￭ Fix browser security bugs
￭ Enable automatic updates
￭ Privilege separation
￭ Sandbox all code (e.g., JavaScript)

63

Stefan Nagy

Client-side Web Defenses

64

Stefan Nagy

Browser Sandboxing Techniques

￭ General Process Sandboxing
￭ See Week 6B’s lecture

65

Stefan Nagy

Browser Sandboxing Techniques

￭ General Process Sandboxing
￭ See Week 6B’s lecture

￭ DOM Mirroring
￭ Filter-out unsafe DOM elements
￭ E.g., anti-adblocking functionality

66

Stefan Nagy

Browser Sandboxing Techniques

￭ General Process Sandboxing
￭ See Week 6B’s lecture

￭ DOM Mirroring
￭ Filter-out unsafe DOM elements
￭ E.g., anti-adblocking functionality

￭ Pixel Streaming / Remote Browser
￭ Render page remotely (e.g., container)
￭ Pixel Reconstruction: client only gets the

final pixel array, not the application code
￭ Remote Browser: all interaction encrypted

67

Stefan Nagy

Web Security Risks

￭ Risk #3: TotallySafeSite.com tracks my info/interaction with other sites
￭ E.g., spying on my GMail emails, purchasing things with my Amazon, etc.

￭ Defenses: maintain site isolation
￭ Same-origin Policy
￭ Multi-process browsing

68

Stefan Nagy

Same-origin Policy

￭ Goal: make sure that scripts don’t abuse the power of JavaScript

￭ Scripts from CS 4440 website shouldn’t read cookies on FellsWargo site
￭ … or alter FellsWargo site’s layout, or its read keystrokes typed by user to FellsWargo site

69

Stefan Nagy

Same-origin Policy

￭ Origin = the protocol + the hostname

￭ Example: http://www.cs.utah.edu/class...
￭ Protocol: HTTP
￭ Hostname: www.cs.utah.edu

70

Stefan Nagy

Same-origin Policy

￭ Origin = the protocol + the hostname

￭ Example: http://www.cs.utah.edu/class...
￭ Protocol: HTTP
￭ Hostname: www.cs.utah.edu

￭ JavaScript from one page can read, change, and
interact freely with all pages from same origin

71

Stefan Nagy

Same-origin Policy

￭ Origin = the protocol + the hostname

￭ Example: http://www.cs.utah.edu/class...
￭ Protocol: HTTP
￭ Hostname: www.cs.utah.edu

￭ JavaScript from one page can read, change, and
interact freely with all pages from same origin
￭ Content cannot be accessed by scripts of different origin

72

Stefan Nagy

Same-origin Policy

￭ Restricts access to content from the same origin (protocol + host)

73

Stefan Nagy

Same-origin Policy

￭ Restricts access to content from the same origin (protocol + host)
￭ Try the following, comparing to http://example.com/home.html

74

Candidate Request SOP Result Explanation

https://example.com/index.html

Stefan Nagy

Same-origin Policy

￭ Restricts access to content from the same origin (protocol + host)
￭ Try the following, comparing to http://example.com/home.html

75

Candidate Request SOP Result Explanation

http://example.com/dir/page.html

http://example.com/dir/other.html

https://example.com/dir/inner/index.html

http://example.com/dir/first/out/home.html

http://en.example.com/dir/other.html

Stefan Nagy

Same-origin Policy

￭ Restricts access to content from the same origin (protocol + host)
￭ Try the following, comparing to http://example.com/home.html

76

Candidate Request SOP Result Explanation

https://example.com/index.html FAIL Different protocol (https)

http://example.com/dir/other.html

https://example.com/dir/inner/index.html

http://example.com/dir/first/out/home.html

http://en.example.com/dir/other.html

Stefan Nagy

Same-origin Policy

￭ Restricts access to content from the same origin (protocol + host)
￭ Try the following, comparing to http://example.com/home.html

77

Candidate Request SOP Result Explanation

https://example.com/index.html FAIL Different protocol (https)

http://example.com/dir/other.html PASS Same protocol, same host

https://example.com/dir/inner/index.html FAIL Different protocol (https)

http://example.com/dir/first/out/home.html PASS Same protocol, same host

http://en.example.com/dir/other.html FAIL Different host (en)

Stefan Nagy

Same-origin Policy

￭ Implementation: tagged sandboxing

78

Your Website

JavaScript

Methods
Data
etc.

JavaScript

Methods
Data
etc.

Other Site

JavaScript

Methods
Data
etc.

