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Week 4: Lecture B 
Security in Practice: Cryptocurrency

Thursday, September 12, 2024
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Announcements

￭ Project 1: Crypto released (see Assignments page on course website)
￭ Deadline: Thursday, September 19th by 11:59 PM
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http://cs.utah.edu/~snagy/courses/cs4440/assignments/
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Announcements

4

See Discord for 
meeting info!

utahsec.cs.utah.edu
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Announcements
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Questions?
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Last time on CS 4440…
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Key Exchange
Digital Signatures

RSA
Bleichenbacher’s Attack
Key Management Rules
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Asymmetric vs. Symmetric Crypto
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Symmetric Crypto

Asymmetric Crypto
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Asymmetric Encryption (aka “Public Key”)

￭ Key idea: want a asymmetric approach to find a symmetric key
￭ Don’t want to have to pre-share keys in advance

￭ Suppose users can have two keys: encryption and decryption
￭ Keys generated in pairs using well-understood mathematical relationship
￭ One key kept private (aka private key)
￭ One key shared publicly (aka public key)

9

internetAlice
pub

priv pub

Bob

Tony

Silvio

priv

priv

priv



Stefan Nagy

Diffie-Hellman Key Exchange
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A visual analogy of Diffie-Hellman

￭ Diffie-Hellman’s exponentiation
￭ Think of it like mixing different paint colors

￭ Hard to invert to original colors? Yes!

￭ Two different ways of arriving to the 
same final result (i.e., the shared key)
￭ Done as a “public conversation”
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Sign (M, kpriv)
Alice BobMallory

M , S

Verf (S’, kpub)

￭ Key generation: Alice generates key pair: kpub  (public) and kpriv (private) 

￭ Alice signs message M with kpriv resulting in signature S = Sign ( M, kpriv )

￭ Anyone possessing Alice’s kpub can check signature via Verf ( S’, kpub )
￭ If received message and signature verified, then message is authentic—from Alice!

M’ , S’

Authenticity via Digital Signatures
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Sign (M, kpriv)
Alice BobMallory

M , S

Verf (S’, kpub)

￭ Key generation: Alice generates key pair: kpub  (public) and kpriv (private) 

￭ Alice signs message M with kpriv resulting in signature S = Sign ( M, kpriv )

￭ Anyone possessing Alice’s kpub can check signature via Verf ( S’, kpub )
￭ If received message and signature verified, then message is authentic—from Alice!

M’ , S’

Authenticity via Digital Signatures

Unforgeability: computationally infeasible 
for Mallory to guess S or Alice’s kpriv 

… even if Mallory knows Alice’s kpub or 
other signatures from other messages!
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RSA Digital Signatures

￭ Public key = (e,N) where e is relatively prime to (p-1)(q-1)

￭ Private key = (d,N) where (e*d) mod ((p-1)(q-1)) = 1

￭ Alice signs: S = Sign( M, d, N ) = (M)d mod N

￭ Bob verifies:  Verif( S’, e, N ) = (S’)e mod N  == M’
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Sign (M, d, N)

BobAlice Mallory
M , S M’ , S’

== M’ Verif (S’, e, N)
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￭ Public key = (e,N) where e is relatively prime to (p-1)(q-1)

￭ Private key = (d,N) where (e*d) mod ((p-1)(q-1)) = 1

￭ Alice signs: S = Sign( M, d, N ) = (M)d mod N

￭ Bob verifies:  Verif( S’, e, N ) = (S’)e mod N  == M’

RSA Digital Signatures

15

RSA Messages are really this giant-long integer 
construction; SHA-1 digest = SHA-1(plaintext)

BobAlice Mallory
M , S M’ , S’
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￭ Public key = (e,N) where e is relatively prime to (p-1)(q-1)

￭ Private key = (d,N) where (e*d) mod ((p-1)(q-1)) = 1

￭ Alice signs: S = Sign( M, d, N ) = (M)d mod N

￭ Bob verifies:  Verif( S’, e, N ) = (S’)e mod N  == M’

RSA Digital Signatures
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RSA Messages are really this giant-long integer 
construction; SHA-1 digest = SHA-1(plaintext)

BobAlice Mallory
M , S M’ , S’

Bob checks that  (S’)e mod N  == M’

Mallory can forge Alice’s messages, 
but can’t forge her signatures—why?
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￭ Public key = (e,N) where e is relatively prime to (p-1)(q-1)

￭ Private key = (d,N) where (e*d) mod ((p-1)(q-1)) = 1

￭ Alice signs: S = Sign( M, d, N ) = (M)d mod N

￭ Bob verifies:  Verif( S’, e, N ) = (S’)e mod N  == M’

RSA Digital Signatures
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RSA Messages are really this giant-long integer 
construction; SHA-1 digest = SHA-1(plaintext)

BobAlice Mallory
M , S M’ , S’

Mallory can forge Alice’s messages, 
but can’t forge her signatures—why?

