
Stefan Nagy

Week 5: Lecture A
All About Applications

Tuesday, September 17, 2024

1

Stefan Nagy

Announcements

￭ Project 1: Crypto released (see Assignments page on course website)
￭ Deadline: this Thursday, September 19th by 11:59 PM

2

http://cs.utah.edu/~snagy/courses/cs4440/assignments/

Stefan Nagy

Announcements

3

See Discord for
meeting info!

www.utahsec.com

Stefan Nagy

Announcements

￭ Project 2: AppSec released
￭ Deadline: Thursday, October 17th by 11:59PM

4

Stefan Nagy

Wiki Updates

5

Stefan Nagy

Announcements

6

See Discord for
meeting info!

utahsec.cs.utah.edu

Stefan Nagy

Questions?

7

Stefan Nagy

Last time on CS 4440…

8

Cryptocurrency
Distributed Consensus

Mining
Fairness

Stefan Nagy

“The Gang Invents a New Currency”

￭ Cryptocurrency
￭ Invented in 2008 (Bitcoin) by Satoshi Nakamoto
￭ His/their real identify remains a mystery
￭ Modern cryptocoins: Bitcoin, Litecoin, Ethereum

￭ Key Principles
￭ Integrity
￭ Distributed Consensus
￭ Cryptographic Hash Function
￭ Public-key Crypto
￭ Proof-of-Work

9

Stefan Nagy

Transactions

￭ Traditional banking uses a “centralized” ledger
￭ You have as much $$$ as your bank (and US Govt.) says!

￭ Cryptocurrency = Distributed Public Ledger
￭ Everyone has access to every transaction
￭ Everyone knows how much money everyone else has
￭ Transactions are chained using previous transactions
￭ To determine how much money you have, must search

the list of transactions to determine your balance
￭ Trust that < 50% of the network is corrupt

10

Stefan Nagy

Security

￭ Transactions must be “committed”
￭ Resource intensive and competitive
￭ Requires massive computing power to fool
￭ Need to out-compute the entire network
￭ Can't work “ahead” due to block chaining

￭ Security via “distributed consensus”
￭ It’s hard to to fool everyone in the room
￭ Specifically, have to fool 51% of network

￭ Majority vote wins
￭ Longer ledger wins

11

$$$→You→Me!

Stefan Nagy

“Mining” Cryptocurrency

￭ We want to print our own money!

￭ Super high-level idea: reward who
first “validates” a transaction
￭ Validators are called “miners”
￭ Given a small commision

12

Stefan Nagy

“Mining” Cryptocurrency

￭ We want to print our own money!

￭ Super high-level idea: reward who
first “validates” a transaction
￭ Validators are called “miners”
￭ Given a small commision

￭ Ideally: a fair process (no entry fee)
￭ Anyone can start mining!

13

Stefan Nagy

“Mining” Cryptocurrency

￭ In practice, not really fair…
￭ Hardware and GPU cost
￭ Electricity cost
￭ Environmental cost
￭ More money gives an advantage!

14

Stefan Nagy

“Mining” Cryptocurrency

￭ In practice, not really fair…
￭ Hardware and GPU cost
￭ Electricity cost
￭ Environmental cost
￭ More money gives an advantage!

￭ Don’t buy into the hype!

15

Stefan Nagy

“Mining” Cryptocurrency

￭ In practice, not really fair…
￭ Hardware and GPU cost
￭ Electricity cost
￭ Environmental cost
￭ More money gives an advantage!

￭ Don’t buy into the hype!
￭ Blockchain has other cool uses

16

Stefan Nagy

Questions?

17

Stefan Nagy

This time on CS 4440…

18

Program Execution
Virtual Memory

The Stack
Stack Corruption

Stefan Nagy

Coding Challenge

￭ As part of a job interview, you are tasked
with writing a program—in C—that:

(1) reads characters from the user; and
(2) prints out the reverse of that message.

￭ You are expected to write a working
program in less than 5 minutes. Go!

19

Stefan Nagy

Coding Challenge

￭ If you wrote a program like:

20

int main(void) {

char buffer[40];

gets(buffer);

// Saves user input
// into the buffer

}

Stefan Nagy 21

Stefan Nagy

Coding Challenge

￭ If you wrote a program like:

22

int main(void) {

char buffer[40];

gets(buffer);

// Saves user input
// into the buffer

}

?