Stefan Nagy

Same-origin Policy

￭ Implementation: tagged sandboxing

￭ Scripts within same origin can interface with each other

79

Your Website

JavaScript

Methods
Data
etc.

JavaScript

Methods
Data
etc.

Other Site

JavaScript

Methods
Data
etc.

Stefan Nagy

Same-origin Policy

￭ Implementation: tagged sandboxing

￭ Scripts within same origin can interface with each other
￭ Scripts from different origins are completely blocked

80

Your Website

JavaScript

Methods
Data
etc.

JavaScript

Methods
Data
etc.

Other Site

JavaScript

Methods
Data
etc.

Stefan Nagy

Multi-process Browsing

￭ Idea: isolate “tabs” into
distinct processes

81

Stefan Nagy

Multi-process Browsing

￭ Idea: isolate “tabs” into
distinct processes
￭ Site-level isolation!
￭ Piggyback off of MMU

￭ Most browsers do this
￭ Chrome
￭ Firefox
￭ Etc.

￭ Downside: ???

82

Stefan Nagy

Multi-process Browsing

￭ Idea: isolate “tabs” into
distinct processes
￭ Site-level isolation!
￭ Piggyback off of MMU

￭ Most browsers do this
￭ Chrome
￭ Firefox
￭ Etc.

￭ Downside: performance
￭ Lots of open tabs leads to

lots of running processes!

83

Stefan Nagy

Questions?

84

Stefan Nagy

Secure Web Communication

85

Stefan Nagy

Principles of Secure Web Communication

￭ Authentication
￭ ???

86

Stefan Nagy

￭ Authentication
￭ The client must be able to verify that it

is talking to the desired server

￭ Integrity
￭ ???

87

Principles of Secure Web Communication

Stefan Nagy

￭ Authentication
￭ The client must be able to verify that it

is talking to the desired server

￭ Integrity
￭ Data transmitted between client and

server must not be attacker-modifiable

￭ Confidentiality
￭ ???

88

Principles of Secure Web Communication

Stefan Nagy

￭ Authentication
￭ The client must be able to verify that it

is talking to the desired server

￭ Integrity
￭ Data transmitted between client and

server must not be attacker-modifiable

￭ Confidentiality
￭ Data transmitted between the client

and server must not be attacker-visible

89

Principles of Secure Web Communication

Stefan Nagy

￭ Authentication
￭ The client must be able to verify that it

is talking to the desired server

￭ Integrity
￭ Data transmitted between client and

server must not be attacker-modifiable

￭ Confidentiality
￭ Data transmitted between the client

and server must not be attacker visible

90

Assumptions:

Assume end-points (the
client and server) secure

Principles of Secure Web Communication

Stefan Nagy

￭ Authentication
￭ The client must be able to verify that it

is talking to the desired server

￭ Integrity
￭ Data transmitted between client and

server must not be attacker-modifiable

￭ Confidentiality
￭ Data transmitted between the client

and server must not be attacker visible

91

Coffee Shop

Cheap Motel

Public Library

Threat Model:

Principles of Secure Web Communication

Stefan Nagy

￭ Authentication
￭ The client must be able to verify that it

is talking to the desired server

￭ Integrity
￭ Data transmitted between client and

server must not be attacker-modifiable

￭ Confidentiality
￭ Data transmitted between the client

and server must not be attacker visible

92

Coffee Shop

Cheap Motel

Public Library

Threat Model:
Man-in-the-Middle

Principles of Secure Web Communication

Stefan Nagy

￭ Authentication
￭ The client must be able to verify that it

is talking to the desired server

￭ Integrity
￭ Data transmitted between client and

server must not be attacker-modifiable

￭ Confidentiality
￭ Data transmitted between the client

and server must not be attacker visible

93

Coffee Shop

Cheap Motel

Public Library

Threat Model:
Man-in-the-Middle

How can we make web comm secure?

Parties that are trying to spy on you:
Hackers, your boss, the government

Principles of Secure Web Communication

Stefan Nagy

￭ Symmetric Crypto:

Crypto to the rescue!

94

Stefan Nagy

Crypto to the rescue!

95

￭ Symmetric Crypto:

￭ Problem: ???

Stefan Nagy

Crypto to the rescue!

96

￭ Symmetric Crypto:

￭ Problem: pre-sharing entire key
￭ If intercepted, whole scheme ruined!

Stefan Nagy

￭ Public-key Crypto:

Crypto to the rescue!

97

￭ Symmetric Crypto:

￭ Problem: pre-sharing entire key
￭ If intercepted, whole scheme ruined!