Bob checks that  (S’)e mod N  == M’

Because Alice signs via her private key!



Stefan Nagy

RSA vs. Diffie-Hellman

￭ Diffie-Hellman: a protocol for secure key exchange
￭ Idea of a “public conversation to derive a shared secret key”
￭ Hardness assumption based on discrete log problem

￭ Given gx mod p, find the exponent x
￭ Really hard if p is a large prime number!
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RSA vs. Diffie-Hellman

￭ Diffie-Hellman: a protocol for secure key exchange
￭ Idea of a “public conversation to derive a shared secret key”
￭ Hardness assumption based on discrete log problem

￭ Given gx mod p, find the exponent x
￭ Really hard if p is a large prime number!

￭ RSA: a cryptosystem; can use for encryption, signing
￭ Based on principles of Diffie-Hellman (“public” key derivation)
￭ Hardness assumption based on integer factorization problem

￭ Given N, find two integers such that x * y = N 
￭ Really hard if x and y are large prime numbers!
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RSA vs. Diffie-Hellman

￭ Diffie-Hellman: a protocol for secure key exchange
￭ Idea of a “public conversation to derive a shared secret key”
￭ Hardness assumption based on discrete log problem

￭ Given gx mod p, find the exponent x
￭ Really hard if p is a large prime number!

￭ RSA: a cryptosystem; can use for encryption, signing
￭ Based on principles of Diffie-Hellman (“public” key derivation)
￭ Hardness assumption based on integer factorization problem

￭ Given N, find two integers such that x * y = N 
￭ Really hard if x and y are large prime numbers!
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Security of both hinges on 
difficulty of large prime numbers!
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￭ Check if message == (signature)exponent modulo (N)
￭ In this problem, we know message and want to find signature

￭ Recall N computed by multiplying two huge prime numbers
￭ Mallory has zero hope of figuring these factors out (integer factorization problem)

￭ Check if message == (signature)exponent modulo (HugeUnfactorableNumber)

￭ If exponent is small, what happens?

21

Bleichenbacher Attack: Forging RSA Digital Signatures
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￭ Check if message == (signature)exponent modulo (N)
￭ In this problem, we know message and want to find signature

￭ Recall N computed by multiplying two huge prime numbers
￭ Mallory has zero hope of figuring these factors out (integer factorization problem)

￭ Check if message == (signature)exponent modulo (HugeUnfactorableNumber)

￭ If exponent is small, what happens? Right-hand modulo expression is null
￭ With message in-hand, Mallory can retrieve the signature!
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Bleichenbacher Attack: Forging RSA Digital Signatures
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SHA1(“Go Chiefs!”)
￭ Assume key is 2048 bits long

￭ Prefix FF’s must be ((2048/8)—38) bytes
￭ = 218 total FF’s

￭ Where does 38 come from?

Bleichenbacher Attack: Forging RSA Digital Signatures
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SHA1(“Go Chiefs!”)
￭ Assume key is 2048 bits long

￭ Prefix FF’s must be ((2048/8)—38) bytes
￭ = 218 total FF’s

￭ Where does 38 come from?
￭ 20-byte SHA-1 digest
￭ 15-byte ASN.1 hash specifier
￭ 3 more bytes (00, 01, 00)

If number of FF’s don’t 
match 218, reject message!

Bleichenbacher Attack: Forging RSA Digital Signatures
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SHA1(“Go Chiefs!”)

???????????????

￭ Assume key is 2048 bits long

￭ What if server doesn’t count FF’s?
￭ We could use just one FF
￭ And ??? at the end

Bleichenbacher Attack: Forging RSA Digital Signatures
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SHA1(“Go Chiefs!”)

217 arbitrary bytes

￭ Assume key is 2048 bits long

￭ What if server doesn’t count FF’s?
￭ We could use just one FF
￭ And 217 arbitrary bytes at the end

￭ These end up not being checked!

Bleichenbacher Attack: Forging RSA Digital Signatures
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￭ How about Nth-rooting the insecure message construction?

￭ It is highly unlikely that you get a perfect root!
￭ Your signature has to be an integer—no decimal remainder!

