
Stefan Nagy

Week 6: Lecture A
Defending Applications

Tuesday, September 24, 2024

1

Stefan Nagy

Announcements

￭ Project 2: AppSec released
￭ Deadline: Thursday, October 17th by 11:59PM

2

Stefan Nagy 3

Stefan Nagy

Announcements

￭ Project 1 grades are now available on Canvas

￭ Statistics:
￭ Average score: 100%
￭ Last year’s average: 85%

￭ Fantastic job!

4

Stefan Nagy

Announcements

￭ Project 1 grades are now available on Canvas

￭ Think we made an error? Request a regrade!
￭ Valid regrade requests:

￭ You have verified your solution is correct
(i.e., we made an error in grading)

5

Project 1 Regrade Requests (see Piazza pinned link):
Submit by 11:59 PM on Monday 9/30 via Google Form

Stefan Nagy

￭ Last lecture ran out of time (sorry!)
￭ If you attended but didn’t get credit (e.g., you didn’t

fill-in PollEverywhere fast enough), please email me

6

Announcements

Stefan Nagy

￭ Last lecture ran out of time (sorry!)
￭ If you attended but didn’t get credit (e.g., you didn’t

fill-in PollEverywhere fast enough), please email me

￭ Thursday’s lecture: automated bug-finding
￭ Guest lecture (I will be out of town traveling)
￭ TA Ethan will tackle the pre-lecture recap slides
￭ Main lecture by Gabe Sherman (my PhD student)
￭ Don’t miss it—one of the coolest security topics!

7

Announcements

Stefan Nagy

Announcements

8

See Discord for
meeting info!

utahsec.cs.utah.edu

Stefan Nagy

Questions?

9

Stefan Nagy

Last time on CS 4440…

10

Shellcode
Constructing Exploits
Pointer Dereferences

Integer Overflows

Stefan Nagy

Shellcode

￭ Attacker goal: make program open a root shell
￭ Root-level permissions = total system ownage
￭ You’ll do this in Project 2!

￭ Shellcode = code to open a root shell
￭ Inject this somewhere and direct execution to it
￭ Basic structure:

1. Call setuid(0) to set user ID to “root”
2. Open a shell with execve(“/bin/sh”)

11

setuid(0) execve(“/bin/sh”)+

Stefan Nagy

Where to begin?

￭ Mnemonic device to help guide your attack-planning thought process

12

 D : Dive into the source code
 E : Estimate the stack frame
 N : NOP-out the entire frame
 N : NOP-out the return address
 I : Inspect program’s memory
 S : Setup and stabilize attack!

But the high-level steps
will get you a long way!

This acronym is silly…

Stefan Nagy

Exploiting Buffer Overflows

￭ Key idea: inject evil code inside buffer, and redirect execution to it

13

foo()’s return addr

main()’s frame ptr

char * buffer[16]

Stefan Nagy

Exploiting Buffer Overflows

￭ Key idea: inject evil code inside buffer, and redirect execution to it

14

foo()’s return addr

main()’s frame ptr

char * buffer[16] Evil code here!

Stefan Nagy

Exploiting Buffer Overflows

￭ Key idea: inject evil code inside buffer, and redirect execution to it

15

foo()’s return addr

main()’s frame ptr

char * buffer[16]

Padding to reach RetAddr

Evil code here!

Stefan Nagy

Exploiting Buffer Overflows

￭ Key idea: inject evil code inside buffer, and redirect execution to it

16

foo()’s return addr

main()’s frame ptr

char * buffer[16]

Start addr of buffer
Padding to reach RetAddr

Evil code here!

Stefan Nagy

Exploiting Buffer Overflows

￭ Key idea: inject evil code inside buffer, and redirect execution to it

17

foo()’s return addr

main()’s frame ptr

char * buffer[16]

Start addr of buffer
Padding to reach RetAddr

Evil code here!

When foo() returns, execution will
proceed to our buffer’s address…

Thus executing our evil code!

Stefan Nagy

Bounded vs. Unbounded Writes

￭ Targets 0–2 permit unbounded writes
￭ We can overwrite anything in the higher stack memory
￭ Thanks to dangerous functions gets() and strcpy()
￭ Definitely don’t use these functions in your own code!

￭ Targets 3–4 are bounded writes… limited reach!
￭ Target 3: we can only write 8 + sizeof(buf) bytes
￭ Target 4: we can only write count bytes (via fread())

18

Stefan Nagy

Bounded vs. Unbounded Writes

￭ Targets 0–2 permit unbounded writes
￭ We can overwrite anything in the higher stack memory
￭ Thanks to dangerous functions gets() and strcpy()
￭ Definitely don’t use these functions in your own code!

￭ Targets 3–4 are bounded writes… limited reach!
￭ Target 3: we can only write 8 + sizeof(buf) bytes
￭ Target 4: we can only write count bytes (via fread())

19

For bounded writes, we have to get creative
and find a way to overwrite what we want!

