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Announcements

￭ Project 1: Crypto released (see Assignments page on course website)
￭ Deadline: Thursday, September 19th by 11:59 PM
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http://cs.utah.edu/~snagy/courses/cs4440/assignments/
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Announcements
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See Discord for 
meeting info!

utahsec.cs.utah.edu
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Announcements
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Questions?
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Last time on CS 4440…
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Symmetric Key Encryption
DES and AES

Block Cipher Modes
Building a Secure Channel
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Key-based Encryption Schemes

￭ “Symmetric” Key
￭ Encryption and decryption relies on ???
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Key-based Encryption Schemes

￭ “Symmetric” Key
￭ Encryption and decryption relies on the same key
￭ Communicating parties must ???
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Key-based Encryption Schemes

￭ “Symmetric” Key
￭ Encryption and decryption relies on the same key
￭ Communicating parties must share key in advance
￭ Examples: ???
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Stefan Nagy

Key-based Encryption Schemes

￭ “Symmetric” Key
￭ Encryption and decryption relies on the same key
￭ Communicating parties must share key in advance
￭ Examples:

￭ Caesar, Vigènere
￭ One-time Pad, Stream
￭ Transposition ciphers
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Symmetric Key Encryption

￭ Categories of SKE
￭ Stream cipher: operates on ???
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Symmetric Key Encryption

￭ Categories of SKE
￭ Stream cipher: operates on individual bits (or bytes); one at a time

￭ Generates pseudo-random key bits that are XOR’d to plaintext bits
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Symmetric Key Encryption

￭ Categories of SKE
￭ Block cipher: operates on ???
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Symmetric Key Encryption

￭ Categories of SKE
￭ Block cipher: operates on fixed-length groups of bits called blocks

￭ Processes blocks using a ???
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Symmetric Key Encryption

￭ Categories of SKE
￭ Block cipher: operates on fixed-length groups of bits called blocks

￭ Processes blocks using a reversible, non-colliding function
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Encryption Decryption

B1 B2 B3

C1 C2 C3

plaintext = 

key ⟹ 

ciphertext = 

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Enc Enc Enc

B1 B2 B3

C1 C2 C3ciphertext = 

key ⟹ 
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k ⟹ k ⟹ Dec Dec Dec
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Handling Long Messages

￭ Challenge: How to encrypt longer messages?
￭ Can only encrypt in units of cipher block size…
￭ But message might not be multiples of block size

￭ Solution: ???

17

?
?BN

CN

plaintext = 

key ⟹ 

ciphertext = 

↓

↓

Enc



Stefan Nagy

Handling Long Messages

￭ Challenge: How to encrypt longer messages?
￭ Can only encrypt in units of cipher block size…
￭ But message might not be multiples of block size

￭ Solution: Append padding to end of message
￭ Must be able to recognize and remove padding afterward
￭ Common approach: add n bytes that have value n
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Handling Long Messages

￭ Challenge: What if message terminates a block?
￭ End of message might be misread as padding!

 

￭ Solution: ???
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Handling Long Messages

￭ Challenge: What if message terminates a block?
￭ End of message might be misread as padding!

 

￭ Solution: Append an entire new block of padding
￭ Padding is necessary to know we’re at message end

20

BN
P
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  D
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plaintext = 

key ⟹ 
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DES Modes: Electronic Codebook (ECB) 

￭ Electronic Codebook (ECB)
￭ Message divided into code blocks
￭ Each block encrypted/decrypted ???
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B1 B2 B3plaintext = 

↓ ↓ ↓
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DES Modes: Electronic Codebook (ECB) 

￭ Electronic Codebook (ECB)
￭ Message divided into code blocks
￭ Each block encrypted/decrypted separately
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B1 B2 B3

C1 C2 C3

plaintext = 

key ⟹ 

ciphertext = 

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Enc Enc Enc
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DES Modes: Electronic Codebook (ECB) 

￭ ECB Strengths: ???
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DES Modes: Electronic Codebook (ECB) 

￭ ECB Strengths: 
￭ Construction is un-chained

￭ Message can be processed in parallel—fast!
￭ No wait on previous block’s encryption

￭ ECB Drawbacks: ???

