
Stefan Nagy

Week 4: Lecture B
Security in Practice: Cryptocurrency

Thursday, September 12, 2024

1

Stefan Nagy

Announcements

￭ Project 1: Crypto released (see Assignments page on course website)
￭ Deadline: Thursday, September 19th by 11:59 PM

2

http://cs.utah.edu/~snagy/courses/cs4440/assignments/

Stefan Nagy 3

Stefan Nagy

Announcements

4

See Discord for
meeting info!

utahsec.cs.utah.edu

Stefan Nagy

Announcements

5

Stefan Nagy

Questions?

6

Stefan Nagy

Last time on CS 4440…

7

Key Exchange
Digital Signatures

RSA
Bleichenbacher’s Attack
Key Management Rules

Stefan Nagy

Asymmetric vs. Symmetric Crypto

8

Symmetric Crypto

Asymmetric Crypto

Stefan Nagy

Asymmetric Encryption (aka “Public Key”)

￭ Key idea: want a asymmetric approach to find a symmetric key
￭ Don’t want to have to pre-share keys in advance

￭ Suppose users can have two keys: encryption and decryption
￭ Keys generated in pairs using well-understood mathematical relationship
￭ One key kept private (aka private key)
￭ One key shared publicly (aka public key)

9

internetAlice
pub

priv pub

Bob

Tony

Silvio

priv

priv

priv

Stefan Nagy

Diffie-Hellman Key Exchange

10

Stefan Nagy

A visual analogy of Diffie-Hellman

￭ Diffie-Hellman’s exponentiation
￭ Think of it like mixing different paint colors

￭ Hard to invert to original colors? Yes!

￭ Two different ways of arriving to the
same final result (i.e., the shared key)
￭ Done as a “public conversation”

11

Stefan Nagy 12

Sign (M, kpriv)
Alice BobMallory

M , S

Verf (S’, kpub)

￭ Key generation: Alice generates key pair: kpub (public) and kpriv (private)

￭ Alice signs message M with kpriv resulting in signature S = Sign (M, kpriv)

￭ Anyone possessing Alice’s kpub can check signature via Verf (S’, kpub)
￭ If received message and signature verified, then message is authentic—from Alice!

M’ , S’

Authenticity via Digital Signatures

Stefan Nagy 13

Sign (M, kpriv)
Alice BobMallory

M , S

Verf (S’, kpub)

￭ Key generation: Alice generates key pair: kpub (public) and kpriv (private)

￭ Alice signs message M with kpriv resulting in signature S = Sign (M, kpriv)

￭ Anyone possessing Alice’s kpub can check signature via Verf (S’, kpub)
￭ If received message and signature verified, then message is authentic—from Alice!

M’ , S’

Authenticity via Digital Signatures

Unforgeability: computationally infeasible
for Mallory to guess S or Alice’s kpriv

… even if Mallory knows Alice’s kpub or
other signatures from other messages!

Stefan Nagy

RSA Digital Signatures

￭ Public key = (e,N) where e is relatively prime to (p-1)(q-1)

￭ Private key = (d,N) where (e*d) mod ((p-1)(q-1)) = 1

￭ Alice signs: S = Sign(M, d, N) = (M)d mod N

￭ Bob verifies: Verif(S’, e, N) = (S’)e mod N == M’

14

Sign (M, d, N)

BobAlice Mallory
M , S M’ , S’

== M’ Verif (S’, e, N)

Stefan Nagy

￭ Public key = (e,N) where e is relatively prime to (p-1)(q-1)

￭ Private key = (d,N) where (e*d) mod ((p-1)(q-1)) = 1

￭ Alice signs: S = Sign(M, d, N) = (M)d mod N

￭ Bob verifies: Verif(S’, e, N) = (S’)e mod N == M’

RSA Digital Signatures

15

RSA Messages are really this giant-long integer
construction; SHA-1 digest = SHA-1(plaintext)

BobAlice Mallory
M , S M’ , S’

Stefan Nagy

￭ Public key = (e,N) where e is relatively prime to (p-1)(q-1)

￭ Private key = (d,N) where (e*d) mod ((p-1)(q-1)) = 1

￭ Alice signs: S = Sign(M, d, N) = (M)d mod N

￭ Bob verifies: Verif(S’, e, N) = (S’)e mod N == M’

RSA Digital Signatures

16

RSA Messages are really this giant-long integer
construction; SHA-1 digest = SHA-1(plaintext)

BobAlice Mallory
M , S M’ , S’

Bob checks that (S’)e mod N == M’

Mallory can forge Alice’s messages,
but can’t forge her signatures—why?