Stefan Nagy

Memory Addresses Point to Memory Slots

20

unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual MemoryHigher
Memory

Lower
Memory

Program Text

Stack Memory

$ disas vulnerable:

0x0804a17b <+0>: endbr32
0x0804a17f <+4>: push %ebp
0x0804a180 <+5>: mov %esp,%ebp
0x0804a182 <+7>: push %ebx

Example: instructions in the Program Text:

Key idea: it’s all “things”
pointed to by addresses

Stefan Nagy

Memory Addresses Point to Memory Slots

21

unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual MemoryHigher
Memory

Lower
Memory

Program Text

Stack Memory Key idea: it’s all “things”
pointed to by addresses

Example: payload NOPs in Stack Memory:

$ x/32xw 0xfff6d8cc

0xfff6d8cc: 0x90909090 0x90909090
0xfff6d8d4: 0x90909090 0x90909090
0xfff6d8dc: 0x90909090 0x90909090
0xfff6d8e4: 0x90909090 0x90909090

Stefan Nagy

void foo(char *str) {

int *p;

int a;

*p = a;
}

foo()’s retAddr

Indirect Memory Overwrite

22

caller’s EBP

int a

EBP-4

EBP-8

EBP+0

EBP+4

int a 0x000000

Stack Addresses

Contents of
0x000000

updated to a

Address 0x000000

Stefan Nagy

void foo(char *str) {

int *p;

int a;

*p = a;
}

foo()’s retAddr

Indirect Memory Overwrite

23

caller’s EBP

Address EBP+4

Shellcode Address

EBP-4

EBP-8

EBP+0

EBP+4

Stack Addresses

Stefan Nagy

Shellcode Addressvoid foo(char *str) {

int *p;

int a;

*p = a;
}

Indirect Memory Overwrite

24

caller’s EBP

Address EBP+4

Shellcode Address

EBP-4

EBP-8

EBP+0

EBP+4

Stack Addresses

Contents of EBP+4 updated to
the shellcode address!

Stefan Nagy

￭ Integer overflows behave differently
from stack buffer overflows
￭ Really just integer “wrap-arounds”

Integer Overflows

25

[-2^31, (2^31 - 1)]
[-2147483648, 2147483647]

32-bit Integer Range:

Signed:

Unsigned:[0, (2^32 - 1)]
[0, 4294967295]

Stefan Nagy

￭ Integer overflows behave differently
from stack buffer overflows
￭ Really just integer “wrap-arounds”

￭ Overflowing an unsigned integer “wraps around” to a very small integer!
￭ E.g., 0xFFFFFFFF + 2 = 0x00000002

Integer Overflows

26

[-2^31, (2^31 - 1)]
[-2147483648, 2147483647]

32-bit Integer Range:

Signed:

Unsigned:[0, (2^32 - 1)]
[0, 4294967295]

Stefan Nagy

Overcoming Bounded Writes

￭ What observations can we make?
￭ Can they break the program’s assumptions?

￭ Target 4: a potential mismatch of buffer’s size versus the data written to it

￭ If we perform an integer overflow on count, alloca() creates an artificially small buffer
￭ The resulting fill operation will exceed the buffer’s size, resulting in a buffer overflow!

27

alloca(count * 4); // allocate our buffer

fread(&buf[i], 4, count, f); // fill buffer

[0, ¼(MAX_UINT))

Range of count:

[0, MAX_UINT)

<MAX_UINT

Stefan Nagy

Estimating the Stack

￭ Identify your target function
￭ E.g., vulnerable() in this case

￭ Each frame contains a few key things:
1. The function’s return address

￭ Address of next instruction to when
the current function returns

2. The caller’s saved frame pointer
￭ Where EBP will get “reset” to when the

current function returns
3. The function’s local variables

￭ E.g., char buf[100]
￭ Find these from the source code!

28

void vulnerable(char *arg){

char buf[100];

strcpy(buf, arg);

}

RetAddr

Saved EBP

buf [100]

Stefan Nagy

Padding Heuristics

￭ How large is our vulnerable buffer?
￭ E.g., char buf[100]
￭ Need at least 100 bytes to overflow!

￭ Compilers may add a few “extra”
bytes for memory alignment

￭ Saved EBP = an extra four bytes

￭ Other things above our buffer?
￭ Other locals (e.g., count in Target 3)
￭ Passed-by-reference function args
￭ Other compiler-added artifacts

29

RetAddr

Saved EBP 4 bytes

~100 bytes

other stuff ??? TBD bytes

buf [100]

Stefan Nagy

Write an Initial Payload

￭ Use guesstimated payload bytes as
lower bound for an initial attempt
￭ E.g., we know our payload is 104+ bytes

￭ Goal: overwrite the return address
with a controlled, friendly payload
￭ E.g., 104 bytes of NOP instructions

￭ Did it overwrite the return address?
￭ If yes—SEGFAULT on 0x90909090
￭ If not—program terminates gracefully

30

RetAddr

90909090 4 bytes

~100 bytes

90909090909090 TBD bytes

90909090909090

Stefan Nagy

Refine your Payload

￭ Keep a table of attempts and results
1. b‘\x90’ * 104 → normal exit

￭ Too little! Didn’t overwrite anything

2. b‘\x90’ * 120 → SEGV on 0x90909090
￭ Too much! Complete RetAddr overwrite

3. b‘\x90’ * 114 → SEGV on 0x08049090
￭ We’re close—just two bytes over!
￭ Our payload should be 112 bytes

31

Tweak it to figure out
the exact payload size

90909090 4 bytes

~100 bytes

90909090909090 TBD bytes

90909090909090

SEGFAULT____9090

Stefan Nagy

Find the Buffer!

