
Stefan Nagy

Week 4: Lecture A
Public Key Cryptography

Tuesday, September 10, 2024

1

Stefan Nagy

Announcements

￭ Project 1: Crypto released (see Assignments page on course website)
￭ Deadline: Thursday, September 19th by 11:59 PM

2

http://cs.utah.edu/~snagy/courses/cs4440/assignments/

Stefan Nagy 3

Stefan Nagy

Announcements

4

See Discord for
meeting info!

utahsec.cs.utah.edu

Stefan Nagy

Announcements

5

Stefan Nagy

Questions?

6

Stefan Nagy

Last time on CS 4440…

7

Symmetric Key Encryption
DES and AES

Block Cipher Modes
Building a Secure Channel

Stefan Nagy

Key-based Encryption Schemes

￭ “Symmetric” Key
￭ Encryption and decryption relies on ???

8

Stefan Nagy

Key-based Encryption Schemes

￭ “Symmetric” Key
￭ Encryption and decryption relies on the same key
￭ Communicating parties must ???

9

Stefan Nagy

Key-based Encryption Schemes

￭ “Symmetric” Key
￭ Encryption and decryption relies on the same key
￭ Communicating parties must share key in advance
￭ Examples: ???

10

Stefan Nagy

Key-based Encryption Schemes

￭ “Symmetric” Key
￭ Encryption and decryption relies on the same key
￭ Communicating parties must share key in advance
￭ Examples:

￭ Caesar, Vigènere
￭ One-time Pad, Stream
￭ Transposition ciphers

11

Stefan Nagy

Symmetric Key Encryption

￭ Categories of SKE
￭ Stream cipher: operates on ???

12

Stefan Nagy

Symmetric Key Encryption

￭ Categories of SKE
￭ Stream cipher: operates on individual bits (or bytes); one at a time

￭ Generates pseudo-random key bits that are XOR’d to plaintext bits

13

Encryption Decryption

H E L L O

A X H J B

K M I V E

plaintext =

key =

ciphertext =

⊕ ⊕ ⊕ ⊕ ⊕

↓ ↓ ↓ ↓ ↓

A X H J Bkey =

⊕ ⊕ ⊕ ⊕ ⊕

↓ ↓ ↓ ↓ ↓

K M I V Eciphertext =

H E L L Oplaintext =

Stefan Nagy

Symmetric Key Encryption

￭ Categories of SKE
￭ Block cipher: operates on ???

14

Stefan Nagy

Symmetric Key Encryption

￭ Categories of SKE
￭ Block cipher: operates on fixed-length groups of bits called blocks

￭ Processes blocks using a ???

15

Encryption Decryption

B1 B2 B3

C1 C2 C3

plaintext =

key ⟹

ciphertext =

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Enc Enc Enc

B1 B2 B3

C1 C2 C3ciphertext =

key ⟹

plaintext =

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Dec Dec Dec

Stefan Nagy

Symmetric Key Encryption

￭ Categories of SKE
￭ Block cipher: operates on fixed-length groups of bits called blocks

￭ Processes blocks using a reversible, non-colliding function

16

Encryption Decryption

B1 B2 B3

C1 C2 C3

plaintext =

key ⟹

ciphertext =

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Enc Enc Enc

B1 B2 B3

C1 C2 C3ciphertext =

key ⟹

plaintext =

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Dec Dec Dec

Stefan Nagy

Handling Long Messages

￭ Challenge: How to encrypt longer messages?
￭ Can only encrypt in units of cipher block size…
￭ But message might not be multiples of block size

￭ Solution: ???

17

?
?BN

CN

plaintext =

key ⟹

ciphertext =

↓

↓

Enc

Stefan Nagy

Handling Long Messages

￭ Challenge: How to encrypt longer messages?
￭ Can only encrypt in units of cipher block size…
￭ But message might not be multiples of block size

￭ Solution: Append padding to end of message
￭ Must be able to recognize and remove padding afterward
￭ Common approach: add n bytes that have value n

18

BN

CN

plaintext =

key ⟹

ciphertext =

↓

↓

Enc

P
A
D

Stefan Nagy

Handling Long Messages

￭ Challenge: What if message terminates a block?
￭ End of message might be misread as padding!

￭ Solution: ???

19

BN

CN

plaintext =

key ⟹

ciphertext =

↓

↓

Enc

?
?

Stefan Nagy

Handling Long Messages

￭ Challenge: What if message terminates a block?
￭ End of message might be misread as padding!