?

?

?

Stefan Nagy

Coding Challenge

￭ If you wrote a program like:

23

int main(void) {

char buffer[40];

gets(buffer);

// Saves user input
// into the buffer

}

?

?

?

?

Stefan Nagy

￭ Problem: attacker can’t load their
own code on to the system

24

Attacking Computer Systems

Stefan Nagy

￭ Problem: attacker can’t load their
own code on to the system

￭ Opportunity: the attacker can
interact with existing programs

25

Attacking Computer Systems

Stefan Nagy

Attacking Computer Systems

￭ Problem: attacker can’t load their
own code on to the system

￭ Opportunity: the attacker can
interact with existing programs

￭ Challenge: make the system do
what you want… using only the
existing programs on the system
that you can interact with

26

Stefan Nagy

￭ Goal: take over a system by exploiting an application on it

27

Software Exploitation

Stefan Nagy

￭ Goal: take over a system by exploiting an application on it

￭ Exploit technique 1: code injection
￭ Insert your own code (as an input)
￭ Redirect the program to execute it

28

Software Exploitation

Stefan Nagy

￭ Goal: take over a system by exploiting an application on it

￭ Exploit technique 1: code injection
￭ Insert your own code (as an input)
￭ Redirect the program to execute it

￭ Exploit technique 2: code reuse
￭ Leverage the program’s existing code
￭ Execute it in a way it wasn’t intended to

29

Software Exploitation

Stefan Nagy

￭ Goal: take over a system by exploiting an application on it

￭ Exploit technique 1: code injection
￭ Insert your own code (as an input)
￭ Redirect the program to execute it

￭ Exploit technique 2: code reuse
￭ Leverage the program’s existing code
￭ Execute it in a way it wasn’t intended to

￭ Attack vector: memory corruption

30

Software Exploitation

Stefan Nagy

Program Execution

31

Stefan Nagy

What is execution?

￭ Double-clicking a shortcut on your desktop

32

Stefan Nagy

What is execution?

￭ Double-clicking a shortcut on your desktop

￭ Tapping an app icon on your smartphone

33

Stefan Nagy

What is execution?

￭ Double-clicking a shortcut on your desktop

￭ Tapping an app icon on your smartphone

￭ “Hey Siri, play Midnights on Spotify”

34

Stefan Nagy

What really is execution?

￭ Programs made up of instructions

35

Stefan Nagy

What really is execution?

￭ Programs made up of instructions

￭ High-level: programming languages
￭ Higher level: interpreted (Python, JS, etc.)
￭ Lower level: compiled (C/C++, Rust, Go)

36

Stefan Nagy

What really is execution?

￭ Programs made up of instructions

￭ High-level: programming languages
￭ Higher level: interpreted (Python, JS, etc.)
￭ Lower level: compiled (C/C++, Rust, Go)

￭ Low-level: assembly and machine code
￭ Machine code = what the computer executes
￭ Assembly = one level higher (human-readable)

37

Stefan Nagy

What really is execution?

￭ Programs made up of instructions

￭ High-level: programming languages
￭ Higher level: interpreted (Python, JS, etc.)
￭ Lower level: compiled (C/C++, Rust, Go)

￭ Low-level: assembly and machine code
￭ Machine code = what the computer executes
￭ Assembly = one level higher (human-readable)

￭ Execution = executing instructions

38

Stefan Nagy

What really is execution?

￭ Execution comprised of three steps
￭ Fetch an instruction from the program
￭ Decode the instruction into what it does
￭ Execute that instruction

39

Stefan Nagy

What really is execution?

￭ Execution comprised of three steps
￭ Fetch an instruction from the program
￭ Decode the instruction into what it does
￭ Execute that instruction

￭ Execution is the job of the CPU
￭ Central Processing Unit
￭ The brain of your computer

40

Stefan Nagy

The CPU

41

Stefan Nagy

The CPU

￭ CPU state held in registers
￭ Analogous to source code variables

42

Stefan Nagy

The CPU

￭ CPU state held in registers
￭ Analogous to source code variables

￭ General-purpose registers:
￭ EAX, EBX, ECX, EDX, EDI, ESI

￭ Special-purpose registers:
￭ EIP = Instruction Pointer
￭ ESP = Stack Pointer
￭ EBP = Frame/Base Pointer

43

Stefan Nagy

The CPU

￭ State modified by assembly instructions
￭ ADD, SUB, XOR, CMP, CALL, JMP, RET
￭ And many more!

