
Stefan Nagy
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All About Applications

Tuesday, September 17, 2024
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Announcements

￭ Project 1: Crypto released (see Assignments page on course website)
￭ Deadline: this Thursday, September 19th by 11:59 PM
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http://cs.utah.edu/~snagy/courses/cs4440/assignments/
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Announcements

3

See Discord for 
meeting info!

www.utahsec.com



Stefan Nagy

Announcements

￭ Project 2: AppSec released
￭ Deadline: Thursday, October 17th by 11:59PM
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Wiki Updates
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Announcements
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See Discord for 
meeting info!

utahsec.cs.utah.edu
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Questions?
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Last time on CS 4440…
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Cryptocurrency
Distributed Consensus

Mining
Fairness
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“The Gang Invents a New Currency”

￭ Cryptocurrency
￭ Invented in 2008 (Bitcoin) by Satoshi Nakamoto
￭ His/their real identify remains a mystery
￭ Modern cryptocoins: Bitcoin, Litecoin, Ethereum  

￭ Key Principles
￭ Integrity
￭ Distributed Consensus
￭ Cryptographic Hash Function
￭ Public-key Crypto
￭ Proof-of-Work

9



Stefan Nagy

Transactions

￭ Traditional banking uses a “centralized” ledger
￭ You have as much $$$ as your bank (and US Govt.) says!

￭ Cryptocurrency = Distributed Public Ledger
￭ Everyone has access to every transaction
￭ Everyone knows how much money everyone else has
￭ Transactions are chained using previous transactions
￭ To determine how much money you have, must search

the list of transactions to determine your balance
￭ Trust that < 50% of the network is corrupt
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Security

￭ Transactions must be “committed”
￭ Resource intensive and competitive
￭ Requires massive computing power to fool
￭ Need to out-compute the entire network
￭ Can't work “ahead” due to block chaining

￭ Security via “distributed consensus” 
￭ It’s hard to to fool everyone in the room
￭ Specifically, have to fool 51% of network

￭ Majority vote wins
￭ Longer ledger wins
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$$$→You→Me!
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“Mining” Cryptocurrency

￭ We want to print our own money!

￭ Super high-level idea: reward who 
first “validates” a transaction
￭ Validators are called “miners”
￭ Given a small commision
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Stefan Nagy

“Mining” Cryptocurrency

￭ We want to print our own money!

￭ Super high-level idea: reward who 
first “validates” a transaction
￭ Validators are called “miners”
￭ Given a small commision

￭ Ideally: a fair process (no entry fee)
￭ Anyone can start mining!

13



Stefan Nagy

“Mining” Cryptocurrency

￭ In practice, not really fair…
￭ Hardware and GPU cost
￭ Electricity cost
￭ Environmental cost
￭ More money gives an advantage!
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“Mining” Cryptocurrency

￭ In practice, not really fair…
￭ Hardware and GPU cost
￭ Electricity cost
￭ Environmental cost
￭ More money gives an advantage!

￭ Don’t buy into the hype!
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“Mining” Cryptocurrency

￭ In practice, not really fair…
￭ Hardware and GPU cost
￭ Electricity cost
￭ Environmental cost
￭ More money gives an advantage!

￭ Don’t buy into the hype!
￭ Blockchain has other cool uses
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Questions?
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This time on CS 4440…
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Program Execution
Virtual Memory

The Stack
Stack Corruption
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Coding Challenge

￭ As part of a job interview, you are tasked 
with writing a program—in C—that: 

(1) reads characters from the user; and 
(2) prints out the reverse of that message.

￭ You are expected to write a working 
program in less than 5 minutes. Go!
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Coding Challenge

￭ If you wrote a program like:
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int main(void) {

char buffer[40];

gets(buffer);

// Saves user input 
// into the buffer

}
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Coding Challenge

￭ If you wrote a program like:
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int main(void) {

char buffer[40];

gets(buffer);

// Saves user input 
// into the buffer

}

?

?

?

?
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Coding Challenge

￭ If you wrote a program like:
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int main(void) {

char buffer[40];

gets(buffer);

// Saves user input 
// into the buffer

}

?

?

?