￭ Solution: Append an entire new block of padding
￭ Padding is necessary to know we’re at message end

20

BN
P
 A
 D

CN C

plaintext =

key ⟹

ciphertext =

↓ ↓

↓ ↓

k ⟹ Enc Enc

N+1

Stefan Nagy

DES Modes: Electronic Codebook (ECB)

￭ Electronic Codebook (ECB)
￭ Message divided into code blocks
￭ Each block encrypted/decrypted ???

21

B1 B2 B3plaintext =

↓ ↓ ↓

Stefan Nagy

DES Modes: Electronic Codebook (ECB)

￭ Electronic Codebook (ECB)
￭ Message divided into code blocks
￭ Each block encrypted/decrypted separately

22

B1 B2 B3

C1 C2 C3

plaintext =

key ⟹

ciphertext =

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Enc Enc Enc

Stefan Nagy

DES Modes: Electronic Codebook (ECB)

￭ ECB Strengths: ???

23

Stefan Nagy

DES Modes: Electronic Codebook (ECB)

￭ ECB Strengths:
￭ Construction is un-chained

￭ Message can be processed in parallel—fast!
￭ No wait on previous block’s encryption

￭ ECB Drawbacks: ???

24

C1 C2 C3 C4 C5

C1 C2
C3

thread2
thread1

Stefan Nagy

DES Modes: Electronic Codebook (ECB)

￭ ECB Strengths:
￭ Construction is un-chained

￭ Message can be processed in parallel—fast!
￭ No wait on previous block’s encryption

￭ ECB Drawbacks:
￭ Identical plaintext blocks produce same ciphertext

￭ This results in low diffusion
￭ Do larger block sizes increase diffusion?

￭ Yes—but at cost of higher memory footprint

25

original

encrypted

C1 C2 C3 C4 C5

C1 C2
C3

thread2
thread1

Stefan Nagy

DES Modes: Cipher Block Chaining (CBC)

￭ Cipher Block Chaining (CBC):
￭ Construction is ???

26

B1 B2 B3

C1 C2 C3

plaintext =

key ⟹

ciphertext =

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Enc Enc Enc

⊕ ⊕ ⊕
↓ ↓ ↓

Stefan Nagy

DES Modes: Cipher Block Chaining (CBC)

￭ Cipher Block Chaining (CBC):
￭ Construction is chained using previous cipher block (initialization vector for first block)

27

B1 B2 B3

C1 C2 C3

plaintext =

key ⟹

ciphertext =

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Enc Enc Enc

⊕ ⊕ ⊕IV
↓ ↓ ↓

Stefan Nagy

DES Modes: Cipher Block Chaining (CBC)

￭ CBC Strengths: ???

28

Stefan Nagy

DES Modes: Cipher Block Chaining (CBC)

￭ CBC Strengths:
￭ Chained construction far stronger than ECB

￭ More diffusion!
￭ Negates ECB’s need for super-large blocks

￭ CBC Drawbacks: ???

29

original

encrypted

Stefan Nagy

DES Modes: Cipher Block Chaining (CBC)

￭ CBC Strengths:
￭ Chained construction far stronger than ECB

￭ More diffusion!
￭ Negates ECB’s need for super-large blocks

￭ CBC Drawbacks:
￭ Completely sequential

￭ Cannot be parallelized—slower to process!
￭ No leveraging advances in multi-threading etc.

30

original

encrypted

Stefan Nagy

Exercise: Stream vs. Block Ciphers

31

Cipher Must wait
for data?

Parallel
processing? Confusion? Diffusion?

Stream
Ciphers

Block
Ciphers

Stefan Nagy

Exercise: Stream vs. Block Ciphers

32

Cipher Must wait
for data?

Parallel
processing? Confusion? Diffusion?

Stream
Ciphers No No Yes No

Block
Ciphers Yes Yes Yes Yes

Stefan Nagy

Questions?