￭ Assembly instruction syntaxes
￭ AT&T = Instruction Source Destination
￭ Intel = Instruction Destination Source
￭ Example: MOV SRC, DST versus MOV DST, SRC
￭ This lecture: AT&T syntax

44

Stefan Nagy

The CPU

￭ Software state = registers and memory

45

Stefan Nagy

Questions?

46

Stefan Nagy

Process Virtual Memory

47

Stefan Nagy

Memory layout of a 32-bit Linux process

48

unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher
Memory

Lower
Memory

Program Text

Stack Memory

0xFFFFFFFF

The “Break”

Stefan Nagy

Memory layout of a 32-bit Linux process

49

unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher
Memory

Lower
Memory

Program Text

Stack Memory

0xFFFFFFFF

The “Break”

Program
instructions

Stefan Nagy

Memory layout of a 32-bit Linux process

50

unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher
Memory

Lower
Memory

Program Text

Stack Memory

0xFFFFFFFF

The “Break”

Initialized
global variables

Stefan Nagy

Memory layout of a 32-bit Linux process

51

unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher
Memory

Lower
Memory

Program Text

Stack Memory

0xFFFFFFFF

The “Break”

Un-initialized
global variables

Stefan Nagy

Memory layout of a 32-bit Linux process

52

unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher
Memory

Lower
Memory

Program Text

Stack Memory

0xFFFFFFFF

The “Break” Dynamically
allocated memory

via malloc()

Stefan Nagy

Memory layout of a 32-bit Linux process

53

unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher
Memory

Lower
Memory

Program Text

Stack Memory

0xFFFFFFFF

The “Break”

E.g., libc.so
text and data

Stefan Nagy

Memory layout of a 32-bit Linux process

54

unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher
Memory

Lower
Memory

Program Text

Stack Memory

0xFFFFFFFF

The “Break”

Local variables,
and a record of
active functions

Stefan Nagy

Memory layout of a 32-bit Linux process

55

unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped
Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher
Memory

Lower
Memory

The “Break”

Program Text

Stack Memory

0xFFFFFFFF

Heap grows upwards

Stack grows downwards

Stefan Nagy

Memory layout of a 32-bit Linux process

56

unmapped

Initialized Data

 BBBBBBBBBBBBBBBBB
 BBBBBBB

Uninitialized Data

unmapped
Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher
Memory

Lower
Memory

The “Break”

Program Text

 AAAAAAA
 AAAAAAAAAAAAAAAAA

0xFFFFFFFF

Heap grows upwards
- Filled downwards

Stack grows downwards
- Filled upwards

Stefan Nagy

Questions?

57

Stefan Nagy

The Stack

58

Stefan Nagy

The Stack

￭ Memory for storing function data
￭ Arguments
￭ Local variables
￭ Return address

￭ Provides a running “record” of the
active subroutine(s) in a program

59

Stefan Nagy

The Stack

￭ Begins at highest address

￭ Grows toward lower addresses
￭ Think of it as a stack of plates

that grows upside-down

￭ Three key registers to know:
￭ EBP = The Frame/Base Pointer

￭ Highest address of current frame
￭ ESP = The Stack Pointer

￭ Denotes the top of the stack
￭ Topmost (lowest) address of the stack

￭ EIP = Address of next instruction to be executed

60

BP

SP

Stefan Nagy

Stack Operation

1. Push 0x0A

61

0A SP

Push sends data
to the topmost

area of the stack

Stefan Nagy

Stack Operation

1. Push 0x0A
2. Push 0x6C

62

0A
6C SP

SP

Stack grows →
move SP down!

Stefan Nagy

Stack Operation

1. Push 0x0A
2. Push 0x6C
3. Push 0xFF

63

0A
6C
FF SP

SP

Stack grows →
move SP down!