￭ After finding the distance to the return address, we now must overwrite it
￭ Recall: the return address is our golden ticket to controlling the program’s execution
￭ Instead of a normal return, we want to redirect execution to our shellcode-laden buffer

￭ Approach: pick a known, friendly
payload and locate it in memory
￭ Goal is to find the start of your buffer!

￭ Helpful GDB commands:
￭ info proc mapping

￭ Locate the stack’s boundaries
￭ E.g., 0xfff6d000 to 0xffffe000

32

$ info proc mapping // list all memory segments

Start Addr End Addr Size Offset objfile

0x8048000 0x8049000 0x1000 0x0 target2

0x8049000 0x80b8000 0x6f000 0x1000 target2

0x80b8000 0x80e8000 0x30000 0x70000 target2

0x80e8000 0x80ea000 0x2000 0x9f000 target2

0x80ea000 0x80ec000 0x2000 0xa1000 target2

0x80ec000 0x810e000 0x22000 0x0 [heap]

0xf7ff8000 0xf7ffc000 0x4000 0x0 [vvar]

0xf7ffc000 0xf7ffe000 0x2000 0x0 [vdso]

0xfff6d000 0xffffe000 0x91000 0x0 [stack]

Stefan Nagy

Find the Buffer!

￭ After finding the distance to the return address, we now must overwrite it
￭ Recall: the return address is our golden ticket to controlling the program’s execution
￭ Instead of a normal return, we want to redirect execution to our shellcode-laden buffer

￭ Approach: pick a known, friendly
payload and locate it in memory
￭ Goal is to find the start of your buffer!

￭ Helpful GDB commands:
￭ find minAddr,maxAddr,“string”

￭ Search memory for address of string
￭ Use stack boundaries from before

33

$ b *vulnerable+45 // breakpoint after buf filled

Breakpoint 1, 0x0804a1a8 in vulnerable… target2.c:8

$ r “AAAA” // run program with “AAAA” as its input

Breakpoint 1, 0x0804a1a8 in vulnerable… target2.c:8

$ find 0xfff6d000,0xffffe000,”AAAA”

0xfff6d8cc // this is likely where buffer begins!

0xfffed930 // when in doubt, pick the lower address

Stefan Nagy

Find the Buffer!

￭ After finding the distance to the return address, we now must overwrite it
￭ Recall: the return address is our golden ticket to controlling the program’s execution
￭ Instead of a normal return, we want to redirect execution to our shellcode-laden buffer

￭ Approach: pick a known, friendly
payload and locate it in memory
￭ Goal is to find the start of your buffer!

￭ Helpful GDB commands:
￭ x/32xw,0xDEADBEEF

￭ Show bytes at address 0xDEADBEEF
￭ Inspect candidates from previous step

34

$ b *vulnerable+45 // breakpoint after buf filled

Breakpoint 1, 0x0804a1a8 in vulnerable… target2.c:8

$ r “AAAA” // run program with “AAAA” as its input

Breakpoint 1, 0x0804a1a8 in vulnerable… target2.c:8

$ x/32xw 0xfff6d8cc // look for “AAAA” bytes here

0xfff6d8cc: 0x41414141 0x00000000 0x00000000 ...

0xfff6d8d0: 0x00000000 0x00000000 0x00000000 ...

Stefan Nagy

We’re almost there!

￭ By this point, we’ve identified our padding length and buffer start address
￭ Now, introduce our shellcode and finalize the attack payload!

35

RetAddr

Saved EBP

other stuff

buf[100]

&buf

90909090

90909090

90909090909090

9090 shellcode

Stefan Nagy

We’re almost there!

￭ By this point, we’ve identified our padding length and buffer start address
￭ Now, introduce our shellcode and finalize the attack payload!

36

RetAddr

Saved EBP

other stuff

buf[100]

&buf

90909090

90909090

90909090909090

9090 shellcode

Stefan Nagy

Other Exploitation Techniques

￭ Not just return addresses!
￭ Function pointers
￭ Arbitrary data
￭ C++ exceptions
￭ C++ objects
￭ Heap memory freelist
￭ Any code pointer!