?
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￭ Problem: attacker can’t load their 
own code on to the system

24

Attacking Computer Systems
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￭ Problem: attacker can’t load their 
own code on to the system

￭ Opportunity: the attacker can 
interact with existing programs
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Attacking Computer Systems
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Attacking Computer Systems

￭ Problem: attacker can’t load their 
own code on to the system

￭ Opportunity: the attacker can 
interact with existing programs

￭ Challenge: make the system do 
what you want… using only the 
existing programs on the system 
that you can interact with
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￭ Goal: take over a system by exploiting an application on it

27

Software Exploitation
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￭ Goal: take over a system by exploiting an application on it

￭ Exploit technique 1: code injection 
￭ Insert your own code (as an input) 
￭ Redirect the program to execute it

28

Software Exploitation
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￭ Goal: take over a system by exploiting an application on it

￭ Exploit technique 1: code injection 
￭ Insert your own code (as an input) 
￭ Redirect the program to execute it

￭ Exploit technique 2: code reuse
￭ Leverage the program’s existing code
￭ Execute it in a way it wasn’t intended to
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￭ Goal: take over a system by exploiting an application on it

￭ Exploit technique 1: code injection 
￭ Insert your own code (as an input) 
￭ Redirect the program to execute it

￭ Exploit technique 2: code reuse
￭ Leverage the program’s existing code
￭ Execute it in a way it wasn’t intended to

￭ Attack vector: memory corruption 
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Software Exploitation
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Program Execution
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What is execution?

￭ Double-clicking a shortcut on your desktop
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Stefan Nagy

What is execution?

￭ Double-clicking a shortcut on your desktop

￭ Tapping an app icon on your smartphone
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What is execution?

￭ Double-clicking a shortcut on your desktop

￭ Tapping an app icon on your smartphone

￭ “Hey Siri, play Midnights on Spotify”
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What really is execution?

￭ Programs made up of instructions
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What really is execution?

￭ Programs made up of instructions

￭ High-level: programming languages
￭ Higher level: interpreted (Python, JS, etc.)
￭ Lower level: compiled (C/C++, Rust, Go)
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What really is execution?

￭ Programs made up of instructions

￭ High-level: programming languages
￭ Higher level: interpreted (Python, JS, etc.)
￭ Lower level: compiled (C/C++, Rust, Go)

￭ Low-level: assembly and machine code
￭ Machine code = what the computer executes
￭ Assembly = one level higher (human-readable)
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What really is execution?

￭ Programs made up of instructions

￭ High-level: programming languages
￭ Higher level: interpreted (Python, JS, etc.)
￭ Lower level: compiled (C/C++, Rust, Go)

￭ Low-level: assembly and machine code
￭ Machine code = what the computer executes
￭ Assembly = one level higher (human-readable)

￭ Execution = executing instructions
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What really is execution?

￭ Execution comprised of three steps
￭ Fetch an instruction from the program
￭ Decode the instruction into what it does
￭ Execute that instruction
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What really is execution?

￭ Execution comprised of three steps
￭ Fetch an instruction from the program
￭ Decode the instruction into what it does
￭ Execute that instruction

￭ Execution is the job of the CPU 
￭ Central Processing Unit
￭ The brain of your computer
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The CPU

41
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The CPU

￭ CPU state held in registers
￭ Analogous to source code variables
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The CPU

￭ CPU state held in registers
￭ Analogous to source code variables

￭ General-purpose registers:
￭ EAX, EBX, ECX, EDX, EDI, ESI

￭ Special-purpose registers:
￭ EIP = Instruction Pointer
￭ ESP = Stack Pointer
￭ EBP = Frame/Base Pointer
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The CPU

￭ State modified by assembly instructions
￭ ADD, SUB, XOR, CMP, CALL, JMP, RET
￭ And many more!

￭ Assembly instruction syntaxes
￭ AT&T = Instruction Source Destination
￭ Intel = Instruction Destination Source 
￭ Example: MOV SRC, DST versus MOV DST, SRC
￭ This lecture: AT&T syntax
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The CPU

￭ Software state = registers and memory
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Questions?
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Process Virtual Memory
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Memory layout of a 32-bit Linux process
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unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher 
Memory

Lower 
Memory

Program Text

Stack Memory

0xFFFFFFFF

The “Break”
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Memory layout of a 32-bit Linux process
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unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher 
Memory

Lower 
Memory

Program Text

Stack Memory

0xFFFFFFFF

The “Break”

Program 
instructions
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Memory layout of a 32-bit Linux process
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unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher 
Memory

Lower 
Memory

Program Text

Stack Memory

0xFFFFFFFF

The “Break”

Initialized 
global variables 
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Memory layout of a 32-bit Linux process
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unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher 
Memory

Lower 
Memory

Program Text

Stack Memory

0xFFFFFFFF

The “Break”

Un-initialized 
global variables 
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Memory layout of a 32-bit Linux process
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unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher 
Memory