Stefan Nagy

￭ Public key = (e,N) where e is relatively prime to (p-1)(q-1)

￭ Private key = (d,N) where (e*d) mod ((p-1)(q-1)) = 1

￭ Alice signs: S = Sign(M, d, N) = (M)d mod N

￭ Bob verifies: Verif(S’, e, N) = (S’)e mod N == M’

RSA Digital Signatures

17

RSA Messages are really this giant-long integer
construction; SHA-1 digest = SHA-1(plaintext)

BobAlice Mallory
M , S M’ , S’

Mallory can forge Alice’s messages,
but can’t forge her signatures—why?

Bob checks that (S’)e mod N == M’

Because Alice signs via her private key!

Stefan Nagy

RSA vs. Diffie-Hellman

￭ Diffie-Hellman: a protocol for secure key exchange
￭ Idea of a “public conversation to derive a shared secret key”
￭ Hardness assumption based on discrete log problem

￭ Given gx mod p, find the exponent x
￭ Really hard if p is a large prime number!

18

Stefan Nagy

RSA vs. Diffie-Hellman

￭ Diffie-Hellman: a protocol for secure key exchange
￭ Idea of a “public conversation to derive a shared secret key”
￭ Hardness assumption based on discrete log problem

￭ Given gx mod p, find the exponent x
￭ Really hard if p is a large prime number!

￭ RSA: a cryptosystem; can use for encryption, signing
￭ Based on principles of Diffie-Hellman (“public” key derivation)
￭ Hardness assumption based on integer factorization problem

￭ Given N, find two integers such that x * y = N
￭ Really hard if x and y are large prime numbers!

19

Stefan Nagy

RSA vs. Diffie-Hellman

￭ Diffie-Hellman: a protocol for secure key exchange
￭ Idea of a “public conversation to derive a shared secret key”
￭ Hardness assumption based on discrete log problem

￭ Given gx mod p, find the exponent x
￭ Really hard if p is a large prime number!

￭ RSA: a cryptosystem; can use for encryption, signing
￭ Based on principles of Diffie-Hellman (“public” key derivation)
￭ Hardness assumption based on integer factorization problem

￭ Given N, find two integers such that x * y = N
￭ Really hard if x and y are large prime numbers!

20

Security of both hinges on
difficulty of large prime numbers!

Stefan Nagy

￭ Check if message == (signature)exponent modulo (N)
￭ In this problem, we know message and want to find signature

￭ Recall N computed by multiplying two huge prime numbers
￭ Mallory has zero hope of figuring these factors out (integer factorization problem)

￭ Check if message == (signature)exponent modulo (HugeUnfactorableNumber)

￭ If exponent is small, what happens?

21

Bleichenbacher Attack: Forging RSA Digital Signatures

Stefan Nagy

￭ Check if message == (signature)exponent modulo (N)
￭ In this problem, we know message and want to find signature

￭ Recall N computed by multiplying two huge prime numbers
￭ Mallory has zero hope of figuring these factors out (integer factorization problem)

￭ Check if message == (signature)exponent modulo (HugeUnfactorableNumber)

￭ If exponent is small, what happens? Right-hand modulo expression is null
￭ With message in-hand, Mallory can retrieve the signature!

22

Bleichenbacher Attack: Forging RSA Digital Signatures

Stefan Nagy 23

SHA1(“Go Chiefs!”)
￭ Assume key is 2048 bits long

￭ Prefix FF’s must be ((2048/8)—38) bytes
￭ = 218 total FF’s

￭ Where does 38 come from?