Stefan Nagy

Stack Operation

1. Push 0x0A
2. Push 0x6C
3. Push 0xFF
4. Pop R1

64

0A
6C
FF

FFRegister R1

SP

Pop sends data
at top of stack
to a register

Stefan Nagy

Stack Operation

1. Push 0x0A
2. Push 0x6C
3. Push 0xFF
4. Pop R1

65

0A
6C
FF

FFRegister R1

SP
SP

Stack clears →
move SP up!

Stefan Nagy

Stack Operation

1. Push 0x0A
2. Push 0x6C
3. Push 0xFF
4. Pop R1
5. Pop R2

66

0A

6C

FF

Register R2

Register R1

6C
FF

SP
SP

Stack clears →
move SP up!

Stefan Nagy

Stack Operation

1. Push 0x0A
2. Push 0x6C
3. Push 0xFF
4. Pop R1
5. Pop R2
6. Push 0x88

67

0A

6C

FF

Register R2

Register R1

88
FF

SP
SP

Stack grows →
move SP down!

Stefan Nagy

Stack Frames

￭ Assume main() calls foo()

68

SP

BP main()’s local vars

foo()’s arguments
SP

Stefan Nagy

Stack Frames

￭ Assume main() calls foo()

69

main()’s local vars

foo()’s arguments

SP

BP

foo()’s return addr
SP

Stefan Nagy

Stack Frames

￭ Assume main() calls foo()

70

main()’s local vars

foo()’s arguments

SP

BP

foo()’s return addr

main()’s frame ptr
SP

Stefan Nagy

Stack Frames

￭ Assume main() calls foo()

71

main()’s local vars

foo()’s arguments

SPBP

foo()’s return addr

main()’s frame ptr

BP

Stefan Nagy

Stack Frames

￭ Assume main() calls foo()

72

main()’s local vars

foo()’s arguments

SP

BP

foo()’s return addr

main()’s frame ptr

foo()’s local vars

......

SP

Stefan Nagy

Stack Frames

￭ Assume main() calls foo()

73

main()’s local vars

foo()’s arguments

foo()’s return addr

main()’s frame ptr

foo()’s local vars

......

Call-er (main)
Stack Frame

Call-ee (foo)
Stack Frame

Stefan Nagy

Example Program

void foo(int a, int b)
{

 char buf1[10];

}

void main()
{

 foo(3,6);

}

74

main:

 pushl %ebp

 movl %esp, %ebp

 subl $8, %esp

 movl $6, 4(%esp)

 movl $3, (%esp)

 call foo

 leave

 ret

Stefan Nagy

Example Program

main:

 pushl %ebp

 movl %esp, %ebp

 subl $8, %esp

 movl $6, 4(%esp)

 movl $3, (%esp)

 call foo

 leave

 ret

75

Stefan Nagy

Example Program

main:

 pushl %ebp

 movl %esp, %ebp

 subl $8, %esp

 movl $6, 4(%esp)

 movl $3, (%esp)

 call foo

 leave

 ret

76

previous frame ptr SP

Stefan Nagy

Example Program

main:

 pushl %ebp

 movl %esp, %ebp

 subl $8, %esp

 movl $6, 4(%esp)

 movl $3, (%esp)

 call foo

 leave

 ret

77

previous frame ptrBP SP

Stefan Nagy

Example Program

main:

 pushl %ebp

 movl %esp, %ebp

 subl $8, %esp

 movl $6, 4(%esp)

 movl $3, (%esp)

 call foo

 leave

 ret

78

previous frame ptrBP

SP

SP

Stefan Nagy

Example Program

main:

 pushl %ebp

 movl %esp, %ebp

 subl $8, %esp

 movl $6, 4(%esp)

 movl $3, (%esp)

 call foo

 leave

 ret

79

previous frame ptrBP

SP

6

Stefan Nagy

Example Program

main:

 pushl %ebp

 movl %esp, %ebp

 subl $8, %esp

 movl $6, 4(%esp)

 movl $3, (%esp)

 call foo

 leave

 ret

80

previous frame ptrBP

SP

6

3

Function args are
pushed in reverse

Stefan Nagy

Example Program

main:

 pushl %ebp

 movl %esp, %ebp

 subl $8, %esp

 movl $6, 4(%esp)

 movl $3, (%esp)