37

Stefan Nagy

Quiz Question Recap

38

0x0804a014 <+00>: push %ebp

0x0804a015 <+01>: mov %esp, %ebp

0x0804a017 <+03>: sub $4, %esp

0x0804a01a <+06>: mov 16(%ebp), %eax

Stefan Nagy

Quiz Question Recap

39

Registers Stack Diagram

EIP 0x0804a014

EBP 0xbffff440

ESP 0xbffff400

Return Address SP

0x0804a014 <+00>: push %ebp

0x0804a015 <+01>: mov %esp, %ebp

0x0804a017 <+03>: sub $4, %esp

0x0804a01a <+06>: mov 16(%ebp), %eax

0xbffff400

0xbffff3fc

0xbffff3f8

Stefan Nagy

Quiz Question Recap

40

Registers Stack Diagram

EIP 0x0804a014

EBP 0xbffff440

ESP 0xbffff3fc

Return Address

Saved EBP SP

0x0804a014 <+00>: push %ebp

0x0804a015 <+01>: mov %esp, %ebp

0x0804a017 <+03>: sub $4, %esp

0x0804a01a <+06>: mov 16(%ebp), %eax

0xbffff400

0xbffff3fc

0xbffff3f8

Stefan Nagy

Quiz Question Recap

41

Registers Stack Diagram

EIP 0x0804a014

EBP 0xbffff3fc

ESP 0xbffff3fc

Return Address

Saved EBP SPBP

0x0804a014 <+00>: push %ebp

0x0804a015 <+01>: mov %esp, %ebp

0x0804a017 <+03>: sub $4, %esp

0x0804a01a <+06>: mov 16(%ebp), %eax

0xbffff400

0xbffff3fc

0xbffff3f8

Stefan Nagy

Quiz Question Recap

42

Registers Stack Diagram

EIP 0x0804a014

EBP 0xbffff3fc

ESP 0xbffff3f8

Return Address

Saved EBP

SP

BP

4 bytes space

0x0804a014 <+00>: push %ebp

0x0804a015 <+01>: mov %esp, %ebp

0x0804a017 <+03>: sub $4, %esp

0x0804a01a <+06>: mov 16(%ebp), %eax

0xbffff400

0xbffff3fc

0xbffff3f8

Stefan Nagy

Quiz Question Recap

43

Registers Stack Diagram

EIP 0x0804a014

EBP 0xbffff3fc

ESP 0xbffff3f8

Return Address

Saved EBP

SP

BP

4 bytes space

0x0804a014 <+00>: push %ebp

0x0804a015 <+01>: mov %esp, %ebp

0x0804a017 <+03>: sub $4, %esp

0x0804a01a <+06>: mov 16(%ebp), %eax

0xbffff400

0xbffff3fc

0xbffff3f8

Stefan Nagy

Questions?

44

Stefan Nagy

This time on CS 4440…

45

Advanced Exploitation Techniques
ASLR, DEP, and Workarounds

Other Application-level Defenses

Stefan Nagy

Recap: Spawning Shells

￭ Attacker goal: make program open a root shell
￭ Root-level permissions = total system ownage
￭ You’ll do this in Project 2!

￭ Shellcode = code to open a root shell
￭ Inject this somewhere and direct execution to it
￭ Basic structure:

1. Call setuid(0) to set user ID to “root”
2. Open a shell with execve(“/bin/sh”)

46

setuid(0) execve(“/bin/sh”)+

Stefan Nagy

Shell Spawning in C

#include <stdio.h>

void main() {

char *argv[1];

argv[0] = "/bin/sh";

execve(argv[0], NULL, NULL);

}

47

Stefan Nagy

Shell Spawning in C

#include <stdio.h>

void main() {

char *argv[1];

argv[0] = "/bin/sh";

execve(argv[0], NULL, NULL);

}

48

execve(): execute a program:
the text, data, bss, and stack of
calling process are overwritten
by that of the program loaded

Stefan Nagy

Shell Spawning in C

#include <stdio.h>

void main() {

char *argv[1];

argv[0] = "/bin/sh";

execve(argv[0], NULL, NULL);

}

49

execve(): execute a program:
the text, data, bss, and stack of
calling process are overwritten
by that of the program loaded

/bin/sh: a shell program

Stefan Nagy

Shell Spawning in C

#include <stdio.h>

void main() {

char *argv[1];

argv[0] = "/bin/sh";

execve(argv[0], NULL, NULL);

}

50

Shell inherits same privileges
as the original “parent” process

Stefan Nagy

Shell Spawning in C

#include <stdio.h>

void main() {

char *argv[1];

argv[0] = "/bin/sh";

execve(argv[0], NULL, NULL);

}

51

Shell inherits same privileges
as the original “parent” process

If the original process run as
root, shell gives ???? access

Stefan Nagy

Shell Spawning in C

#include <stdio.h>

void main() {

char *argv[1];

argv[0] = "/bin/sh";

execve(argv[0], NULL, NULL);

}

52

Shell inherits same privileges
as the original “parent” process

If the original process run as
root, shell gives root access

Stefan Nagy

Shell Spawning in C

53

Shell inherits same privileges
as the original “parent” process

If the original process run as
root, shell gives root access

#include <stdio.h>

void main() {

char *argv[1];

argv[0] = "/bin/sh";

execve(argv[0], NULL, NULL);

}

Stefan Nagy

Shell Spawning in x86 Assembly

main:
pushl %ebp
movl %esp, %ebp
pushl $0
pushl $0
pushl $.LC0
call execve
leave
ret

54

Stefan Nagy

Shell Spawning in x86 Assembly

main:
pushl %ebp
movl %esp, %ebp
pushl $0
pushl $0
pushl $.LC0
call execve
leave
ret

55

Like before, we want to
call execve(“/bin/sh”)

Stefan Nagy

Shell Spawning in x86 Assembly

56

Like before, we want to
call execve(“/bin/sh”)

Q: How does the stack need
to look for this call to work?

main:
pushl %ebp
movl %esp, %ebp
pushl $0
pushl $0
pushl $.LC0
call execve
leave
ret

Stefan Nagy

Invoking a Shell

57

main()’s locals

??????????????????