Bleichenbacher Attack: Forging RSA Digital Signatures

Stefan Nagy 24

SHA1(“Go Chiefs!”)
￭ Assume key is 2048 bits long

￭ Prefix FF’s must be ((2048/8)—38) bytes
￭ = 218 total FF’s

￭ Where does 38 come from?
￭ 20-byte SHA-1 digest
￭ 15-byte ASN.1 hash specifier
￭ 3 more bytes (00, 01, 00)

If number of FF’s don’t
match 218, reject message!

Bleichenbacher Attack: Forging RSA Digital Signatures

Stefan Nagy 25

SHA1(“Go Chiefs!”)

???????????????

￭ Assume key is 2048 bits long

￭ What if server doesn’t count FF’s?
￭ We could use just one FF
￭ And ??? at the end

Bleichenbacher Attack: Forging RSA Digital Signatures

Stefan Nagy 26

SHA1(“Go Chiefs!”)

217 arbitrary bytes

￭ Assume key is 2048 bits long

￭ What if server doesn’t count FF’s?
￭ We could use just one FF
￭ And 217 arbitrary bytes at the end

￭ These end up not being checked!

Bleichenbacher Attack: Forging RSA Digital Signatures

Stefan Nagy

￭ How about Nth-rooting the insecure message construction?

￭ It is highly unlikely that you get a perfect root!
￭ Your signature has to be an integer—no decimal remainder!

￭ Thus, message will not equal (signature)exponent

￭ Attack fails!

27

Bleichenbacher Attack: Forging RSA Digital Signatures

Stefan Nagy

￭ How about Nth-rooting the insecure message construction?

￭ It is highly unlikely that you get a perfect root!
￭ Your signature has to be an integer—no decimal remainder!

￭ Thus, message will not equal (signature)exponent

￭ Attack fails!

28

Bleichenbacher Attack: Forging RSA Digital Signatures

Suppose Mallory’s Mevil = 300
and the server’s exponent = 3

Mallory computes Sevil = Mevil
1/3 = 6.694

Server checks signature: 6.0003 == 300Server checks signature: 6.0003 != 300

Stefan Nagy

￭ How about Nth-rooting the insecure message construction?

￭ It is highly unlikely that you get a perfect root!
￭ Your signature has to be an integer—no decimal remainder!

￭ Thus, message will not equal (signature)exponent

￭ Attack fails!

￭ But… we know that the last 217 bytes of the message aren’t checked by the server!

29

Bleichenbacher Attack: Forging RSA Digital Signatures

Stefan Nagy

￭ Visualization of unchecked bytes: compare 300 and 343 side-by-side:

1 0 0 1 0 1 1 0 0 (bytes 3–9 don’t match!)

1 0 1 0 1 0 1 1 1

￭ Pretend that everything after the first two bytes is ignored by the server

1 0 0 1 0 1 1 0 0 (only care about bytes 1–2)

1 0 1 0 1 0 1 1 1

￭ Success! Check passes

30

Bleichenbacher Attack: Forging RSA Digital Signatures

Perfect cube:

Perfect cube:

Stefan Nagy

￭ How about Nth-rooting the insecure message construction?

￭ It is highly unlikely that you get a perfect root!
￭ Your signature has to be an integer—no decimal remainder!

￭ Thus, message will not equal (signature)exponent

￭ Attack fails!

￭ But… we know that the last 217 bytes of the message aren’t checked by the server!
￭ Thus, we can “tweak” our signature such that message == (signature)exponent

￭ When server computes (signature)exponent, will get slightly different message—that’s ok!

31

Bleichenbacher Attack: Forging RSA Digital Signatures

Stefan Nagy

￭ How about Nth-rooting the insecure message construction?

￭ It is highly unlikely that you get a perfect root!
￭ Your signature has to be an integer—no decimal remainder!

￭ Thus, message will not equal (signature)exponent

￭ Attack fails!

￭ But… we know that the last 217 bytes of the message aren’t checked by the server!
￭ Thus, we can “tweak” our signature such that message == (signature)exponent

￭ When server computes (signature)exponent, will get slightly different message—that’s ok!