33

Stefan Nagy

This time on CS 4440…

34

Key Exchange
Diffie Hellman

RSA
Attacking RSA

Key Management

Stefan Nagy

Key Exchange

35

Stefan Nagy

Recap: Integrity

￭ Problem: Send message via untrusted channel without being changed

￭ Provably-secure solution: truly random function (e.g., LavaRand)

￭ Practical solution: Pseudo-random Function Family (PRF)
￭ Input: arbitrary-length key k
￭ Output: fixed-length message digest
￭ Secure if practically indistinguishable from a random function (unless Mallory knows k)

￭ Real-world: message authentication codes built with cryptographic hashes
￭ E.g., HMAC-SHA256k(m)

36

Stefan Nagy

Recap: Confidentiality

￭ Problem: Send message with secrecy in presence of an eavesdropper

￭ Provably-secure solution: one-time pad with a key as long as m

￭ Practical solution: Pseudo-random Generator (PRG)
￭ Input: a small, truly random seed
￭ Output: arbitrary-length key stream
￭ Secure if practically indistinguishable from a random stream (unless Mallory knows k)

￭ Real-world: steam ciphers, block ciphers
￭ E.g., AES-128 + CBC mode

37

Stefan Nagy

Integrity and Confidentiality

￭ Common theme: ???

38

Stefan Nagy

Integrity and Confidentiality

￭ Common theme: the key

￭ Key requirements
￭ Must be known by both Alice and Bob
￭ Must be unknown by anyone else
￭ Must be infeasible to guess

￭ We’d like Alice and Bob to agree on a
key that satisfies those properties by
sending public messages to each other

39

Stefan Nagy

Multi-party Secure Communication

￭ Required initialization: pre-sharing the key
￭ Total keys to be shared: at most two

40

Alice Bob

Alice Bob

Stefan Nagy

Recap: Secure Channels

￭ What if you want confidentiality and integrity at the same time?
￭ Which would you perform first: encrypting or hashing? And why?

41

Integrity
Check

Confidentiality
Check

Stefan Nagy

Multi-party Secure Communication

￭ Required initialization: pre-sharing the key
￭ Total keys to be shared: at most two
￭ Four if you want confidentiality and integrity

42

Alice Bob

Alice Bob

One set of keys
for integrity,
another for

confidentiality

Stefan Nagy

Multi-party Secure Communication

￭ Problem: all keys must be shared securely
￭ What if Mallory intercept our key?
￭ Man in the Middle attack (MITM)

43

Alice Bob

Alice Bob

Mallory

Stefan Nagy

Asymmetric Encryption (aka “Public Key”)

￭ Key idea: want a asymmetric approach to find a symmetric key
￭ Don’t want to have to pre-share keys in advance

￭ Suppose users can have two keys: encryption and decryption
￭ Keys generated in pairs using well-understood mathematical relationship
￭ One key kept private (aka private key)

44

internetAlice

Bob

Tony

Silviopriv pub

priv

priv

priv

Stefan Nagy

Asymmetric Encryption (aka “Public Key”)

￭ Key idea: want a asymmetric approach to find a symmetric key
￭ Don’t want to have to pre-share keys in advance

￭ Suppose users can have two keys: encryption and decryption
￭ Keys generated in pairs using well-understood mathematical relationship
￭ One key kept private (aka private key)
￭ One key shared publicly (aka public key)

45

internetAlice
pub

priv pub

Bob

Tony

Silvio

priv

priv

priv

Stefan Nagy

Diff ie-Hellman Key Exchange

46

Stefan Nagy

Diffie Hellman

￭ Protocol for public key exchange
￭ Forward secrecy via a public conversation

without any pre-shared information

￭ Relies on a mathematical hardness
assumption called discrete log problem
(a problem believed to be NP-hard)

47

Stefan Nagy

Diffie Hellman

1. Initialization: Alice and Bob agree on protocol parameters
￭ p : a large prime such that (p-1) / 2 is also prime
￭ g : a small integer called the generator (e.g., 2)
￭ This is likely in a standard

48

Alice BobMallory
p, g p, g p, g

Stefan Nagy

Diffie Hellman

2. Secret Generation: Alice and Bob independently generate secret values
￭ … such that: 0 < secret_value < p
￭ A : Alice’s secret value
￭ B : Bob’s secret value

49

Alice BobMallory
p, g,

A
p, g p, g,

B

Stefan Nagy

Diffie Hellman

3. Transmit Secret: Alice and Bob independently create, exchange a message
￭ MA = g A mod p
￭ MB = g B mod p

50

Alice Bob
p, g,

A
p, g p, g,

B

Mallory MAMB

Stefan Nagy

Diffie Hellman

4. Circular Mixing:
￭ Alice computes: XA = (MB)A mod p

 = (gB mod p)A mod p
 = gBA mod p

￭ Bob computes: XB = (MA)B mod p
 = (gA mod p)B mod p
 = gAB mod p

51

Stefan Nagy

Diffie Hellman

4. Circular Mixing:
￭ Alice computes: XA = (MB)A mod p

 = (gB mod p)A mod p
 = gBA mod p

￭ Bob computes: XB = (MA)B mod p
 = (gA mod p)B mod p
 = gAB mod p

￭ Observe that XA == XB = X

5. Alice and Bob derive k := HMAC0(X) as their shared key

52

Stefan Nagy

A visual analogy of Diffie-Hellman

￭ Mixing in a new color is a little bit like
Diffie-Hellman’s exponentiation

￭ Hard to invert to original colors? Yes!