 call foo

 leave

 ret

81

previous frame ptrBP

SP

6

3 SP
foo()’s return addr

Stefan Nagy

Example Program

main:

 pushl %ebp

 movl %esp, %ebp

 subl $8, %esp

 movl $6, 4(%esp)

 movl $3, (%esp)

 call foo

 leave

 ret

82

previous frame ptrBP

SP

6

3

foo()’s return addr

foo will return to
main’s post-call

instruction

Stefan Nagy

Example Program

foo:

 pushl %ebp

 movl %esp, %ebp

 subl $16, %esp

 leave

 ret

83

previous frame ptr

6

3

foo()’s return addr

main()’s frame ptr SP
SP

BP

Stefan Nagy

Example Program

foo:

 pushl %ebp

 movl %esp, %ebp

 subl $16, %esp

 leave

 ret

84

previous frame ptr

BP

6

3

foo()’s return addr

main()’s frame ptr

BP

SP

Stefan Nagy

Example Program

foo:

 pushl %ebp

 movl %esp, %ebp

 subl $16, %esp

 leave

 ret

85

previous frame ptr

BP

6

3

foo()’s return addr

main()’s frame ptr

SP
SP

Stefan Nagy

Example Program

foo:

 pushl %ebp

 movl %esp, %ebp

 subl $16, %esp

 leave

 ret

86

previous frame ptr

BP

6

3

foo()’s return addr

main()’s frame ptr

SP mov %ebp, %esp
 pop %ebp

Stefan Nagy

Example Program

foo:

 pushl %ebp

 movl %esp, %ebp

 subl $16, %esp

 leave

 ret

87

previous frame ptr

BP

6

3

foo()’s return addr

main()’s frame ptr SP
 mov %ebp, %esp
 pop %ebp SP

Stefan Nagy

Example Program

foo:

 pushl %ebp

 movl %esp, %ebp

 subl $16, %esp

 leave

 ret

88

previous frame ptr

6

3

foo()’s return addr

 mov %ebp, %esp
 pop %ebp

SP

SPBP

BP

Stefan Nagy

Example Program

foo:

 pushl %ebp

 movl %esp, %ebp

 subl $16, %esp

 leave

 ret

89

previous frame ptr

6

3

 pop %eip

SP

SP

BP

Stefan Nagy

Questions?

90

Stefan Nagy

Stack Corruption

91

Stefan Nagy

Vulnerable Program

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

92

Stefan Nagy

Vulnerable Program

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

93

previous frame ptrBP

SPAAAAAAAAA...\0

Stefan Nagy

Vulnerable Program

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

94

previous frame ptrBP

SPAAAAAAAAA...\0

foo()’s first arg

Stefan Nagy

Vulnerable Program

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

95

previous frame ptrBP

SPAAAAAAAAA...\0

foo()’s first arg

Stefan Nagy

Vulnerable Program

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

96

previous frame ptr

BP SP

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Stefan Nagy

Vulnerable Program

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

97

previous frame ptr

BP

SP

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

char * buffer[16]

Stefan Nagy

Vulnerable Program

98

previous frame ptr

BP

SP

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

????????????????

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

Stefan Nagy 99

Stefan Nagy

Buffer Overflow!

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

100

previous frame ptr

BP

SP

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

 AAAAAAA
 AAAAAAAAAAAAAAAAAAA

Stefan Nagy

Buffer Overflow!

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

101

previous frame ptr

BP

SP

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

 AAAAAAA

 AAAAAAAAAAAAAAAAAAA
 AAAAAAAAAAAAAAAAAAA

Stefan Nagy

Buffer Overflow!

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

102

previous frame ptr

BP

SP

AAAAAAAAA...\0

foo()’s first arg

 AAAAAAA

 AAAAAAAAAAAAAAAAAAA

 AAAAAAAAAAAAAAAAAAA
 AAAAAAAAAAAAAAAAAAA

Stefan Nagy

Buffer Overflow!

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

103

 AAAAAAAAAAAAAAAAAAA

BP

SP

 AAAAAAAAAAAAAAAAAAA

 AAAAAAAAAAAAAAAAAAA

 AAAAAAAAAAAAAAAAAAA

 AAAAAAAAAAAAAAAAAAA

 AAAAAAAAAAAAAAAAAAA
 AAAAAAAAAAAAAAAAAAA

Stefan Nagy

Why does it overflow?