32

Bleichenbacher Attack: Forging RSA Digital Signatures

Small exponent + insecure padding
enables Mallory to forge signatures…
without knowing Alice’s private key!

Stefan Nagy

RSA for Confidentiality and Integrity

￭ Subtle fact: RSA can also be used for integrity and confidentiality

￭ RSA for integrity:
￭ Goal: Prove that message wasn’t tampered
￭ Encrypt (“sign”) with ???
￭ Decrypt (“verify”) with ???

33

Stefan Nagy

RSA for Confidentiality and Integrity

￭ Subtle fact: RSA can also be used for integrity and confidentiality

￭ RSA for integrity:
￭ Goal: Prove that message wasn’t tampered
￭ Encrypt (“sign”) with sender’s private key
￭ Decrypt (“verify”) with sender’s public key

￭ RSA for confidentiality:
￭ Goal: Allow only intended recipient to read
￭ Encrypt with ???
￭ Decrypt with ???

34

Stefan Nagy

RSA for Confidentiality and Integrity

￭ Subtle fact: RSA can also be used for integrity and confidentiality

￭ RSA for integrity:
￭ Goal: Prove that message wasn’t tampered
￭ Encrypt (“sign”) with sender’s private key
￭ Decrypt (“verify”) with sender’s public key

￭ RSA for confidentiality:
￭ Goal: Allow only intended recipient to read
￭ Encrypt with recipient’s public key
￭ Decrypt with recipient’s private key

35

Stefan Nagy

True or False: RSA vs. AES

￭ RSA is no more complex than AES

￭ RSA requires the same size keys as AES

￭ RSA requires less computation than AES

￭ RSA requires pre-sharing of keys

36

Stefan Nagy

True or False: RSA vs. AES

￭ RSA is no more complex than AES
￭ False: it’s far more complex

￭ RSA requires the same size keys as AES
￭ False: needs much larger keys (e.g., 10x larger)

￭ RSA requires less computation than AES
￭ False: it’s 1000x slower than AES

￭ RSA requires pre-sharing of keys
￭ False: it’s asymmetric—that’s why we love it!

37

Stefan Nagy

True or False: Key Management

￭ Keys should have only one purpose

￭ It’s okay to reuse the same key over and over again

￭ Digital storage is as safe as hardware storage

￭ Alice → Bob can use the same key as Bob → Alice

38

Stefan Nagy

True or False: Key Management

￭ Keys should have only one purpose
￭ True: one key for integrity, one for confidentiality, etc.

￭ It’s okay to reuse the same key over and over again
￭ False: keys become more vulnerable with time, reuse!

￭ Digital storage is as safe as hardware storage
￭ False: hardware-stored keys are a better line of defense!

￭ Alice → Bob can use the same key as Bob → Alice
￭ False: never reuse keys; each direction gets its own key!

39

Stefan Nagy

Questions?

40

Stefan Nagy

This time on CS 4440…

41

Cryptocurrency

Stefan Nagy

Why does money have value?

42

Stefan Nagy

Because others think it does!

￭ Demand: belief in money’s value; i.e., it can be exchanged for real things

￭ Supply: amount of money that actually exists

43

void government() {

 while(true)

 print money;

}

Stefan Nagy

Inflation since Covid-19

￭ How does this affect
your personal savings?

44

Stefan Nagy

What if…

￭ Challenge: Create our own money that is not controlled by any single
government and doesn't require huge start-up investment

￭ Why?
￭ No need to waste resources printing or securing paper money

￭ Save the trees!
￭ Sort of…

￭ Not controlled by a single entity (e.g., government)—hopefully
￭ Manageable privacy
￭ End-user can “print” their own money!

45

Stefan Nagy

We are Satoshi Nakamoto!