??????????????????

??????????????????

main:
pushl %ebp
movl %esp, %ebp
pushl $0
pushl $0
pushl $.LC0
call execve
leave
ret

Stefan Nagy

Invoking a Shell

58

main()’s locals

execve()’s 3rd arg

??????????????????

??????????????????

main:
pushl %ebp
movl %esp, %ebp
pushl $0
pushl $0
pushl $.LC0
call execve
leave
ret

Stefan Nagy

Invoking a Shell

59

main()’s locals

arg3 = NULL

??????????????????

??????????????????

main:
pushl %ebp
movl %esp, %ebp
pushl $0
pushl $0
pushl $.LC0
call execve
leave
ret

Stefan Nagy

Invoking a Shell

60

main()’s locals

arg3 = NULL

execve()’s 2nd arg

??????????????????

main:
pushl %ebp
movl %esp, %ebp
pushl $0
pushl $0
pushl $.LC0
call execve
leave
ret

Stefan Nagy

Invoking a Shell

61

main()’s locals

arg3 = NULL

arg2 = NULL

??????????????????

main:
pushl %ebp
movl %esp, %ebp
pushl $0
pushl $0
pushl $.LC0
call execve
leave
ret

Stefan Nagy

Invoking a Shell

62

main()’s locals
main:

pushl %ebp
movl %esp, %ebp
pushl $0
pushl $0
pushl $.LC0
call execve
leave
ret

arg3 = NULL

arg2 = NULL

execve()’s 1st arg

Stefan Nagy

Invoking a Shell

63

main()’s locals
main:

pushl %ebp
movl %esp, %ebp
pushl $0
pushl $0
pushl $.LC0
call execve
leave
ret

.LC0:
.string "/bin/sh"

arg3 = NULL

arg2 = NULL

addr to “/bin/sh”

Stefan Nagy

Invoking a Shell

64

main()’s locals
main:

pushl %ebp
movl %esp, %ebp
pushl $0
pushl $0
pushl $.LC0
call execve
leave
ret

.LC0:
.string "/bin/sh"

arg3 = NULL

arg2 = NULL
execve(“/bin/sh”, NULL, NULL);

addr to “/bin/sh”

execve()’s ret addr

Stefan Nagy

Invoking a Shell

65

main()’s locals
main:

pushl %ebp
movl %esp, %ebp
pushl $0
pushl $0
pushl $.LC0
call execve
leave
ret

.LC0:
.string "/bin/sh"

arg3 = NULL

arg2 = NULL
execve(“/bin/sh”, NULL, NULL);

addr to “/bin/sh”

execve()’s ret addr

How can we prevent
code injection attacks?

Stefan Nagy

Application Defense:
Address Space Layout Randomization

66

Stefan Nagy

Caveats

￭ Our provided shellcode requires an executable buffer

67

Start addr of buffer

Padding to reach RetAddr

NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP

setuid(0) + execve(“/bin/sh”)

Stefan Nagy

Caveats

￭ Our provided shellcode requires an executable buffer

￭ What if the buffer is relocated on every new run?

68

Start addr of buffer = ?????

Padding to reach RetAddr

WHERE?
?

? ?

Stefan Nagy

Defense: ASLR

￭ Address Space Layout Randomization
￭ One of the most common defenses today

￭ Changes location of stack on each execution
￭ As well as other memory areas (the heap, libc, etc.)

￭ Makes buffer overflows significantly harder
￭ Can’t “hardcode” address of buffer’s start
￭ … it changes every time!

69

Stefan Nagy

Defense: ASLR

￭ How can we overcome ASLR?

70

Stefan Nagy

 4141414141

 4141414141414141414141

Recap: Stack Growth vs. Filling

71

Higher
Memory

Lower
Memory

Stack grows downwards
- Filled upwards

Stefan Nagy

Recap: Redirection to Buffer

72

Higher
Memory

Lower
Memory

 9090909090909090909090

 9090909090909090909090

 shellcode 909090909090

RetAddr = &buf

Payload = shellcode + NOPs + &buf

Stack grows downwards
- Filled upwards

Stefan Nagy

Workaround: NOP Slide!

73

Higher
Memory

Lower
Memory

 909090909090 shellcode

 9090909090909090909090

 9090909090909090909090

RetAddr = &buf

Payload = NOPs + shellcode + &buf

Stack grows downwards
- Filled upwards

Execution moves upwards
- Lower to higher instructions

Stefan Nagy 74

Higher
Memory

Lower
Memory

 909090909090 shellcode

 9090909090909090909090

 9090909090909090909090

RetAddr = &buf + 50

Payload = NOPs + shellcode + (&buf + 50)

Stack grows downwards
- Filled upwards

Execution moves upwards
- Lower to higher instructions
- NOP slide leverages this!

Workaround: NOP Slide!