Lower 
Memory

Program Text

Stack Memory

0xFFFFFFFF

The “Break” Dynamically 
allocated memory

via malloc()
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Memory layout of a 32-bit Linux process

53

unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher 
Memory

Lower 
Memory

Program Text

Stack Memory

0xFFFFFFFF

The “Break”

E.g., libc.so 
text and data
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Memory layout of a 32-bit Linux process
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unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher 
Memory

Lower 
Memory

Program Text

Stack Memory

0xFFFFFFFF

The “Break”

Local variables, 
and a record of 
active functions
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Memory layout of a 32-bit Linux process
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unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped
Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher 
Memory

Lower 
Memory

The “Break”

Program Text

Stack Memory

0xFFFFFFFF

Heap grows upwards

Stack grows downwards
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Memory layout of a 32-bit Linux process
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unmapped

Initialized Data

 BBBBBBBBBBBBBBBBB
 BBBBBBB

Uninitialized Data

unmapped
Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher 
Memory

Lower 
Memory

The “Break”

Program Text

 AAAAAAA
 AAAAAAAAAAAAAAAAA

0xFFFFFFFF

Heap grows upwards
- Filled downwards

Stack grows downwards
- Filled upwards
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Questions?
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The Stack
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The Stack

￭ Memory for storing function data
￭ Arguments
￭ Local variables
￭ Return address

￭ Provides a running “record” of the 
active subroutine(s) in a program
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The Stack

￭ Begins at highest address

￭ Grows toward lower addresses
￭ Think of it as a stack of plates

that grows upside-down

￭ Three key registers to know:
￭ EBP = The Frame/Base Pointer

￭ Highest address of current frame
￭ ESP = The Stack Pointer

￭ Denotes the top of the stack
￭ Topmost (lowest) address of the stack

￭ EIP = Address of next instruction to be executed

60

BP

SP
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Stack Operation

1. Push 0x0A

61

0A SP

Push sends data 
to the topmost 

area of the stack
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Stack Operation

1. Push 0x0A
2. Push 0x6C

62

0A
6C SP

SP

Stack grows → 
move SP down!
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Stack Operation

1. Push 0x0A
2. Push 0x6C
3. Push 0xFF
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0A
6C
FF SP

SP

Stack grows → 
move SP down!
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Stack Operation

1. Push 0x0A
2. Push 0x6C
3. Push 0xFF
4. Pop R1

64

0A
6C
FF

FFRegister R1

SP

Pop sends data 
at top of stack 
to a register
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Stack Operation

1. Push 0x0A
2. Push 0x6C
3. Push 0xFF
4. Pop R1

65

0A
6C
FF

FFRegister R1

SP
SP

Stack clears → 
move SP up!
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Stack Operation

1. Push 0x0A
2. Push 0x6C
3. Push 0xFF
4. Pop R1
5. Pop R2
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0A

6C

FF

Register R2

Register R1

6C
FF

SP
SP

Stack clears → 
move SP up!
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Stack Operation

1. Push 0x0A
2. Push 0x6C
3. Push 0xFF
4. Pop R1
5. Pop R2
6. Push 0x88
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0A

6C

FF

Register R2

Register R1

88
FF

SP
SP

Stack grows → 
move SP down!
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Stack Frames

￭ Assume main() calls foo()

68

SP

BP main()’s local vars

foo()’s arguments
SP
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Stack Frames

￭ Assume main() calls foo()
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main()’s local vars

foo()’s arguments

SP

BP

foo()’s return addr 
SP
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Stack Frames

￭ Assume main() calls foo()
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main()’s local vars

foo()’s arguments

SP

BP

foo()’s return addr 

main()’s frame ptr
SP
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Stack Frames

￭ Assume main() calls foo()
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main()’s local vars

foo()’s arguments

SPBP

foo()’s return addr 

main()’s frame ptr

BP
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Stack Frames

￭ Assume main() calls foo()
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main()’s local vars

foo()’s arguments

SP

BP

foo()’s return addr 

main()’s frame ptr

foo()’s local vars

......

SP
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Stack Frames

￭ Assume main() calls foo()
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main()’s local vars

foo()’s arguments

foo()’s return addr 

main()’s frame ptr

foo()’s local vars

......