￭ Two different ways of arriving to the
same final result (i.e., the shared key)

53

Stefan Nagy

Questions?

54

Stefan Nagy

RSA

55

Stefan Nagy

Authenticity

￭ So far we’ve talked about confidentiality via public-key encryption

￭ Suppose Alice messages many people that all want to verify authenticity
￭ They want to know a message came from Alice—not someone else!

￭ Alice can’t share an authenticity key with everybody…
￭ Or else anybody—like Mallory—could forge messages!

￭ Real-world example: administrator of a source code repository
￭ If anyone had Alice’s authenticity key, they could submit fraudulent code patches!

56

Stefan Nagy 57

 kpriv kpub

Alice BobMallory

￭ Key generation: Alice generates key pair: kpub (public) and kpriv (private)

Authenticity via Digital Signatures

Stefan Nagy 58

Sign (M, kpriv)
Alice BobMallory

M , S

kpub

￭ Key generation: Alice generates key pair: kpub (public) and kpriv (private)

￭ Alice signs message M with kpriv resulting in signature S = Sign (M, kpriv)

Authenticity via Digital Signatures

Stefan Nagy 59

Sign (M, kpriv)
Alice BobMallory

M , S

Verf (S’, kpub)

￭ Key generation: Alice generates key pair: kpub (public) and kpriv (private)

￭ Alice signs message M with kpriv resulting in signature S = Sign (M, kpriv)

￭ Anyone possessing Alice’s kpub can check signature via Verf (S’, kpub)

M’ , S’

Authenticity via Digital Signatures

Stefan Nagy 60

Sign (M, kpriv)
Alice BobMallory

M , S

Verf (S’, kpub)

￭ Key generation: Alice generates key pair: kpub (public) and kpriv (private)

￭ Alice signs message M with kpriv resulting in signature S = Sign (M, kpriv)

￭ Anyone possessing Alice’s kpub can check signature via Verf (S’, kpub)
￭ If received message and signature verified, then message is authentic—from Alice!

M’ , S’

Authenticity via Digital Signatures

Stefan Nagy 61

Sign (M, kpriv)
Alice BobMallory

M , S

Verf (S’, kpub)

￭ Key generation: Alice generates key pair: kpub (public) and kpriv (private)

￭ Alice signs message M with kpriv resulting in signature S = Sign (M, kpriv)

￭ Anyone possessing Alice’s kpub can check signature via Verf (S’, kpub)
￭ If received message and signature verified, then message is authentic—from Alice!

M’ , S’

Authenticity via Digital Signatures

Unforgeability: computationally infeasible
for Mallory to guess S or Alice’s kpriv

… even if Mallory knows Alice’s kpub or
other signatures from other messages!

Stefan Nagy

RSA

￭ A scheme for public-key encryption
￭ We’ll use it primarily for digital signatures

￭ Best know and most common algorithm
for public-key message encryption

￭ Relies on integer factorization problem
(maybe believed to be NP-hard?)

￭ Inspired by Diffie-Hellman!

62

Stefan Nagy

RSA Digital Signatures

63

Alice BobMallory

N

1. Pick large (e.g., 1024 bits), and random, and prime numbers p and q
￭ N = p * q
￭ N serves as the modulus for exponentiation

N

Stefan Nagy

RSA Digital Signatures

64

Alice BobMallory

e, N

2. Public key = (e,N) where e is relatively prime to (p-1)(q-1)

N

Stefan Nagy

RSA Digital Signatures

65

d, N

Alice BobMallory

e, N

2. Public key = (e,N) where e is relatively prime to (p-1)(q-1)

3. Private key = (d,N) where (e*d) mod ((p-1)(q-1)) = 1

Stefan Nagy

RSA Digital Signatures

66

Sign (M, d, N)