Stefan Nagy 75

Higher
Memory

Lower
Memory

 909090909090 shellcode

 9090909090909090909090

 9090909090909090909090

RetAddr = &buf + 50

Payload = NOPs + shellcode + (&buf + 50)

Stack grows downwards
- Filled upwards

Execution moves upwards
- Lower to higher instructions
- NOP slide leverages this!

Workaround: NOP Slide!

We can’t reliably guess the buffer’s
start—it changes every execution!

Stefan Nagy 76

Higher
Memory

Lower
Memory

 909090909090 shellcode

 9090909090909090909090

 9090909090909090909090

RetAddr = &buf + 50

Payload = NOPs + shellcode + (&buf + 50)

Stack grows downwards
- Filled upwards

Execution moves upwards
- Lower to higher instructions
- NOP slide leverages this!

Workaround: NOP Slide!

We can’t reliably guess the buffer’s
start—it changes every execution!

But, if we prepended our shellcode with
a huge NOP slide, jumping to the middle

of it it will “slide” to our shellcode!

Stefan Nagy

Defeating ASLR

77

￭ Suppose the buffer is sufficiently large
￭ We can still place our shellcode there
￭ Prepend it with a ton of NOPs

setuid(0) + execve(“/bin/sh”)
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP

Stefan Nagy

Defeating ASLR

78

￭ Suppose the buffer is sufficiently large
￭ We can still place our shellcode there
￭ Prepend it with a ton of NOPs

￭ We cannot know buffer’s exact start…

Start addr of buffer = ????

setuid(0) + execve(“/bin/sh”)
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP

Stefan Nagy

Defeating ASLR

79

￭ Suppose the buffer is sufficiently large
￭ We can still place our shellcode there
￭ Prepend it with a ton of NOPs

￭ We cannot know buffer’s exact start…
￭ But we can guess an address inside of it

￭ It is a really large buffer, after all Start addr of buffer = ????

setuid(0) + execve(“/bin/sh”)
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP

Stefan Nagy

Defeating ASLR

80

￭ Suppose the buffer is sufficiently large
￭ We can still place our shellcode there
￭ Prepend it with a ton of NOPs

￭ We cannot know buffer’s exact start…
￭ But we can guess an address inside of it

￭ It is a really large buffer, after all

￭ Idea: spam “guessed” buffer addr up the stack

Guessed addr within buffer

Guessed addr within buffer

Guessed addr within buffer

Guessed addr within buffer

Guessed addr within buffer

setuid(0) + execve(“/bin/sh”)
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP

Stefan Nagy

Defeating ASLR

81

￭ Suppose the buffer is sufficiently large
￭ We can still place our shellcode there
￭ Prepend it with a ton of NOPs

￭ We cannot know buffer’s exact start…
￭ But we can guess an address inside of it

￭ It is a really large buffer, after all

￭ Idea: spam “guessed” buffer addr up the stack
￭ Eventually we’ll overwrite some return address

Guessed addr within buffer

Guessed addr within buffer

Overwritten Return Addr

Guessed addr within buffer

Guessed addr within buffer

setuid(0) + execve(“/bin/sh”)
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP

Stefan Nagy

Defeating ASLR

82

￭ Suppose the buffer is sufficiently large
￭ We can still place our shellcode there
￭ Prepend it with a ton of NOPs

￭ We cannot know buffer’s exact start…
￭ But we can guess an address inside of it

￭ It is a really large buffer, after all

￭ Idea: spam “guessed” buffer addr up the stack
￭ Eventually we’ll overwrite some return address
￭ When that function returns, jump inside buffer
￭ Hit the huge NOP sled → BOOM!

Guessed addr within buffer

Guessed addr within buffer

Overwritten Return Addr

Guessed addr within buffer

Guessed addr within buffer

setuid(0) + execve(“/bin/sh”)
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP

Stefan Nagy

Questions?

83

Stefan Nagy

Application Defense:
Data Execution Prevention

84

Stefan Nagy

Caveats

￭ Our provided shellcode requires an executable buffer

85

Start addr of buffer

Padding to reach RetAddr

NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP

setuid(0) + execve(“/bin/sh”)

Stefan Nagy

Caveats

￭ Our provided shellcode requires an executable buffer

￭ What if the buffer is prohibited from being executable?

86

Start addr of buffer

Padding to reach RetAddr

NOPE

Stefan Nagy

Defense: DEP

￭ Data Execution Prevention
￭ Aka Non-eXecutable (NX) Stack
￭ Another common defense seen today

￭ Attacker can’t execute code on stack
￭ Mark pages as EITHER (never both)
￭ Read OR write (stack/heap)
￭ Executable (.text/code segments)

￭ Challenges:
￭ Self-modifying code, JIT compilation
￭ Requires hardware support (MMU/MPU)

87

Stefan Nagy

Defeating DEP

88

￭ Suppose we can still overwrite buffer
￭ We cannot place our shellcode there
￭ But, we can overwrite other stack items

￭ Suppose the program calls a function
that can execute arbitrary commands
￭ execve()
￭ system()

main:
pushl %ebp
movl %esp, %ebp
subl $16, %esp
pushl “/bin/ls”
call system
leave
ret

Stefan Nagy

Dangerous Calls

￭ Why are functions like execve() and system() considered dangerous?