￭ Thus, message will not equal (signature)exponent 

￭ Attack fails!

27

Bleichenbacher Attack: Forging RSA Digital Signatures
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￭ How about Nth-rooting the insecure message construction?

￭ It is highly unlikely that you get a perfect root!
￭ Your signature has to be an integer—no decimal remainder!

￭ Thus, message will not equal (signature)exponent 

￭ Attack fails!
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Bleichenbacher Attack: Forging RSA Digital Signatures

Suppose Mallory’s     Mevil = 300 
and the server’s exponent = 3

Mallory computes Sevil = Mevil
1/3 = 6.694

Server checks signature: 6.0003 == 300Server checks signature: 6.0003 != 300
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￭ How about Nth-rooting the insecure message construction?

￭ It is highly unlikely that you get a perfect root!
￭ Your signature has to be an integer—no decimal remainder!

￭ Thus, message will not equal (signature)exponent 

￭ Attack fails!

￭ But… we know that the last 217 bytes of the message aren’t checked by the server!
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Bleichenbacher Attack: Forging RSA Digital Signatures
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￭ Visualization of unchecked bytes: compare 300 and 343 side-by-side: 

1 0 0 1 0 1 1 0 0 (bytes 3–9 don’t match!)

1 0 1 0 1 0 1 1 1

￭ Pretend that everything after the first two bytes is ignored by the server

1 0 0 1 0 1 1 0 0  (only care about bytes 1–2)

1 0 1 0 1 0 1 1 1

￭ Success! Check passes
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Bleichenbacher Attack: Forging RSA Digital Signatures

Perfect cube:

Perfect cube:
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￭ How about Nth-rooting the insecure message construction?

￭ It is highly unlikely that you get a perfect root!
￭ Your signature has to be an integer—no decimal remainder!

￭ Thus, message will not equal (signature)exponent 

￭ Attack fails!

￭ But… we know that the last 217 bytes of the message aren’t checked by the server!
￭ Thus, we can “tweak” our signature such that message == (signature)exponent

￭ When server computes (signature)exponent, will get slightly different message—that’s ok!
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Bleichenbacher Attack: Forging RSA Digital Signatures
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￭ How about Nth-rooting the insecure message construction?

￭ It is highly unlikely that you get a perfect root!
￭ Your signature has to be an integer—no decimal remainder!

￭ Thus, message will not equal (signature)exponent 

￭ Attack fails!

￭ But… we know that the last 217 bytes of the message aren’t checked by the server!
￭ Thus, we can “tweak” our signature such that message == (signature)exponent

￭ When server computes (signature)exponent, will get slightly different message—that’s ok!
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Bleichenbacher Attack: Forging RSA Digital Signatures

Small exponent + insecure padding 
enables Mallory to forge signatures… 
without knowing Alice’s private key!
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RSA for Confidentiality and Integrity

￭ Subtle fact: RSA can also be used for integrity and confidentiality

￭ RSA for integrity:
￭ Goal: Prove that message wasn’t tampered
￭ Encrypt (“sign”) with ???
￭ Decrypt (“verify”) with ???
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RSA for Confidentiality and Integrity

￭ Subtle fact: RSA can also be used for integrity and confidentiality

￭ RSA for integrity:
￭ Goal: Prove that message wasn’t tampered
￭ Encrypt (“sign”) with sender’s private key
￭ Decrypt (“verify”) with sender’s public key

￭ RSA for confidentiality:
￭ Goal: Allow only intended recipient to read
￭ Encrypt with ??? 
￭ Decrypt with ???
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RSA for Confidentiality and Integrity

￭ Subtle fact: RSA can also be used for integrity and confidentiality

￭ RSA for integrity:
￭ Goal: Prove that message wasn’t tampered
￭ Encrypt (“sign”) with sender’s private key
￭ Decrypt (“verify”) with sender’s public key

￭ RSA for confidentiality:
￭ Goal: Allow only intended recipient to read
￭ Encrypt with recipient’s public key 
￭ Decrypt with recipient’s private key
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True or False: RSA vs. AES

￭ RSA is no more complex than AES

￭ RSA requires the same size keys as AES

￭ RSA requires less computation than AES

￭ RSA requires pre-sharing of keys

36
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True or False: RSA vs. AES

￭ RSA is no more complex than AES
￭ False: it’s far more complex

￭ RSA requires the same size keys as AES
￭ False: needs much larger keys (e.g., 10x larger)

￭ RSA requires less computation than AES
￭ False: it’s 1000x slower than AES

￭ RSA requires pre-sharing of keys
￭ False: it’s asymmetric—that’s why we love it!
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True or False: Key Management

￭ Keys should have only one purpose

￭ It’s okay to reuse the same key over and over again

￭ Digital storage is as safe as hardware storage 

￭ Alice → Bob can use the same key as Bob → Alice

38
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True or False: Key Management

￭ Keys should have only one purpose
￭ True: one key for integrity, one for confidentiality, etc.