Alice BobMallory
M , S

e, N

2. Public key = (e,N) where e is relatively prime to (p-1)(q-1)

3. Private key = (d,N) where (e*d) mod ((p-1)(q-1)) = 1

4. Alice signs: S = Sign(M, d, N) = (M)d mod N

Stefan Nagy

RSA Digital Signatures

2. Public key = (e,N) where e is relatively prime to (p-1)(q-1)

3. Private key = (d,N) where (e*d) mod ((p-1)(q-1)) = 1

4. Alice signs: S = Sign(M, d, N) = (M)d mod N

5. Bob verifies: Verif(S’, e, N) = (S’)e mod N == M’

67

Sign (M, d, N)

Alice BobMallory
M , S

Verif (S’, e, N)

M’ , S’

== M’

Stefan Nagy

Messages as Integers

￭ Here, message M really means a really-large integer
￭ Both Alice and Bob generate these from the plaintext message

￭ Transmitted/received alongside the plaintext message
￭ Used by both Alice/Bob in signature generation/verification

￭ Example based on PKCS #1 v1.5 standard:

68

SHA1(“Go Chiefs!”)

Stefan Nagy

RSA for Confidentiality and Integrity

￭ Subtle fact: RSA can also be used for integrity and confidentiality

￭ RSA for integrity:
￭ Goal: Prove that message wasn’t tampered
￭ Encrypt (“sign”) with sender’s private key
￭ Decrypt (“verify”) with sender’s public key

69

Stefan Nagy

RSA for Confidentiality and Integrity

￭ Subtle fact: RSA can also be used for integrity and confidentiality

￭ RSA for integrity:
￭ Goal: Prove that message wasn’t tampered
￭ Encrypt (“sign”) with sender’s private key
￭ Decrypt (“verify”) with sender’s public key

￭ RSA for confidentiality:
￭ Goal: Allow only intended recipient to read
￭ Encrypt with recipient’s public key
￭ Decrypt with recipient’s private key

70

Stefan Nagy

Using RSA

￭ To generate an RSA key-pair:

$ openssl genrsa -out private.pem 1024

$ openssl rsa -pubout -in private.pem > public.pem

￭ To sign a message with RSA:

$ openssl rsautl -sign -inkey private.pem -in a.txt > sig

￭ To verify a signed message with RSA:

$ openssl rsautl -verify -pubin -inkey public.pem -in sig

71

Stefan Nagy

Recap: Advanced Encryption Standard (AES)

￭ Today’s most common block cipher
￭ Designed by NIST competition, with a very long public discussion
￭ Widely believed to be secure… but we don’t know how to prove it

￭ Variable key size:
￭ 128-bit fairly common; also 192-bit and 256-bit versions

￭ Input message is split into 128-bit blocks

￭ Ten rounds:
￭ Split k into ten subkeys (key scheduling)
￭ Performs set of identical operations ten times (each with different subkey)

72

Stefan Nagy

RSA vs. AES

￭ RSA is 1000x slower than AES

￭ RSA is more complex than AES

￭ RSA has 10x larger keys than AES (e.g., 2048 bits vs. 192 bits)

73

Stefan Nagy

RSA vs. AES

￭ RSA is 1000x slower than AES

￭ RSA is more complex than AES

￭ RSA has 10x larger keys than AES (e.g., 2048 bits vs. 192 bits)

￭ So why prefer RSA instead of AES?

74

Stefan Nagy 75

Stefan Nagy

RSA vs. AES

￭ RSA is 1000x slower than AES

￭ RSA is more complex than AES

￭ RSA has 10x larger keys than AES (e.g., 2048 bits vs. 192 bits)

￭ So why prefer RSA instead of AES? RSA requires no shared secrets

76

Stefan Nagy

Questions?

77

Stefan Nagy

Attacking RSA Digital Signatures:
Bleichenbacher’s Attack

78

Stefan Nagy 79

Sign (M, kpriv)
Alice BobMallory

M , S

Verf (S’, kpub)

￭ Key generation: Alice generates key pair: kpub (public) and kpriv (private)

￭ Alice signs message M with kpriv resulting in signature S = Sign (M, kpriv)

￭ Anyone possessing Alice’s kpub can check signature via Verf (S’, kpub)
￭ If received message and signature verified, then message is authentic—from Alice!