24
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thread2
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DES Modes: Electronic Codebook (ECB) 

￭ ECB Strengths: 
￭ Construction is un-chained

￭ Message can be processed in parallel—fast!
￭ No wait on previous block’s encryption

￭ ECB Drawbacks: 
￭ Identical plaintext blocks produce same ciphertext

￭ This results in low diffusion
￭ Do larger block sizes increase diffusion?

￭ Yes—but at cost of higher memory footprint
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DES Modes: Cipher Block Chaining (CBC)

￭ Cipher Block Chaining (CBC): 
￭ Construction is ???
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DES Modes: Cipher Block Chaining (CBC)

￭ Cipher Block Chaining (CBC): 
￭ Construction is chained using previous cipher block (initialization vector for first block)
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DES Modes: Cipher Block Chaining (CBC)

￭ CBC Strengths: ???
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DES Modes: Cipher Block Chaining (CBC)

￭ CBC Strengths:
￭ Chained construction far stronger than ECB

￭ More diffusion!
￭ Negates ECB’s need for super-large blocks

￭ CBC Drawbacks: ???

29
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DES Modes: Cipher Block Chaining (CBC)

￭ CBC Strengths:
￭ Chained construction far stronger than ECB

￭ More diffusion!
￭ Negates ECB’s need for super-large blocks

￭ CBC Drawbacks: 
￭ Completely sequential

￭ Cannot be parallelized—slower to process!
￭ No leveraging advances in multi-threading etc.
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Exercise: Stream vs. Block Ciphers

31

Cipher Must wait 
for data?

Parallel 
processing? Confusion? Diffusion?

Stream 
Ciphers

Block 
Ciphers
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Exercise: Stream vs. Block Ciphers
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Cipher Must wait 
for data?

Parallel 
processing? Confusion? Diffusion?

Stream 
Ciphers No No Yes No

Block 
Ciphers Yes Yes Yes Yes
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Questions?
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This time on CS 4440…

34

Key Exchange
Diffie Hellman

RSA
Attacking RSA

Key Management
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Key Exchange

35
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Recap: Integrity

￭ Problem: Send message via untrusted channel without being changed

￭ Provably-secure solution: truly random function (e.g., LavaRand)

￭ Practical solution: Pseudo-random Function Family (PRF)
￭ Input: arbitrary-length key k
￭ Output: fixed-length message digest
￭ Secure if practically indistinguishable from a random function (unless Mallory knows k)

￭ Real-world: message authentication codes built with cryptographic hashes
￭ E.g., HMAC-SHA256k(m)
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Recap: Confidentiality

￭ Problem: Send message with secrecy in presence of an eavesdropper

￭ Provably-secure solution: one-time pad with a key as long as m

￭ Practical solution: Pseudo-random Generator (PRG)
￭ Input: a small, truly random seed
￭ Output: arbitrary-length key stream
￭ Secure if practically indistinguishable from a random stream (unless Mallory knows k)

￭ Real-world: steam ciphers, block ciphers
￭ E.g., AES-128 + CBC mode
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Integrity and Confidentiality

￭ Common theme: ???
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Integrity and Confidentiality

￭ Common theme: the key

￭ Key requirements
￭ Must be known by both Alice and Bob
￭ Must be unknown by anyone else
￭ Must be infeasible to guess

￭ We’d like Alice and Bob to agree on a 
key that satisfies those properties by 
sending public messages to each other
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Multi-party Secure Communication

￭ Required initialization: pre-sharing the key
￭ Total keys to be shared: at most two

40

Alice Bob

Alice Bob
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Recap: Secure Channels

￭ What if you want confidentiality and integrity at the same time?
￭ Which would you perform first: encrypting or hashing? And why?