89

Stefan Nagy

Dangerous Calls

￭ Why are functions like execve() and system() considered dangerous?

90

Stefan Nagy

Defeating DEP by Controlling Arguments

91

￭ Suppose we can still overwrite buffer
￭ We cannot place our shellcode there
￭ But, we can overwrite other stack items

￭ Suppose the program calls a function
that can execute arbitrary commands
￭ execve()
￭ system()

￭ Idea #1: overwrite argument to system()
￭ Replace it with our shell command (“/bin/sh”)

main:
pushl %ebp
movl %esp, %ebp
subl $16, %esp
pushl “/bin/ls”
call system
leave
ret

Address of “/bin/ls”

system()’s ret addr

Buffer (non-executable)

Stefan Nagy 92

￭ Suppose we can still overwrite buffer
￭ We cannot place our shellcode there
￭ But, we can overwrite other stack items

￭ Suppose the program calls a function
that can execute arbitrary commands
￭ execve()
￭ system()

￭ Idea #1: overwrite argument to system()
￭ Replace it with our shell command (“/bin/sh”)
￭ Will now execute system(“/bin/sh”)!

main:
pushl %ebp
movl %esp, %ebp
subl $16, %esp
pushl “/bin/ls”
call system
leave
ret

Address of “/bin/sh”

system()’s ret addr

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Defeating DEP by Controlling Arguments

Stefan Nagy 93

￭ Suppose we can still overwrite buffer
￭ We cannot place our shellcode there
￭ But, we can overwrite other stack items

￭ Suppose the program calls a function
that can execute arbitrary commands
￭ execve()
￭ system()

￭ Idea #1: overwrite argument to system()
￭ Replace it with our shell command (“/bin/sh”)
￭ Will now execute system(“/bin/sh”)!

main:
pushl %ebp
movl %esp, %ebp
subl $16, %esp
pushl “/bin/ls”
call system
leave
ret

Address of “/bin/sh”

system()’s ret addr

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Defeating DEP by Controlling Arguments

Stefan Nagy

Defeating DEP via Code Reuse

￭ Suppose system() isn’t executed, but a call to it exists somewhere
￭ You can examine the objdump to look for “interesting” functions in the program

94

Stefan Nagy

￭ Suppose system() isn’t executed, but a call to it exists somewhere
￭ You can examine the objdump to look for “interesting” functions in the program

95

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

void foo(char *str) {
char buffer[16];
strcpy(buffer, str)

}
void main() {

char buf[256];
memset(buf, ‘A’, 255);
buf[255] = ‘\x00’;
foo(buf);

}

Defeating DEP via Code Reuse

Stefan Nagy

￭ Idea #2: create a “fake” call frame for system() with our desired arg

96

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

Defeating DEP via Code Reuse

Stefan Nagy

￭ Idea #2: create a “fake” call frame for system() with our desired arg

97

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Defeating DEP via Code Reuse

Stefan Nagy

￭ Idea #2: create a “fake” call frame for system() with our desired arg

98

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptrAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Defeating DEP via Code Reuse

Stefan Nagy

￭ Idea #2: create a “fake” call frame for system() with our desired arg

99

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Defeating DEP via Code Reuse

Stefan Nagy

￭ Idea #2: create a “fake” call frame for system() with our desired arg

100

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

system()’s return addr

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Defeating DEP via Code Reuse

Stefan Nagy

￭ Idea #2: create a “fake” call frame for system() with our desired arg

101

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

system()’s first arg

system()’s return addr

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Defeating DEP via Code Reuse

Stefan Nagy

￭ Idea #2: create a “fake” call frame for system() with our desired arg

102

system()’s return addr

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

string “/bin/sh”

Address of “/bin/sh”

Argument to system() is the
address of string “/bin/sh”

Defeating DEP via Code Reuse

Stefan Nagy

￭ Idea #2: create a “fake” call frame for system() with our desired arg

103

system()’s return addr

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

string “/bin/sh”

Address of “/bin/sh”

Argument to system() is the
address of string “/bin/sh”

Possible locations: inside the
.DATA section, or just the stack!

Defeating DEP via Code Reuse

Stefan Nagy

￭ Idea #2: create a “fake” call frame for system() with our desired arg

104

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

string “/bin/sh”

Address of “/bin/sh”

system()’s return addr

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Defeating DEP via Code Reuse

Stefan Nagy

￭ Idea #2: create a “fake” call frame for system() with our desired arg

105

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

string “/bin/sh”

Address of “/bin/sh”

system()’s return addr

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Defeating DEP via Code Reuse

Stefan Nagy

￭ Idea #2: create a “fake” call frame for system() with our desired arg

106

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

string “/bin/sh”

Address of “/bin/sh”

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Defeating DEP via Code Reuse

system()’s return addr

What happens if system()’s
return address is overwritten?

Stefan Nagy 107

Stefan Nagy

￭ Idea #2: create a “fake” call frame for system() with our desired arg

108

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

string “/bin/sh”

Address of “/bin/sh”

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Defeating DEP via Code Reuse

system()’s return addr

What happens if system()’s
return address is overwritten?