M’ , S’

Recap: Authenticity via Digital Signatures

Stefan Nagy 80

Sign (M, kpriv)
Alice BobMallory

M , S

Verf (S’, kpub)

￭ Key generation: Alice generates key pair: kpub (public) and kpriv (private)

￭ Alice signs message M with kpriv resulting in signature S = Sign (M, kpriv)

￭ Anyone possessing Alice’s kpub can check signature via Verf (S’, kpub)
￭ If received message and signature verified, then message is authentic—from Alice!

M’ , S’

Recap: Authenticity via Digital Signatures

Unforgeability: computationally infeasible
for Mallory to guess S or Alice’s kpriv

… even if Mallory knows Alice’s kpub or
other signatures from other messages!

Stefan Nagy 81

Sign (M, kpriv)
Alice BobMallory

M , S

Verf (S’, kpub)

￭ Key generation: Alice generates key pair: kpub (public) and kpriv (private)

￭ Alice signs message M with kpriv resulting in signature S = Sign (M, kpriv)

￭ Anyone possessing Alice’s kpub can check signature via Verf (S’, kpub)
￭ If received message and signature verified, then message is authentic—from Alice!

M’ , S’

Recap: Authenticity via Digital Signatures

Mallory wants to forge signatures to
impersonate Alice, but she doesn’t

have Alice’s private key—it’s private!

RSA’s Verification: (S’)e mod N == M’

Stefan Nagy

Bleichenbacher’s Signature Forgery Attack

￭ Pencil-and-paper attack by Daniel
Bleichenbacher at CRYPTO 2006

￭ Exploits signature verification in
insecure RSA implementations
￭ Specifically the RSA PKCS #1 standard

￭ Wreaked havoc on OpenSSL, Firefox

82

Stefan Nagy

Can we exploit signature verification?

￭ Bob checks if message == (signature)exponent modulo (N)
￭ In this problem, we know message and want to find signature

83

Stefan Nagy

Can we exploit signature verification?

￭ Bob checks if message == (signature)exponent modulo (N)
￭ In this problem, we know message and want to find signature

￭ Recall N computed by multiplying two huge prime numbers
￭ Mallory has zero hope of figuring these factors out (integer factorization problem)

84

Stefan Nagy

Can we exploit signature verification?

￭ Bob checks if message == (signature)exponent modulo (N)
￭ In this problem, we know message and want to find signature

￭ Recall N computed by multiplying two huge prime numbers
￭ Mallory has zero hope of figuring these factors out (integer factorization problem)

￭ Bob checks if message == (signature)exponent modulo
(HugeUnfactorableNum)

85

Stefan Nagy

Can we exploit signature verification?

￭ Bob checks if message == (signature)exponent modulo (N)
￭ In this problem, we know message and want to find signature

￭ Recall N computed by multiplying two huge prime numbers
￭ Mallory has zero hope of figuring these factors out (integer factorization problem)

￭ Bob checks if message == (signature)exponent modulo
(HugeUnfactorableNum)

￭ Question: What if the exponent is a really small integer?

86

Stefan Nagy

Detour: Modulo Mania!

￭ What does (A mod B) equal if…

￭ A is greater than B
￭ 10 mod 7 = ?
￭ 10 mod 8 = ?
￭ 8 mod 3 = ?

87

Stefan Nagy

Detour: Modulo Mania!

￭ What does (A mod B) equal if…

￭ A is greater than B
￭ 10 mod 7 = 3
￭ 10 mod 8 = 2
￭ 8 mod 3 = 2

￭ A is less than B
￭ 7 mod 10 = ?
￭ 8 mod 10 = ?
￭ 3 mod 8 = ?

88

Stefan Nagy

Detour: Modulo Mania!

￭ What does (A mod B) equal if…

￭ A is greater than B
￭ 10 mod 7 = 3
￭ 10 mod 8 = 2
￭ 8 mod 3 = 2

￭ A is less than B
￭ 7 mod 10 = 7
￭ 8 mod 10 = 8
￭ 3 mod 8 = 3

89

Stefan Nagy

Detour: Modulo Mania!