41

Integrity 
Check

Confidentiality 
Check
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Multi-party Secure Communication

￭ Required initialization: pre-sharing the key
￭ Total keys to be shared: at most two
￭ Four if you want confidentiality and integrity

42

Alice Bob

Alice Bob

One set of keys 
for integrity, 
another for 

confidentiality
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Multi-party Secure Communication

￭ Problem: all keys must be shared securely
￭ What if Mallory intercept our key?
￭ Man in the Middle attack (MITM)

43

Alice Bob

Alice Bob

Mallory
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Asymmetric Encryption (aka “Public Key”)

￭ Key idea: want a asymmetric approach to find a symmetric key
￭ Don’t want to have to pre-share keys in advance

￭ Suppose users can have two keys: encryption and decryption
￭ Keys generated in pairs using well-understood mathematical relationship
￭ One key kept private (aka private key)

44
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Asymmetric Encryption (aka “Public Key”)

￭ Key idea: want a asymmetric approach to find a symmetric key
￭ Don’t want to have to pre-share keys in advance

￭ Suppose users can have two keys: encryption and decryption
￭ Keys generated in pairs using well-understood mathematical relationship
￭ One key kept private (aka private key)
￭ One key shared publicly (aka public key)
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Diff ie-Hellman Key Exchange
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Diffie Hellman

￭ Protocol for public key exchange
￭ Forward secrecy via a public conversation 

without any pre-shared information

￭ Relies on a mathematical hardness 
assumption called discrete log problem
(a problem believed to be NP-hard)
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Diffie Hellman

1. Initialization: Alice and Bob agree on protocol parameters
￭ p : a large prime such that (p-1) / 2 is also prime
￭ g : a small integer called the generator (e.g., 2)
￭ This is likely in a standard

48

Alice BobMallory
p, g p, g p, g
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Diffie Hellman

2. Secret Generation: Alice and Bob independently generate secret values
￭ … such that:  0 < secret_value < p
￭ A : Alice’s secret value
￭ B : Bob’s secret value

49

Alice BobMallory
p, g, 

A
p, g p, g, 

B
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Diffie Hellman

3. Transmit Secret: Alice and Bob independently create, exchange a message
￭ MA = g A mod p
￭ MB = g B mod p

50

Alice Bob
p, g, 

A
p, g p, g, 

B

Mallory MAMB
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Diffie Hellman

4. Circular Mixing:
￭ Alice computes:   XA = (MB)A mod p

 = (gB mod p)A mod p 
     = gBA mod p

￭ Bob computes:   XB = (MA)B mod p
     = (gA mod p)B mod p 
     = gAB mod p
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Diffie Hellman

4. Circular Mixing:
￭ Alice computes:   XA = (MB)A mod p

 = (gB mod p)A mod p 
     = gBA mod p

￭ Bob computes:   XB = (MA)B mod p
     = (gA mod p)B mod p 
     = gAB mod p

￭ Observe that XA == XB = X

5. Alice and Bob derive k := HMAC0(X) as their shared key
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A visual analogy of Diffie-Hellman

￭ Mixing in a new color is a little bit like 
Diffie-Hellman’s exponentiation

￭ Hard to invert to original colors? Yes!

￭ Two different ways of arriving to the 
same final result (i.e., the shared key)
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Questions?
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RSA
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Authenticity

￭ So far we’ve talked about confidentiality via public-key encryption

￭ Suppose Alice messages many people that all want to verify authenticity
￭ They want to know a message came from Alice—not someone else!

￭ Alice can’t share an authenticity key with everybody…
￭ Or else anybody—like Mallory—could forge messages!