Stefan Nagy

Crypto to the rescue!

98

￭ Symmetric Crypto:

￭ Problem: pre-sharing entire key
￭ If intercepted, whole scheme ruined!

￭ Public-key Crypto:

￭ Problem: ???

Stefan Nagy

￭ Symmetric Crypto:

￭ Problem: pre-sharing entire key
￭ If intercepted, whole scheme ruined!

￭ Public-key Crypto:

￭ Problem: lack of pre-authentication
￭ Is Bob’s key really from the real Bob?

Crypto to the rescue!

99

Stefan Nagy

￭ Symmetric Crypto:

￭ Problem: pre-sharing entire key
￭ If intercepted, whole scheme ruined!

￭ Public-key Crypto:

￭ Problem: lack of pre-authentication
￭ Is Bob’s key really from the real Bob?

Crypto to the rescue!

100

Parties that are trying to spy on you:
Hackers, your boss, the government

How can we overcome pre-auth?

Stefan Nagy

HTTPS: HTTP over TLS

101

Stefan Nagy

Recap: HyperText Transfer Protocol (HTTP)

102

￭ Protocol for transmitting hypermedia documents (e.g., web pages)
￭ Widely used
￭ Simple
￭ Unencrypted

Stefan Nagy

Recap: HyperText Transfer Protocol (HTTP)

103

￭ Protocol for transmitting hypermedia documents (e.g., web pages)
￭ Widely used
￭ Simple
￭ Unencrypted

Problem: no way of
keeping data hidden

from prying eyes!

Stefan Nagy

Recap: HyperText Transfer Protocol (HTTP)

104

￭ Protocol for transmitting hypermedia documents (e.g., web pages)
￭ Widely used
￭ Simple
￭ Unencrypted

Problem: no way of
keeping data hidden

from prying eyes!

We need a secure protocol for comms:
HTTPS (aka “HTTP over SSL/TLS”)

Stefan Nagy

SSL and TLS

￭ The physical protocols by which HTTPS public-key encryption works

105

Stefan Nagy

SSL and TLS

￭ The physical protocols by which HTTPS public-key encryption works

￭ SSL (Secure Socket Layer)
￭ Developed by Netscape
￭ Obsolete—stop using it!

106

Stefan Nagy

SSL and TLS

￭ The physical protocols by which HTTPS public-key encryption works

￭ SSL (Secure Socket Layer)
￭ Developed by Netscape
￭ Obsolete—stop using it!

￭ TLS (Transport Layer Security)
￭ Successor to SSL
￭ Versions 1.0, 1.1, 1.2, 1.3
￭ Current IETF approved standard

107

Stefan Nagy

The TLS Handshake

108

Client Hello: Here’s Ciphers I support, and a random

Stefan Nagy

The TLS Handshake

109

Server Hello: Chosen Cipher

Certificate: Here is my Certificate with my PubKey

Here’s your random back encrypted with my PrivKey

Client Hello: Here’s Ciphers I support, and a random

Stefan Nagy

The TLS Handshake

110

Client Hello: Here’s Ciphers I support, and a random

Server Hello: Chosen Cipher

Here’s your random back encrypted with my PrivKey

Key Exchange: Our SymKey encrypted with your PubKey

Certificate: Here is my Certificate with my PubKey

Stefan Nagy

The TLS Handshake

111

Client Hello: Here’s Ciphers I support, and a random

Server Hello: Chosen Cipher

Here’s your random back encrypted with my PrivKey

Key Exchange: Our SymKey encrypted with your PubKey

Certificate: Here is my Certificate with my PubKey

Switch to a Symmetric Cipher

Switch to a Symmetric Cipher

Stefan Nagy

The TLS Handshake

112

Client Hello: Here’s Ciphers I support, and a random

Server Hello: Chosen Cipher

Here’s your random back encrypted with my PrivKey

Key Exchange: Our SymKey encrypted with your PubKey

Certificate: Here is my Certificate with my PubKey

Switch to a Symmetric Cipher

Switch to a Symmetric Cipher

We do not expect you to memorize
the hairy details about SSL/TLS!

Stefan Nagy

Higher-level TLS Handshake

113

 Client says: “Howdy! Here is what cipher suites I support.”
“Here is a random number for you to encrypt.”

Stefan Nagy

Higher-level TLS Handshake

114

 Client says: “Howdy! Here is what cipher suites I support.”
“Here is a random number for you to encrypt.”

Server says: “Howdy! Let’s go with this specific cipher.”
“Here is my signed certificate containing my public key.”
“Here is your random encrypted with my private key.”