￭ What does (A mod B) equal if…

￭ A is greater than B
￭ 10 mod 7 = 3
￭ 10 mod 8 = 2
￭ 8 mod 3 = 2

￭ A is less than B
￭ 7 mod 10 = 7
￭ 8 mod 10 = 8
￭ 3 mod 8 = 3

90

Observation:
If A is less than B…
Then (A mod B) = A

Stefan Nagy

￭ if message == (signature)exponent modulo (HugeUnfactorableNumber)
￭ But, we know that (signature)exponent << modulo (HugeUnfactorableNumber)

91

Exploiting Small Exponents

Stefan Nagy

￭ if message == (signature)exponent modulo (HugeUnfactorableNumber)
￭ But, we know that (signature)exponent << modulo (HugeUnfactorableNumber)

￭ if message == (signature)exponent modulo (HugeUnfactorableNumber)

92

Exploiting Small Exponents

Stefan Nagy

￭ if message == (signature)exponent modulo (HugeUnfactorableNumber)
￭ But, we know that (signature)exponent << modulo (HugeUnfactorableNumber)

￭ if message == (signature)exponent modulo (HugeUnfactorableNumber)

￭ if message == (signature)exponent → if message == (signature)3

93

Exploiting Small Exponents

Stefan Nagy

￭ if message == (signature)exponent modulo (HugeUnfactorableNumber)
￭ But, we know that (signature)exponent << modulo (HugeUnfactorableNumber)

￭ if message == (signature)exponent modulo (HugeUnfactorableNumber)

￭ if message == (signature)exponent → if message == (signature)3

￭ Problem: With only the message, how can Mallory forge Alice’s signature?

94

Exploiting Small Exponents

Stefan Nagy

￭ if message == (signature)exponent modulo (HugeUnfactorableNumber)
￭ But, we know that (signature)exponent << modulo (HugeUnfactorableNumber)

￭ if message == (signature)exponent modulo (HugeUnfactorableNumber)

￭ if message == (signature)exponent → if message == (signature)3

￭ Problem: With only the message, how can Mallory forge Alice’s signature?

95

Exploiting Small Exponents

Taking the RSA message’s Nth
root will reveal the signature!

… where N = our tiny exponent!

Stefan Nagy

A Correct Message Construction

96

SHA1(“Go Chiefs!”)
￭ Assume key is 2048 bits long

￭ Prefix FF’s must be ((2048/8)—38) bytes
￭ = 218 total FF’s

￭ Where does 38 come from?

Stefan Nagy 97

SHA1(“Go Chiefs!”)
￭ Assume key is 2048 bits long

￭ Prefix FF’s must be ((2048/8)—38) bytes
￭ = 218 total FF’s

￭ Where does 38 come from?
￭ 20-byte SHA-1 digest
￭ 15-byte ASN.1 hash specifier
￭ 3 more bytes (00, 01, 00)

If number of FF’s don’t
match 218, reject message!

A Correct Message Construction

Stefan Nagy

Can we take its Nth root?

￭ Nth-rooting the correct message construction likely won’t work—why?

98

Stefan Nagy

￭ Nth-rooting the correct message construction likely won’t work—why?

￭ It is highly unlikely that you get a perfect root!
￭ Your signature has to be an integer—no decimal remainder!

￭ Thus, message will not equal (signature)exponent

￭ Attack fails!

99

Can we take its Nth root?

Stefan Nagy 100

SHA1(“Go Chiefs!”)

???????????????

￭ Assume key is 2048 bits long

￭ What if server doesn’t count FF’s?
￭ We could use just one FF
￭ And ??? at the end

An Insecure Message Construction

Stefan Nagy 101

SHA1(“Go Chiefs!”)

217 arbitrary bytes

￭ Assume key is 2048 bits long

￭ What if server doesn’t count FF’s?
￭ We could use just one FF
￭ And 217 arbitrary bytes at the end

￭ These end up not being checked!

An Insecure Message Construction

Stefan Nagy

￭ How about Nth-rooting the insecure message construction?

102

Can we take its Nth root?

Stefan Nagy

￭ How about Nth-rooting the insecure message construction?

￭ It is highly unlikely that you get a perfect root!
￭ Your signature has to be an integer—no decimal remainder!

￭ Thus, message will not equal (signature)exponent

￭ Attack fails!

103

Can we take its Nth root?

Stefan Nagy

￭ How about Nth-rooting the insecure message construction?

￭ It is highly unlikely that you get a perfect root!
￭ Your signature has to be an integer—no decimal remainder!

￭ Thus, message will not equal (signature)exponent

￭ Attack fails!

￭ But… we know that the last 217 bytes of the message aren’t checked by the server!

104

Can we take its Nth root?

Stefan Nagy

￭ How about Nth-rooting the insecure message construction?

￭ It is highly unlikely that you get a perfect root!
￭ Your signature has to be an integer—no decimal remainder!

￭ Thus, message will not equal (signature)exponent

￭ Attack fails!