￭ Introducing… Cryptocurrency
￭ Invented in 2008 (Bitcoin) by Satoshi Nakamoto
￭ His/their real identify remains a mystery

￭ Key Principles
￭ Integrity
￭ Distributed Consensus
￭ Cryptographic Hash Function
￭ Public-key Crypto
￭ Proof-of-Work

46

Stefan Nagy

Cryptocurrency Challenges

47

1. Keeping records without centralizing trust
2. Maintaining anonymity for all users
3. Preventing fake transactions
4. Preventing duplicate transactions
5. “Printing” new “money”

Stefan Nagy

Traditional Banking

￭ Uses a centralized ledger
￭ Cannot go to Bank A and

withdraw all your money…
￭ … then go to Bank B and

withdraw it all over again!
￭ Fun fact: originally on-paper

￭ Tracks customer accounts
￭ Only have as much $$$ as

bank (and FDIC) say you do

48

Stefan Nagy

A Decentralized Ledger

￭ Why?

￭ How to build it?

49

Stefan Nagy

A has some $

50

A’s ledger

$→A

B’s ledger

C’s ledger

Stefan Nagy

A exchanges $ for pizza from B

51

A’s ledger

$→A→B

B’s ledger

C’s ledger

A→B

A→B

Stefan Nagy

A exchanges $ for pizza from B

52

A’s ledger

$→A→B

B’s ledger

$→A→B

$→A→B

C’s ledger

$→A→B

A→B

A→B A→B

Stefan Nagy

A exchanges $ for pizza from B

53

A’s ledger

$→A→B

B’s ledger

$→A→B

$→A→B

C’s ledger

$→A→B

Stefan Nagy

B exchanges $ for beer from C

54

A’s ledger

$→A→B

B’s ledger

$→A→B

$→A→B→C

C’s ledger

$→A→B

$→A→B→C

$→A→B→C

Stefan Nagy

B exchanges $ for beer from C

55

A’s ledger

$→A→B

$→A→B→C

B’s ledger

$→A→B

$→A→B→C

C’s ledger

$→A→B

$→A→B→C

Stefan Nagy

B exchanges $ for beer from C

56

A’s ledger

$→A→B

$→A→B→C

B’s ledger

$→A→B

$→A→B→C

C’s ledger

$→A→B

$→A→B→C

Distributed Public Ledger (aka “Blockchain”)

● Everyone has access to every transaction
● Everyone knows how much money everyone else has
● Transactions are chained using previous transactions
● For A to determine how much money they have, have to

search the list of transactions to determine the balance
● Trust that < 50% of the network is corrupt

Stefan Nagy

Cryptocurrency Challenges

57

1. Keeping records without centralizing trust
2. Maintaining anonymity for all users
3. Preventing fake transactions
4. Preventing duplicate transactions
5. “Printing” new “money”

Stefan Nagy

Anonymity

￭ Why?

￭ How to enforce it?
￭ Use what we’ve learned so far?

58

Stefan Nagy

Transactions

￭ Key idea: use public-key crypto
￭ … instead of real identities
￭ Derive shared secret key through “public” conversation

59

Stefan Nagy

Transactions

￭ What really is a transaction?
￭ Send money to everyone in a locked box
￭ Only the intended has the key to open it
￭ Everyone has access to that locked box forever

￭ If you figure out someone’s private key
￭ You can access money inside any box it opens

￭ If you forget/lose your private key
￭ You lose access to any box that it would open

60

Stefan Nagy

Unspent, Spent Transaction Model

61

Stefan Nagy

Transactions

62

A’s ledger

$→A→B

$→A→B→C

B’s ledger

$→A→B

$→A→B→C

C’s ledger

$→A→B

$→A→B→C

Transactions

● Everyone has access to all transactions
● Transactions have two states: spent, unspent
● A new transaction is a series of references