￭ Real-world example: administrator of a source code repository
￭ If anyone had Alice’s authenticity key, they could submit fraudulent code patches!
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   kpriv kpub

Alice BobMallory

￭ Key generation: Alice generates key pair: kpub  (public) and kpriv (private) 

Authenticity via Digital Signatures
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Sign (M, kpriv)
Alice BobMallory

M , S

kpub

￭ Key generation: Alice generates key pair: kpub  (public) and kpriv (private) 

￭ Alice signs message M with kpriv resulting in signature S = Sign ( M, kpriv )

Authenticity via Digital Signatures
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Sign (M, kpriv)
Alice BobMallory

M , S

Verf (S’, kpub)

￭ Key generation: Alice generates key pair: kpub  (public) and kpriv (private) 

￭ Alice signs message M with kpriv resulting in signature S = Sign ( M, kpriv )

￭ Anyone possessing Alice’s kpub can check signature via Verf ( S’, kpub )

M’ , S’

Authenticity via Digital Signatures
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Sign (M, kpriv)
Alice BobMallory

M , S

Verf (S’, kpub)

￭ Key generation: Alice generates key pair: kpub  (public) and kpriv (private) 

￭ Alice signs message M with kpriv resulting in signature S = Sign ( M, kpriv )

￭ Anyone possessing Alice’s kpub can check signature via Verf ( S’, kpub )
￭ If received message and signature verified, then message is authentic—from Alice!

M’ , S’

Authenticity via Digital Signatures
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Sign (M, kpriv)
Alice BobMallory

M , S

Verf (S’, kpub)

￭ Key generation: Alice generates key pair: kpub  (public) and kpriv (private) 

￭ Alice signs message M with kpriv resulting in signature S = Sign ( M, kpriv )

￭ Anyone possessing Alice’s kpub can check signature via Verf ( S’, kpub )
￭ If received message and signature verified, then message is authentic—from Alice!

M’ , S’

Authenticity via Digital Signatures

Unforgeability: computationally infeasible 
for Mallory to guess S or Alice’s kpriv 

… even if Mallory knows Alice’s kpub or 
other signatures from other messages!
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RSA

￭ A scheme for public-key encryption
￭ We’ll use it primarily for digital signatures

￭ Best know and most common algorithm 
for public-key message encryption

￭ Relies on integer factorization problem
(maybe believed to be NP-hard?)

￭ Inspired by Diffie-Hellman!
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RSA Digital Signatures

63

Alice BobMallory

N

1. Pick large (e.g., 1024 bits), and random, and prime numbers p and q
￭ N = p * q
￭ N serves as the modulus for exponentiation

N
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RSA Digital Signatures

64

Alice BobMallory

e, N

2. Public key = (e,N) where e is relatively prime to (p-1)(q-1)

N
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RSA Digital Signatures
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d, N

Alice BobMallory

e, N

2. Public key = (e,N) where e is relatively prime to (p-1)(q-1)

3. Private key = (d,N) where (e*d) mod ((p-1)(q-1)) = 1
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RSA Digital Signatures

66

Sign (M, d, N)

Alice BobMallory
M , S

e, N

2. Public key = (e,N) where e is relatively prime to (p-1)(q-1)

3. Private key = (d,N) where (e*d) mod ((p-1)(q-1)) = 1

4. Alice signs: S = Sign( M, d, N ) = (M)d mod N
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RSA Digital Signatures

2. Public key = (e,N) where e is relatively prime to (p-1)(q-1)

3. Private key = (d,N) where (e*d) mod ((p-1)(q-1)) = 1

4. Alice signs: S = Sign( M, d, N ) = (M)d mod N

5. Bob verifies:  Verif( S’, e, N ) = (S’)e mod N  == M’

67

Sign (M, d, N)

Alice BobMallory
M , S

Verif (S’, e, N)

M’ , S’

== M’ 
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Messages as Integers

￭ Here, message M really means a really-large integer
￭ Both Alice and Bob generate these from the plaintext message

￭ Transmitted/received alongside the plaintext message
￭ Used by both Alice/Bob in signature generation/verification

￭ Example based on PKCS #1 v1.5 standard:

68

SHA1(“Go Chiefs!”)
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RSA for Confidentiality and Integrity

￭ Subtle fact: RSA can also be used for integrity and confidentiality

￭ RSA for integrity:
￭ Goal: Prove that message wasn’t tampered
￭ Encrypt (“sign”) with sender’s private key
￭ Decrypt (“verify”) with sender’s public key

69
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RSA for Confidentiality and Integrity

￭ Subtle fact: RSA can also be used for integrity and confidentiality

￭ RSA for integrity:
￭ Goal: Prove that message wasn’t tampered
￭ Encrypt (“sign”) with sender’s private key
￭ Decrypt (“verify”) with sender’s public key

￭ RSA for confidentiality:
￭ Goal: Allow only intended recipient to read
￭ Encrypt with recipient’s public key 
￭ Decrypt with recipient’s private key
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Using RSA

￭ To generate an RSA key-pair:

$ openssl genrsa -out private.pem 1024

$ openssl rsa -pubout -in private.pem > public.pem

￭ To sign a message with RSA:

$ openssl rsautl -sign -inkey private.pem -in a.txt > sig

￭ To verify a signed message with RSA:

$ openssl rsautl -verify -pubin -inkey public.pem -in sig
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Recap: Advanced Encryption Standard (AES)

￭ Today’s most common block cipher
￭ Designed by NIST competition, with a very long public discussion
￭ Widely believed to be secure… but we don’t know how to prove it

￭ Variable key size: 
￭ 128-bit fairly common; also 192-bit and 256-bit versions

￭ Input message is split into 128-bit blocks

￭ Ten rounds: 
￭ Split k into ten subkeys (key scheduling)
￭ Performs set of identical operations ten times (each with different subkey)
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RSA vs. AES

￭ RSA is 1000x slower than AES

￭ RSA is more complex than AES

￭ RSA has 10x larger keys than AES (e.g., 2048 bits vs. 192 bits)
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RSA vs. AES

￭ RSA is 1000x slower than AES

￭ RSA is more complex than AES

￭ RSA has 10x larger keys than AES (e.g., 2048 bits vs. 192 bits)

￭ So why prefer RSA instead of AES? 

74
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RSA vs. AES

￭ RSA is 1000x slower than AES

￭ RSA is more complex than AES

￭ RSA has 10x larger keys than AES (e.g., 2048 bits vs. 192 bits)

￭ So why prefer RSA instead of AES? RSA requires no shared secrets
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Questions?
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Attacking RSA Digital Signatures: 
Bleichenbacher’s Attack

78
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Sign (M, kpriv)
Alice BobMallory

M , S

Verf (S’, kpub)

￭ Key generation: Alice generates key pair: kpub  (public) and kpriv (private) 

￭ Alice signs message M with kpriv resulting in signature S = Sign ( M, kpriv )

￭ Anyone possessing Alice’s kpub can check signature via Verf ( S’, kpub )
￭ If received message and signature verified, then message is authentic—from Alice!

M’ , S’

Recap: Authenticity via Digital Signatures
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Sign (M, kpriv)
Alice BobMallory

M , S

Verf (S’, kpub)

￭ Key generation: Alice generates key pair: kpub  (public) and kpriv (private) 

￭ Alice signs message M with kpriv resulting in signature S = Sign ( M, kpriv )

￭ Anyone possessing Alice’s kpub can check signature via Verf ( S’, kpub )
￭ If received message and signature verified, then message is authentic—from Alice!

M’ , S’

Recap: Authenticity via Digital Signatures

Unforgeability: computationally infeasible 
for Mallory to guess S or Alice’s kpriv 

… even if Mallory knows Alice’s kpub or 
other signatures from other messages!
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Sign (M, kpriv)
Alice BobMallory

M , S

Verf (S’, kpub)

￭ Key generation: Alice generates key pair: kpub  (public) and kpriv (private) 

￭ Alice signs message M with kpriv resulting in signature S = Sign ( M, kpriv )

￭ Anyone possessing Alice’s kpub can check signature via Verf ( S’, kpub )
￭ If received message and signature verified, then message is authentic—from Alice!