104

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

Stefan Nagy

Why does it overflow?

105

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

We are copying 256 bytes
into a 16-byte buffer!

Stefan Nagy

Why does it overflow?

106

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

We are copying 256 bytes
into a 16-byte buffer!

Observation: any stack objects within reach
of the overflow can be overwritten!

Stefan Nagy

Why does it overflow?

107

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

We are copying 256 bytes
into a 16-byte buffer!

Observation: any stack objects within reach
of the overflow can be overwritten!

Examples: local variables, function
arguments, return addresses, etc.!

Stefan Nagy

Why does it overflow?

108

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

We are copying 256 bytes
into a 16-byte buffer!

Observation: any stack objects within reach
of the overflow can be overwritten!

Examples: local variables, function
arguments, return addresses, etc.!

https://icode4.coffee/?p=954

https://icode4.coffee/?p=954

Stefan Nagy

Buffer Overflow (continued)

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

109

 AAAAAAAAAAAAAAAAAAA

BP

SP

 AAAAAAAAAAAAAAAAAAA

 AAAAAAAAAAAAAAAAAAA

 AAAAAAAAAAAAAAAAAAA

 AAAAAAAAAAAAAAAAAAA

 AAAAAAAAAAAAAAAAAAA
 AAAAAAAAAAAAAAAAAAA

Stefan Nagy

Buffer Overflow (continued)

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

110

AAAAAAAAAAAAAAAAAAA

BP SP

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA

 mov %ebp, %esp
 pop %ebp
 pop %eip

SP

Stefan Nagy

Buffer Overflow (continued)

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

111

AAAAAAAAAAAAAAAAAA

SP

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA

 mov %ebp, %esp
 pop %ebp
 pop %eip

overwritten frame ptr

Stefan Nagy

Buffer Overflow (continued)

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

112

AAAAAAAAAAAAAAAAAA

SP

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA
 mov %ebp, %esp
 pop %ebp
 pop %eip

?????????????

overwritten return addr

Stefan Nagy

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

113

AAAAAAAAAAAAAAAAAA

SP

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA
 mov %ebp, %esp
 pop %ebp
 pop %eip

Execution will return to
a garbage address!

“AAAA” = 0x41414141

overwritten return addr

Buffer Overflow (continued)

Stefan Nagy

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

114

AAAAAAAAAAAAAAAAAA

SP

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA
 mov %ebp, %esp
 pop %ebp
 pop %eip

Execution will return to
a garbage address!

“AAAA” = 0x41414141

overwritten return addr

Buffer Overflow (continued)

Stefan Nagy

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

115

AAAAAAAAAAAAAAAAAA

SP

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA
 mov %ebp, %esp
 pop %ebp
 pop %eip

Execution will return to
a garbage address!

“AAAA” = 0x41414141

overwritten return addr

Redirecting Execution

Observation: when a function returns, execution
continues to whatever its return address is…

Stefan Nagy

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

116

AAAAAAAAAAAAAAAAAA

SP

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA
 mov %ebp, %esp
 pop %ebp
 pop %eip

Execution will return to
a garbage address!

“AAAA” = 0x41414141

overwritten return addr

Redirecting Execution

Observation: when a function returns, execution
continues to whatever its return address is…

Implication: If Mallory overwrites the return
address with something else, it will be executed!

Stefan Nagy

Redirecting Execution

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

117

AAAAAAAAAAAAAAAAAA

SP

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA
 mov %ebp, %esp
 pop %ebp
 pop %eip

?????????????

Address of some Evil Code

Stefan Nagy

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

118

AAAAAAAAAAAAAAAAAA

SP

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA
 mov %ebp, %esp
 pop %ebp
 pop %eip

Execution will return to
the Evil Code’s address!

Redirecting Execution

Address of some Evil Code

Stefan Nagy

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

119

AAAAAAAAAAAAAAAAAA

SP

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA
 mov %ebp, %esp
 pop %ebp
 pop %eip

Execution will return to
the Evil Code’s address!

Redirecting Execution

Address of some Evil Code

Stefan Nagy

Questions?

120

Stefan Nagy

Next time on CS 4440…

121

Attacking Applications