￭ It’s okay to reuse the same key over and over again
￭ False: keys become more vulnerable with time, reuse!

￭ Digital storage is as safe as hardware storage 
￭ False: hardware-stored keys are a better line of defense!

￭ Alice → Bob can use the same key as Bob → Alice
￭ False: never reuse keys; each direction gets its own key! 
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Questions?
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This time on CS 4440…

41

Cryptocurrency
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Why does money have value?
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Because others think it does!

￭ Demand: belief in money’s value; i.e., it can be exchanged for real things

￭ Supply: amount of money that actually exists

43

void government() {

    while(true)

        print money;

}
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Inflation since Covid-19

￭ How does this affect
your personal savings?
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What if…

￭ Challenge: Create our own money that is not controlled by any single 
government and doesn't require huge start-up investment

￭ Why?
￭ No need to waste resources printing or securing paper money

￭ Save the trees!
￭ Sort of…

￭ Not controlled by a single entity (e.g., government)—hopefully
￭ Manageable privacy
￭ End-user can “print” their own money!
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We are Satoshi Nakamoto!

￭ Introducing… Cryptocurrency
￭ Invented in 2008 (Bitcoin) by Satoshi Nakamoto
￭ His/their real identify remains a mystery 

￭ Key Principles
￭ Integrity
￭ Distributed Consensus
￭ Cryptographic Hash Function
￭ Public-key Crypto
￭ Proof-of-Work

46
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Cryptocurrency Challenges

47

1. Keeping records without centralizing trust
2. Maintaining anonymity for all users
3. Preventing fake transactions
4. Preventing duplicate transactions
5. “Printing” new “money”
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Traditional Banking

￭ Uses a centralized ledger
￭ Cannot go to Bank A and 

withdraw all your money… 
￭ … then go to Bank B and 

withdraw it all over again!
￭ Fun fact: originally on-paper

￭ Tracks customer accounts
￭ Only have as much $$$ as 

bank (and FDIC) say you do
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A Decentralized Ledger

￭ Why?

￭ How to build it?
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A has some $

50

A’s ledger

$→A

B’s ledger

C’s ledger
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A exchanges $ for pizza from B
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A’s ledger

$→A→B 

B’s ledger

C’s ledger

A→B

A→B
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A exchanges $ for pizza from B
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A’s ledger

$→A→B 

B’s ledger

$→A→B 

$→A→B 

C’s ledger

$→A→B 

A→B

A→B A→B
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A exchanges $ for pizza from B
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A’s ledger

$→A→B 

B’s ledger

$→A→B 

$→A→B 

C’s ledger

$→A→B 
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B exchanges $ for beer from C
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A’s ledger

$→A→B 

B’s ledger

$→A→B 

$→A→B→C

C’s ledger

$→A→B 

$→A→B→C

$→A→B→C
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B exchanges $ for beer from C
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A’s ledger

$→A→B 

$→A→B→C

B’s ledger

$→A→B 

$→A→B→C

C’s ledger

$→A→B 

$→A→B→C
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B exchanges $ for beer from C
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A’s ledger

$→A→B 

$→A→B→C

B’s ledger

$→A→B 

$→A→B→C

C’s ledger

$→A→B 

$→A→B→C

Distributed Public Ledger (aka “Blockchain”)

● Everyone has access to every transaction
● Everyone knows how much money everyone else has
● Transactions are chained using previous transactions
● For A to determine how much money they have, have to 

search the list of transactions to determine the balance
● Trust that < 50% of the network is corrupt
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Cryptocurrency Challenges

57

1. Keeping records without centralizing trust
2. Maintaining anonymity for all users
3. Preventing fake transactions
4. Preventing duplicate transactions
5. “Printing” new “money”
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Anonymity

￭ Why?

￭ How to enforce it?
￭ Use what we’ve learned so far?