M’ , S’

Recap: Authenticity via Digital Signatures

Mallory wants to forge signatures to 
impersonate Alice, but she doesn’t 

have Alice’s private key—it’s private!

RSA’s Verification: (S’)e mod N   ==   M’
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Bleichenbacher’s Signature Forgery Attack

￭ Pencil-and-paper attack by Daniel 
Bleichenbacher at CRYPTO 2006

￭ Exploits signature verification in 
insecure RSA implementations
￭ Specifically the RSA PKCS #1 standard

￭ Wreaked havoc on OpenSSL, Firefox
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Can we exploit signature verification?

￭ Bob checks if message == (signature)exponent modulo (N)
￭ In this problem, we know message and want to find signature
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Can we exploit signature verification?

￭ Bob checks if message == (signature)exponent modulo (N)
￭ In this problem, we know message and want to find signature

￭ Recall N computed by multiplying two huge prime numbers
￭ Mallory has zero hope of figuring these factors out (integer factorization problem)
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Can we exploit signature verification?

￭ Bob checks if message == (signature)exponent modulo (N)
￭ In this problem, we know message and want to find signature

￭ Recall N computed by multiplying two huge prime numbers
￭ Mallory has zero hope of figuring these factors out (integer factorization problem)

￭ Bob checks if message == (signature)exponent modulo 
(HugeUnfactorableNum)

85
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Can we exploit signature verification?

￭ Bob checks if message == (signature)exponent modulo (N)
￭ In this problem, we know message and want to find signature

￭ Recall N computed by multiplying two huge prime numbers
￭ Mallory has zero hope of figuring these factors out (integer factorization problem)

￭ Bob checks if message == (signature)exponent modulo 
(HugeUnfactorableNum)

￭ Question: What if the exponent is a really small integer?
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Detour: Modulo Mania!

￭ What does (A mod B) equal if…

￭ A is greater than B
￭ 10 mod 7 = ?
￭ 10 mod 8 = ?
￭ 8 mod 3 = ?
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Detour: Modulo Mania!

￭ What does (A mod B) equal if…

￭ A is greater than B
￭ 10 mod 7 = 3
￭ 10 mod 8 = 2
￭ 8 mod 3 = 2

￭ A is less than B
￭ 7 mod 10 = ?
￭ 8 mod 10 = ?
￭ 3 mod 8 = ?
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Detour: Modulo Mania!

￭ What does (A mod B) equal if…

￭ A is greater than B
￭ 10 mod 7 = 3
￭ 10 mod 8 = 2
￭ 8 mod 3 = 2

￭ A is less than B
￭ 7 mod 10 = 7
￭ 8 mod 10 = 8
￭ 3 mod 8 = 3
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Detour: Modulo Mania!

￭ What does (A mod B) equal if…

￭ A is greater than B
￭ 10 mod 7 = 3
￭ 10 mod 8 = 2
￭ 8 mod 3 = 2

￭ A is less than B
￭ 7 mod 10 = 7
￭ 8 mod 10 = 8
￭ 3 mod 8 = 3
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Observation: 
If A is less than B…
Then (A mod B) = A
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￭ if message == (signature)exponent modulo (HugeUnfactorableNumber)
￭ But, we know that (signature)exponent  <<  modulo (HugeUnfactorableNumber)
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￭ if message == (signature)exponent modulo (HugeUnfactorableNumber)
￭ But, we know that (signature)exponent  <<  modulo (HugeUnfactorableNumber)

￭ if message == (signature)exponent modulo (HugeUnfactorableNumber)
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￭ if message == (signature)exponent modulo (HugeUnfactorableNumber)
￭ But, we know that (signature)exponent  <<  modulo (HugeUnfactorableNumber)