Call-er (main)
Stack Frame

Call-ee (foo)
Stack Frame
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Example Program

void foo(int a, int b) 
{

    char buf1[10];

}

void main() 
{

    foo(3,6);

}

74

main:

  pushl  %ebp

  movl   %esp, %ebp

  subl   $8, %esp

  movl   $6, 4(%esp)

  movl   $3, (%esp)

  call   foo

  leave

  ret
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Example Program

main:

  pushl  %ebp

  movl   %esp, %ebp

  subl   $8, %esp

  movl   $6, 4(%esp)

  movl   $3, (%esp)

  call   foo

  leave

  ret
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Example Program

main:

  pushl  %ebp

  movl   %esp, %ebp

  subl   $8, %esp

  movl   $6, 4(%esp)

  movl   $3, (%esp)

  call   foo

  leave

  ret

76

previous frame ptr SP
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Example Program

main:

  pushl  %ebp

  movl   %esp, %ebp

  subl   $8, %esp

  movl   $6, 4(%esp)

  movl   $3, (%esp)

  call   foo

  leave

  ret

77

previous frame ptrBP SP
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Example Program

main:

  pushl  %ebp

  movl   %esp, %ebp

  subl   $8, %esp

  movl   $6, 4(%esp)

  movl   $3, (%esp)

  call   foo

  leave

  ret

78

previous frame ptrBP

SP

SP
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Example Program

main:

  pushl  %ebp

  movl   %esp, %ebp

  subl   $8, %esp

  movl   $6, 4(%esp)

  movl   $3, (%esp)

  call   foo

  leave

  ret

79

previous frame ptrBP

SP

6
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Example Program

main:

  pushl  %ebp

  movl   %esp, %ebp

  subl   $8, %esp

  movl   $6, 4(%esp)

  movl   $3, (%esp)

  call   foo

  leave

  ret

80

previous frame ptrBP

SP

6

3

Function args are 
pushed in reverse
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Example Program

main:

  pushl  %ebp

  movl   %esp, %ebp

  subl   $8, %esp

  movl   $6, 4(%esp)

  movl   $3, (%esp)

  call   foo

  leave

  ret

81

previous frame ptrBP

SP

6

3 SP
foo()’s return addr
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Example Program

main:

  pushl  %ebp

  movl   %esp, %ebp

  subl   $8, %esp

  movl   $6, 4(%esp)

  movl   $3, (%esp)

  call   foo

  leave

  ret

82

previous frame ptrBP

SP

6

3

foo()’s return addr

foo will return to 
main’s post-call 

instruction
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Example Program

foo:

  pushl  %ebp

  movl   %esp, %ebp

  subl   $16, %esp

  leave

  ret

83

previous frame ptr

6

3

foo()’s return addr

main()’s frame ptr SP
SP

BP
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Example Program

foo:

  pushl  %ebp

  movl   %esp, %ebp

  subl   $16, %esp

  leave

  ret

84

previous frame ptr

BP

6

3

foo()’s return addr

main()’s frame ptr

BP

SP
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Example Program

foo:

  pushl  %ebp

  movl   %esp, %ebp

  subl   $16, %esp

  leave

  ret
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previous frame ptr

BP

6

3

foo()’s return addr

main()’s frame ptr

SP
SP
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Example Program

foo:

  pushl  %ebp

  movl   %esp, %ebp

  subl   $16, %esp

  leave

  ret

86

previous frame ptr

BP

6

3

foo()’s return addr

main()’s frame ptr

SP mov %ebp, %esp
 pop %ebp
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Example Program

foo:

  pushl  %ebp

  movl   %esp, %ebp

  subl   $16, %esp

  leave

  ret

87

previous frame ptr

BP

6

3

foo()’s return addr

main()’s frame ptr SP
 mov %ebp, %esp
 pop %ebp SP
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Example Program

foo:

  pushl  %ebp

  movl   %esp, %ebp

  subl   $16, %esp

  leave

  ret

88

previous frame ptr

6

3

foo()’s return addr

 mov %ebp, %esp
 pop %ebp

SP

SPBP

BP
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Example Program

foo:

  pushl  %ebp

  movl   %esp, %ebp

  subl   $16, %esp

  leave

  ret

89

previous frame ptr

6

3

 pop %eip

SP

SP

BP
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Questions?
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Stack Corruption
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Vulnerable Program

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}
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Vulnerable Program

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

93

previous frame ptrBP

SPAAAAAAAAA...\0
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Vulnerable Program

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

94

previous frame ptrBP

SPAAAAAAAAA...\0

foo()’s first arg
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Vulnerable Program

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}
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previous frame ptrBP

SPAAAAAAAAA...\0

foo()’s first arg
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Vulnerable Program

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

96

previous frame ptr

BP SP

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr
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Vulnerable Program

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}
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previous frame ptr

BP

SP

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

char * buffer[16]
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Vulnerable Program

98

previous frame ptr

BP

SP

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

????????????????