to previous, unspent transactions
● Once the new transaction is committed,

the referenced transactions become spent

Stefan Nagy

New node? Download all transactions

63

A’s ledger

$→A→B

$→A→B→C

B’s ledger

$→A→B

$→A→B→C

C’s ledger

$→A→B

$→A→B→C

D’s ledger

 loading…

Stefan Nagy

New node? Download all transactions

64

A’s ledger

$→A→B

$→A→B→C

B’s ledger

$→A→B

$→A→B→C

C’s ledger

$→A→B

$→A→B→C

D’s ledger

$→A→B

$→A→B→C

Stefan Nagy

New node? Download all transactions

65

A’s ledger

$→A→B

$→A→B→C

B’s ledger

$→A→B

$→A→B→C

C’s ledger

$→A→B

$→A→B→C

D’s ledger

$→A→B

$→A→B→C

Anonymous Transactions

● Nodes/clients can come and go at will
● There is no network authentication
● As long as you have the private key for the

bitcoin sent to you, you can create a new
transaction using that bitcoin

● Nothing prevents using a different priv/pub
key pair for each incoming transaction

● Thus, no need to use a unique identifier

Stefan Nagy

Cryptocurrency Challenges

66

1. Keeping records without centralizing trust
2. Maintaining anonymity for all users
3. Preventing fake transactions
4. Preventing duplicate transactions
5. “Printing” new “money”

Stefan Nagy

Preventing Fake Transactions

￭ Problem: malicious user uses their
ledger to create fake transactions
where they are the recipient

67

Stefan Nagy

Preventing Fake Transactions

￭ Problem: malicious user uses their
ledger to create fake transactions
where they are the recipient

￭ Solution: the real sender signs the
transaction with their private key
￭ Unless key captured, can’t fool
￭ Relying on mathematical hardness

68

Stefan Nagy

Preventing Duplicate Transactions

￭ Problem: malicious user creates a
fake ledger, tries to convince rest of
network that it is really legitimate

69

Stefan Nagy

Preventing Duplicate Transactions

￭ Problem: malicious user creates a
fake ledger, tries to convince rest of
network that it is really legitimate

￭ Solutions:
￭ Make it expensive and competitive to

commit your version of the ledger to
the entire network (dist. consensus)

￭ In cases of mismatched ledgers, the
longer one wins

￭ Make future ledger commits depend on
past ledger commits

70

Stefan Nagy

The Blockchain

71

A’s ledger

$→A→B

$→A→B→C

B’s ledger

$→A→B

$→A→B→C

C’s ledger

$→A→B

$→A→B→C

Blockchain Security Measures

● How transaction are “committed”
● Resource intensive and competitive
● Requires massive computing power to fool
● Need to out-compute the entire network
● Can't work ahead due to block chaining

Stefan Nagy

Cryptocurrency Challenges

72

1. Keeping records without centralizing trust
2. Maintaining anonymity for all users
3. Preventing fake transactions
4. Preventing fake transactions
5. “Printing” new “money”

Stefan Nagy

Creating new Money

￭ Super high-level idea: reward
whoever “validates” a transaction
￭ Validators are called “miners”
￭ Given a small commision

￭ Meant to be a fair process that
does not cost money
￭ Anyone can start mining!

73

Stefan Nagy

Creating new Money

74

Stefan Nagy

Is it really fair?

75

Stefan Nagy

Is it really fair?

76

Stefan Nagy

Is it really fair?

77

Stefan Nagy

Is it really fair?

78

Stefan Nagy

Is it really fair?

79

Stefan Nagy

Is it really fair?

80

Stefan Nagy

Mining

￭ In practice, not really fair…
￭ Hardware and GPU cost
￭ Electricity cost
￭ Environmental cost
￭ More money gives an advantage!

81

Stefan Nagy

Mining

￭ In practice, not really fair…
￭ Hardware and GPU cost
￭ Electricity cost
￭ Environmental cost
￭ More money gives an advantage!

￭ Don’t buy into the hype!
￭ Stock market has more certainty

￭ Not an official endorsement!

82

Stefan Nagy

Other Blockchain Applications

￭ Examples?

83

Stefan Nagy

Other Blockchain Applications

84

Stefan Nagy

Not everything needs to be Blockchained!

https://www.youtube.com/watch?v=mDwUJa4_IJE

85

https://www.youtube.com/watch?v=mDwUJa4_IJE

Stefan Nagy

Next time on CS 4440…

86

Intro to Application Security