￭ if message == (signature)exponent modulo (HugeUnfactorableNumber)

￭ if message == (signature)exponent    →  if message == (signature)3
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￭ if message == (signature)exponent modulo (HugeUnfactorableNumber)
￭ But, we know that (signature)exponent  <<  modulo (HugeUnfactorableNumber)

￭ if message == (signature)exponent modulo (HugeUnfactorableNumber)

￭ if message == (signature)exponent    →  if message == (signature)3

￭ Problem: With only the message, how can Mallory forge Alice’s signature?
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￭ if message == (signature)exponent modulo (HugeUnfactorableNumber)
￭ But, we know that (signature)exponent  <<  modulo (HugeUnfactorableNumber)

￭ if message == (signature)exponent modulo (HugeUnfactorableNumber)

￭ if message == (signature)exponent    →  if message == (signature)3

￭ Problem: With only the message, how can Mallory forge Alice’s signature?
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Exploiting Small Exponents

Taking the RSA message’s Nth 
root will reveal the signature!

… where N = our tiny exponent!
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A Correct Message Construction
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SHA1(“Go Chiefs!”)
￭ Assume key is 2048 bits long

￭ Prefix FF’s must be ((2048/8)—38) bytes
￭ = 218 total FF’s

￭ Where does 38 come from?
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SHA1(“Go Chiefs!”)
￭ Assume key is 2048 bits long

￭ Prefix FF’s must be ((2048/8)—38) bytes
￭ = 218 total FF’s

￭ Where does 38 come from?
￭ 20-byte SHA-1 digest
￭ 15-byte ASN.1 hash specifier
￭ 3 more bytes (00, 01, 00)

If number of FF’s don’t 
match 218, reject message!

A Correct Message Construction
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Can we take its Nth root?

￭ Nth-rooting the correct message construction likely won’t work—why?
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￭ Nth-rooting the correct message construction likely won’t work—why?

￭ It is highly unlikely that you get a perfect root!
￭ Your signature has to be an integer—no decimal remainder!

￭ Thus, message will not equal (signature)exponent 

￭ Attack fails!

99

Can we take its Nth root?
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SHA1(“Go Chiefs!”)

???????????????

￭ Assume key is 2048 bits long

￭ What if server doesn’t count FF’s?
￭ We could use just one FF
￭ And ??? at the end

An Insecure Message Construction
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SHA1(“Go Chiefs!”)

217 arbitrary bytes

￭ Assume key is 2048 bits long

￭ What if server doesn’t count FF’s?
￭ We could use just one FF
￭ And 217 arbitrary bytes at the end

￭ These end up not being checked!

An Insecure Message Construction
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￭ How about Nth-rooting the insecure message construction?
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￭ How about Nth-rooting the insecure message construction?

￭ It is highly unlikely that you get a perfect root!
￭ Your signature has to be an integer—no decimal remainder!

￭ Thus, message will not equal (signature)exponent 

￭ Attack fails!
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Can we take its Nth root?
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￭ How about Nth-rooting the insecure message construction?

￭ It is highly unlikely that you get a perfect root!
￭ Your signature has to be an integer—no decimal remainder!

￭ Thus, message will not equal (signature)exponent 

￭ Attack fails!

￭ But… we know that the last 217 bytes of the message aren’t checked by the server!
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￭ How about Nth-rooting the insecure message construction?

￭ It is highly unlikely that you get a perfect root!
￭ Your signature has to be an integer—no decimal remainder!

￭ Thus, message will not equal (signature)exponent 

￭ Attack fails!

￭ But… we know that the last 217 bytes of the message aren’t checked by the server!
￭ Thus, we can “tweak” our signature such that message == (signature)exponent
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￭ How about Nth-rooting the insecure message construction?

￭ It is highly unlikely that you get a perfect root!
￭ Your signature has to be an integer—no decimal remainder!

￭ Thus, message will not equal (signature)exponent 

￭ Attack fails!