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}
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Buffer Overflow!

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}
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previous frame ptr

BP

SP

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

 AAAAAAA
 AAAAAAAAAAAAAAAAAAA
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Buffer Overflow!

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

101

previous frame ptr

BP

SP

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

 AAAAAAA

 AAAAAAAAAAAAAAAAAAA
 AAAAAAAAAAAAAAAAAAA
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Buffer Overflow!

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}
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previous frame ptr

BP

SP

AAAAAAAAA...\0

foo()’s first arg

 AAAAAAA

 AAAAAAAAAAAAAAAAAAA

 AAAAAAAAAAAAAAAAAAA
 AAAAAAAAAAAAAAAAAAA
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Buffer Overflow!

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}
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 AAAAAAAAAAAAAAAAAAA

BP

SP

 AAAAAAAAAAAAAAAAAAA

 AAAAAAAAAAAAAAAAAAA

 AAAAAAAAAAAAAAAAAAA

 AAAAAAAAAAAAAAAAAAA

 AAAAAAAAAAAAAAAAAAA
 AAAAAAAAAAAAAAAAAAA
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Why does it overflow?

104

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}
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Why does it overflow?
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void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

We are copying 256 bytes 
into a 16-byte buffer!
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Why does it overflow?
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void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

We are copying 256 bytes 
into a 16-byte buffer!

Observation: any stack objects within reach 
of the overflow can be overwritten!
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Why does it overflow?
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void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

We are copying 256 bytes 
into a 16-byte buffer!

Observation: any stack objects within reach 
of the overflow can be overwritten!

Examples: local variables, function 
arguments, return addresses, etc.!
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Why does it overflow?
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void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

We are copying 256 bytes 
into a 16-byte buffer!

Observation: any stack objects within reach 
of the overflow can be overwritten!

Examples: local variables, function 
arguments, return addresses, etc.!

https://icode4.coffee/?p=954 

https://icode4.coffee/?p=954
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Buffer Overflow (continued)

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}
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Buffer Overflow (continued)

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}
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 mov %ebp, %esp
 pop %ebp
 pop %eip

SP
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Buffer Overflow (continued)

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}
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AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA

 mov %ebp, %esp
 pop %ebp
 pop %eip

overwritten frame ptr
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Buffer Overflow (continued)

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}
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AAAAAAAAAAAAAAAAAA

SP

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA
 mov %ebp, %esp
 pop %ebp
 pop %eip

?????????????

overwritten return addr
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void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}
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AAAAAAAAAAAAAAAAAA

SP

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA
 mov %ebp, %esp
 pop %ebp
 pop %eip

Execution will return to 
a garbage address!

“AAAA” = 0x41414141

overwritten return addr

Buffer Overflow (continued)
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void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}
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AAAAAAAAAAAAAAAAAA

SP

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA
 mov %ebp, %esp
 pop %ebp
 pop %eip

Execution will return to 
a garbage address!

“AAAA” = 0x41414141

overwritten return addr

Buffer Overflow (continued)
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void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}
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AAAAAAAAAAAAAAAAAA

SP

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA
 mov %ebp, %esp
 pop %ebp
 pop %eip

Execution will return to 
a garbage address!

“AAAA” = 0x41414141

overwritten return addr

Redirecting Execution

Observation: when a function returns, execution 
continues to whatever its return address is…
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void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}
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AAAAAAAAAAAAAAAAAA

SP

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA
 mov %ebp, %esp
 pop %ebp
 pop %eip

Execution will return to 
a garbage address!

“AAAA” = 0x41414141

overwritten return addr

Redirecting Execution

Observation: when a function returns, execution 
continues to whatever its return address is…

Implication: If Mallory overwrites the return 
address with something else, it will be executed!
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Redirecting Execution

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}
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AAAAAAAAAAAAAAAAAA

SP

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA
 mov %ebp, %esp
 pop %ebp
 pop %eip

?????????????

Address of some Evil Code
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void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}
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AAAAAAAAAAAAAAAAAA

SP

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA
 mov %ebp, %esp
 pop %ebp
 pop %eip

Execution will return to 
the Evil Code’s address!

Redirecting Execution

Address of some Evil Code
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void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}
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AAAAAAAAAAAAAAAAAA

SP

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA
 mov %ebp, %esp
 pop %ebp
 pop %eip

Execution will return to 
the Evil Code’s address!

Redirecting Execution

Address of some Evil Code
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Questions?

120



Stefan Nagy

Next time on CS 4440…
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Attacking Applications