58



Stefan Nagy

Transactions

￭ Key idea: use public-key crypto
￭ … instead of real identities
￭ Derive shared secret key through “public” conversation
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Transactions

￭ What really is a transaction?
￭ Send money to everyone in a locked box
￭ Only the intended has the key to open it
￭ Everyone has access to that locked box forever

￭ If you figure out someone’s private key
￭ You can access money inside any box it opens

￭ If you forget/lose your private key
￭ You lose access to any box that it would open
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Unspent, Spent Transaction Model
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Transactions
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A’s ledger

$→A→B 

$→A→B→C

B’s ledger

$→A→B 

$→A→B→C

C’s ledger

$→A→B 

$→A→B→C

Transactions

● Everyone has access to all transactions
● Transactions have two states: spent, unspent
● A new transaction is a series of references 

to previous, unspent transactions
● Once the new transaction is committed, 

the referenced transactions become spent
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New node? Download all transactions
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A’s ledger

$→A→B 

$→A→B→C

B’s ledger

$→A→B 

$→A→B→C

C’s ledger

$→A→B 

$→A→B→C

D’s ledger

 loading…
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New node? Download all transactions
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A’s ledger

$→A→B 

$→A→B→C

B’s ledger

$→A→B 

$→A→B→C

C’s ledger

$→A→B 

$→A→B→C

D’s ledger

$→A→B 

$→A→B→C
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New node? Download all transactions
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A’s ledger

$→A→B 

$→A→B→C

B’s ledger

$→A→B 

$→A→B→C

C’s ledger

$→A→B 

$→A→B→C

D’s ledger

$→A→B 

$→A→B→C

Anonymous Transactions

● Nodes/clients can come and go at will
● There is no network authentication
● As long as you have the private key for the 

bitcoin sent to you, you can create a new 
transaction using that bitcoin

● Nothing prevents using a different priv/pub 
key pair for each incoming transaction

● Thus, no need to use a unique identifier
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Cryptocurrency Challenges
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1. Keeping records without centralizing trust
2. Maintaining anonymity for all users
3. Preventing fake transactions
4. Preventing duplicate transactions
5. “Printing” new “money”
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Preventing Fake Transactions

￭ Problem: malicious user uses their 
ledger to create fake transactions 
where they are the recipient
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Preventing Fake Transactions

￭ Problem: malicious user uses their 
ledger to create fake transactions 
where they are the recipient

￭ Solution: the real sender signs the 
transaction with their private key
￭ Unless key captured, can’t fool
￭ Relying on mathematical hardness
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Preventing Duplicate Transactions

￭ Problem: malicious user creates a 
fake ledger, tries to convince rest of
network that it is really legitimate 
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Preventing Duplicate Transactions

￭ Problem: malicious user creates a 
fake ledger, tries to convince rest of
network that it is really legitimate

￭ Solutions: 
￭ Make it expensive and competitive to 

commit your version of the ledger to 
the entire network (dist. consensus)

￭ In cases of mismatched ledgers, the 
longer one wins 

￭ Make future ledger commits depend on 
past ledger commits
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The Blockchain
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A’s ledger

$→A→B 

$→A→B→C

B’s ledger

$→A→B 

$→A→B→C

C’s ledger

$→A→B 

$→A→B→C

Blockchain Security Measures

● How transaction are “committed”
● Resource intensive and competitive
● Requires massive computing power to fool
● Need to out-compute the entire network
● Can't work ahead due to block chaining
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Cryptocurrency Challenges
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1. Keeping records without centralizing trust
2. Maintaining anonymity for all users
3. Preventing fake transactions
4. Preventing fake transactions
5. “Printing” new “money”
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Creating new Money

￭ Super high-level idea: reward 
whoever “validates” a transaction
￭ Validators are called “miners”
￭ Given a small commision

￭ Meant to be a fair process that 
does not cost money
￭ Anyone can start mining!
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Creating new Money
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Is it really fair?
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Is it really fair?
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Is it really fair?
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Is it really fair?
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Is it really fair?
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Is it really fair?
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Mining

￭ In practice, not really fair…
￭ Hardware and GPU cost
￭ Electricity cost
￭ Environmental cost
￭ More money gives an advantage!
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Mining

￭ In practice, not really fair…
￭ Hardware and GPU cost
￭ Electricity cost
￭ Environmental cost
￭ More money gives an advantage!

￭ Don’t buy into the hype!
￭ Stock market has more certainty

￭ Not an official endorsement!
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Other Blockchain Applications

￭ Examples?
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Other Blockchain Applications
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Not everything needs to be Blockchained!

https://www.youtube.com/watch?v=mDwUJa4_IJE 
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https://www.youtube.com/watch?v=mDwUJa4_IJE
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Next time on CS 4440…
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Intro to Application Security