￭ But… we know that the last 217 bytes of the message aren’t checked by the server!
￭ Thus, we can “tweak” our signature such that message == (signature)exponent

￭ When server computes (signature)exponent, will get slightly different message—that’s ok!
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Can we take its Nth root?
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￭ Write the number 300 in binary: 

1 0 0 1 0 1 1 0 0
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Exploiting Weak Padding Checking
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￭ Write the number 300 in binary: 

1 0 0 1 0 1 1 0 0

￭ Take its cube root:

300^(⅓) = 6.6943 (not an integer!)
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￭ Write the number 300 in binary: 

1 0 0 1 0 1 1 0 0

￭ Take its cube root:

300^(⅓) = 6.6943 (not an integer!)

￭ Round up to the nearest integer, cube that, and write in binary form:

7^(3) = 1 0 1 0 1 0 1 1 1
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￭ Compare 300 and 343 side-by-side: 

1 0 0 1 0 1 1 0 0 (bytes 3–9 don’t match!)

1 0 1 0 1 0 1 1 1
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￭ Compare 300 and 343 side-by-side: 

1 0 0 1 0 1 1 0 0 (bytes 3–9 don’t match!)

1 0 1 0 1 0 1 1 1

￭ Pretend that everything after the first two bytes is ignored by the server

1 0 0 1 0 1 1 0 0  (only care about bytes 1–2)

1 0 1 0 1 0 1 1 1
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￭ Compare 300 and 343 side-by-side: 

1 0 0 1 0 1 1 0 0 (bytes 3–9 don’t match!)

1 0 1 0 1 0 1 1 1

￭ Pretend that everything after the first two bytes is ignored by the server

1 0 0 1 0 1 1 0 0  (only care about bytes 1–2)

1 0 1 0 1 0 1 1 1

￭ Success! Check passes
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￭ Compare 300 and 343 side-by-side: 

1 0 0 1 0 1 1 0 0 (bytes 3–9 don’t match!)

1 0 1 0 1 0 1 1 1

￭ Pretend that everything after the first two bytes is ignored by the server

1 0 0 1 0 1 1 0 0  (only care about bytes 1–2)

1 0 1 0 1 0 1 1 1

￭ Success! Check passes
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Small exponent + insecure padding 
enables Mallory to forge signatures… 
without knowing Alice’s private key!

Exploiting Weak Padding Checking
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Questions?
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Key Management Rules
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Rule #1

￭ Each key should have only one purpose
￭ Different RSA keys for signing and encrypting
￭ Different symmetric keys for encrypting and MACing
￭ Different keys for Alice → Bob and Bob → Alice
￭ Different keys for different protocols

￭ Reason: prevent attacker from “repurposing” content
￭ Example: reflection attack
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Rule #2

￭ Vulnerability of a key increases with time and use

￭ Change your keys periodically!
￭ Use session keys
￭ Encrypt your keys
￭ Erase keys from memory when you’re done with them
￭ Don’t let your keys get swapped out to disk
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Rule #3

￭ Keep your keys far from the attacker!
￭ Memory of networked and unguarded PC = bad
￭ Memory of non-networked, guarded PC = not as bad
￭ Stored in tamper-resistant device: better

￭ Hardware Security Module (HSM)
￭ See FIPS 140-2: “Requirements for Crypto Modules”

￭ Stored HSM in locked safe: best
￭ Layered defenses / defense-in-depth
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Rule #4

￭ Protect yourself against compromise of old keys
￭ Bad practice: Alice tells Bob, “Here’s the new key: ...” encrypted under the old key
￭ Adversary can record this, then attack old key
￭ Old key then used to uncover new key

￭ Worse yet: 
￭ If long chain of keys, he can attack anyone—chain unravels!
￭ Chain only as strong as its weakest link!

￭ Forward secrecy: learning old key shouldn’t help adversary learn new key
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Next time on CS 4440…
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Security in Practice: Cryptocurrency