Stefan Nagy

Higher-level TLS Handshake

115

 Client says: “Howdy! Here is what cipher suites I support.”
“Here is a random number for you to encrypt.”

Server says: “Howdy! Let’s go with this specific cipher.”
“Here is my signed certificate containing my public key.”
“Here is your random encrypted with my private key.”

Client verifies Server’s authenticity from its certificate; and by decrypting the
Server-encrypted random via Server’s public key and checking it to the original.

Stefan Nagy

Higher-level TLS Handshake

116

 Client says: “Howdy! Here is what cipher suites I support.”
“Here is a random number for you to encrypt.”

Server says: “Howdy! Let’s go with this specific cipher.”
“Here is my signed certificate containing my public key.”
“Here is your random encrypted with my private key.”

Client verifies Server’s authenticity from its certificate; and by decrypting the
Server-encrypted random via Server’s public key and checking it to the original.

 Client says: “Great! You are who you say you are. Here’s our symmetric key.”

Stefan Nagy

Handling Pre-authentication

￭ A trusted authority vouches that a certain public key belongs to a particular site
￭ Format called x.509 (complicated)

￭ Browsers ship with public keys for large number of trusted Certificate Authorities

￭ Important fields:
￭ Common Name (CN) (e.g., *.google.com)
￭ Expiration Date (e.g., 2 years from now)
￭ Subject's Public Key
￭ Issuer (e.g., Verisign)
￭ Issuer's signature

￭ Common Name field
￭ Explicit name, e.g. cs.utah.edu
￭ Or wildcard, e.g. *.utah.edu

117

Stefan Nagy

Handling Pre-authentication

￭ A trusted authority vouches that a certain public key belongs to a particular site
￭ Format called x.509 (complicated)

￭ Browsers ship with public keys for large number of trusted Certificate Authorities

￭ Important fields:
￭ Common Name (CN) (e.g., *.google.com)
￭ Expiration Date (e.g., 2 years from now)
￭ Subject's Public Key
￭ Issuer (e.g., Verisign)
￭ Issuer's signature

￭ Common Name field
￭ Explicit name, e.g. cs.utah.edu
￭ Or wildcard, e.g. *.utah.edu

118

The CA ecosystem aims to
address comm pre-auth

Stefan Nagy

Example x509 Certificate

119

Subject: C=US/O=Google Inc/CN=www.google.com
Issuer: C=US/O=Google Inc/CN=Google Internet Authority
Serial Number: 01:b1:04:17:be:22:48:b4:8e:1e:8b:a0:73:c9:ac:83
Expiration Period: Jul 12 2010 - Jul 19 2012
Public Key Algorithm: rsaEncryption
Public Key: 43:1d:53:2e:09:ef:dc:50:54:0a:fb:9a:f0:fa:14:58:ad:a0:81:b0:3d
7c:be:b1:82:19:b9:7c3:8:04:e9:1e5d:b5:80:af:d4:a0:81:b0:b0:68:5b:a4:a4
:ff:b5:8a:3a:a2:29:e2:6c:7c3:8:04:e9:1e5d:b5:7c3:8:04:e9:39:23:46

Signature Algorithm: sha1WithRSAEncryption

Signature: 39:10:83:2e:09:ef:ac:50:04:0a:fb:9a:f0:fa:14:58:ad:a0:81:b0:3d
7c:be:b1:82:19:b9:7c3:8:04:e9:1e5d:b5:80:af:d4:a0:81:b0:b0:68:5b:a4:a4
:ff:b5:8a:3a:a2:29:e2:6c:7c3:8:04:e9:1e5d:b5:7c3:8:04:e9:1e:5d:b5

Stefan Nagy

Certificate Chaining

￭ Root CA signs a certificate-issuing
certificate for delegated authority
￭ Your browser “peels” this chain of

certificates until finds one it trusts

￭ Domain Validation:
￭ Is the certificate expired?
￭ Does the registered email reply to me?
￭ Does DNS record match the cert owner?
￭ More thorough, complicated certificate

validation measures exist today

120

Stefan Nagy

Food for Thought

￭ Think of CAs like notaries or passport-issuing government entities

121

Is this ecosystem forever trustable?

Stefan Nagy

Food for Thought

￭ Think of CAs like notaries or passport-issuing government entities

122

Is this ecosystem forever trustable?

What kinds of things could go wrong?

Stefan Nagy

Next time on CS 4440…

123

Attacks on HTTPS, Networking 101