Stefan Nagy

￭ Idea #2: create a “fake” call frame for system() with our desired arg

109

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

string “/bin/sh”

Address of “/bin/sh”

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Defeating DEP via Code Reuse… stealthily!

???????????????????

Stefan Nagy

￭ Idea #2: create a “fake” call frame for system() with our desired arg

110

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

string “/bin/sh”

Address of “/bin/sh”

Address of _exit()

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Defeating DEP via Code Reuse… stealthily!

Stefan Nagy

￭ Idea #2: create a “fake” call frame for system() with our desired arg

111

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

string “/bin/sh”

Address of “/bin/sh”

Address of _exit()

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Defeating DEP via Code Reuse… stealthily!

Stefan Nagy

Questions?

112

Stefan Nagy

Other Attacks

113

Stefan Nagy

Return Oriented Programming (ROP)

￭ Don’t have to jump only to function starts
￭ Can jump in the middle of any code
￭ x86 has variable instruction lengths

￭ Most sequences of “bytes” can be an instruction

￭ Idea: Construct Turing-complete set of “gadgets” out of program’s code

￭ Use Return-to-libc like chaining to execute multiple gadgets in sequence!

￭ ROP is hard to master—we will not expect you to solve this
￭ But you can for extra credit ;)

114

Stefan Nagy

Other Exploitation Techniques

115

1972
First known
overflows

1997
Ret-2-Libc

attacks

1997
Function ptr

hijacking

1998
StackGuard
bypasses

1998
Heap

overflows

1999
Format
strings

2002
ASLR

bypasses

2002
Integer

overflows

2005
Ret oriented
programming

2005
Hardware DEP

bypasses

2007
Double
frees

2007
Heap

grooming

2007
Null pointer
dereference

2009
Heap

spraying

2010
JIT

spraying

2011
Jmp oriented
programming

2014
Call oriented
programming

2016
Data oriented
programming

1996
Stack

overflows

2021
Zero-click
exploits

What’s next?

Stefan Nagy

Attack Resources

￭ Aleph One’s “Smashing the Stack for Fun and Profit”
￭ http://insecure.org/stf/smashstack.html

￭ Paul Makowski’s “Smashing the Stack in 2011”
￭ http://paulmakowski.wordpress.com/2011/01/25/smashing-the-stack-in-2011/

￭ Blexim’s “Basic Integer Overflows”
￭ http://www.phrack.org/issues.html?issue=60&id=10

￭ Return-to-libc demo:
￭ http://www.securitytube.net/video/258

116

http://insecure.org/stf/smashstack.html
http://paulmakowski.wordpress.com/2011/01/25/smashing-the-stack-in-2011/
http://www.phrack.org/issues.html?issue=60&id=10
http://www.securitytube.net/video/258

Stefan Nagy

Other Defenses

117

Stefan Nagy

Stack Canaries

￭ Basic idea: place a value near the buffer, check at runtime if it’s overwritten
￭ Analogous to the real-world concept of “canary in a coalmine”

118

RetAddr

Saved EBP

Stack Canary

buf[100]

Stefan Nagy

Stack Canaries

￭ Basic idea: place a value near the buffer, check at runtime if it’s overwritten
￭ Analogous to the real-world concept of “canary in a coalmine”

119

RetAddr

Saved EBP

Stack Canary

buf[100]

&buf

90909090

90909090

90909090909090

9090 shellcode

Stefan Nagy

Stack Canaries

￭ Basic idea: place a value near the buffer, check at runtime if it’s overwritten
￭ Analogous to the real-world concept of “canary in a coalmine”

120

RetAddr

Saved EBP

Stack Canary

buf[100]

&buf

90909090

90909090

90909090909090

9090 shellcode

Stefan Nagy

Application-level Changes

￭ Memory error detectors (e.g., AddressSanitizer)
￭ Key idea: inject “red zones” before and after all memory objects
￭ Force a crash when accessing a red zone
￭ Catch all subtle (non-crashing) corruptions
￭ Implement via instrumentation, custom malloc()
￭ Trade-off: over 6x execution overhead

121

Stefan Nagy

Application-level Changes

￭ Avoiding unsafe functions

￭ Unsafe:
￭ strcpy and friends (str*)
￭ sprintf
￭ Gets

￭ Use instead:
￭ strncpy and friends (strn*)
￭ snprintf
￭ fgets

122

Stefan Nagy

Preventative Measures

￭ Refactoring:
￭ Add bounds checking
￭ “Sanitizer” user input

￭ Static bug detection tools:
￭ C: Secure Programming Lint
￭ C++: CPPCheck

￭ Hire CS4440™ graduates

123

Stefan Nagy

Preventative Measures

￭ Refactoring:
￭ Add bounds checking
￭ “Sanitizer” user input

￭ Static bug detection tools:
￭ C: Secure Programming Lint
￭ C++: CPPCheck

￭ Hire CS4440™ graduates

￭ Deploy automated testing (next lecture’s topic)

124

Stefan Nagy

Questions?

125

Stefan Nagy

Next time on CS 4440…

126

Automated Bug Finding