￭ But… we know that the last 217 bytes of the message aren’t checked by the server!
￭ Thus, we can “tweak” our signature such that message == (signature)exponent

105

Can we take its Nth root?

Stefan Nagy

￭ How about Nth-rooting the insecure message construction?

￭ It is highly unlikely that you get a perfect root!
￭ Your signature has to be an integer—no decimal remainder!

￭ Thus, message will not equal (signature)exponent

￭ Attack fails!

￭ But… we know that the last 217 bytes of the message aren’t checked by the server!
￭ Thus, we can “tweak” our signature such that message == (signature)exponent

￭ When server computes (signature)exponent, will get slightly different message—that’s ok!

106

Can we take its Nth root?

Stefan Nagy

￭ Write the number 300 in binary:

1 0 0 1 0 1 1 0 0

107

Exploiting Weak Padding Checking

Stefan Nagy

￭ Write the number 300 in binary:

1 0 0 1 0 1 1 0 0

￭ Take its cube root:

300^(⅓) = 6.6943 (not an integer!)

108

Exploiting Weak Padding Checking

Stefan Nagy

￭ Write the number 300 in binary:

1 0 0 1 0 1 1 0 0

￭ Take its cube root:

300^(⅓) = 6.6943 (not an integer!)

￭ Round up to the nearest integer, cube that, and write in binary form:

7^(3) = 1 0 1 0 1 0 1 1 1

109

Exploiting Weak Padding Checking

Stefan Nagy

￭ Compare 300 and 343 side-by-side:

1 0 0 1 0 1 1 0 0 (bytes 3–9 don’t match!)

1 0 1 0 1 0 1 1 1

110

Exploiting Weak Padding Checking

Stefan Nagy

￭ Compare 300 and 343 side-by-side:

1 0 0 1 0 1 1 0 0 (bytes 3–9 don’t match!)

1 0 1 0 1 0 1 1 1

￭ Pretend that everything after the first two bytes is ignored by the server

1 0 0 1 0 1 1 0 0 (only care about bytes 1–2)

1 0 1 0 1 0 1 1 1

111

Exploiting Weak Padding Checking

Stefan Nagy

￭ Compare 300 and 343 side-by-side:

1 0 0 1 0 1 1 0 0 (bytes 3–9 don’t match!)

1 0 1 0 1 0 1 1 1

￭ Pretend that everything after the first two bytes is ignored by the server

1 0 0 1 0 1 1 0 0 (only care about bytes 1–2)

1 0 1 0 1 0 1 1 1

￭ Success! Check passes

112

Exploiting Weak Padding Checking

Stefan Nagy

￭ Compare 300 and 343 side-by-side:

1 0 0 1 0 1 1 0 0 (bytes 3–9 don’t match!)

1 0 1 0 1 0 1 1 1

￭ Pretend that everything after the first two bytes is ignored by the server

1 0 0 1 0 1 1 0 0 (only care about bytes 1–2)

1 0 1 0 1 0 1 1 1

￭ Success! Check passes

113

Small exponent + insecure padding
enables Mallory to forge signatures…
without knowing Alice’s private key!

Exploiting Weak Padding Checking

Stefan Nagy

Questions?

114

Stefan Nagy

Key Management Rules

115

Stefan Nagy

Rule #1

￭ Each key should have only one purpose
￭ Different RSA keys for signing and encrypting
￭ Different symmetric keys for encrypting and MACing
￭ Different keys for Alice → Bob and Bob → Alice
￭ Different keys for different protocols

￭ Reason: prevent attacker from “repurposing” content
￭ Example: reflection attack

116

Stefan Nagy

Rule #2

￭ Vulnerability of a key increases with time and use

￭ Change your keys periodically!
￭ Use session keys
￭ Encrypt your keys
￭ Erase keys from memory when you’re done with them
￭ Don’t let your keys get swapped out to disk

117

Stefan Nagy

Rule #3

￭ Keep your keys far from the attacker!
￭ Memory of networked and unguarded PC = bad
￭ Memory of non-networked, guarded PC = not as bad
￭ Stored in tamper-resistant device: better

￭ Hardware Security Module (HSM)
￭ See FIPS 140-2: “Requirements for Crypto Modules”

￭ Stored HSM in locked safe: best
￭ Layered defenses / defense-in-depth

118

Stefan Nagy

Rule #4

￭ Protect yourself against compromise of old keys
￭ Bad practice: Alice tells Bob, “Here’s the new key: ...” encrypted under the old key
￭ Adversary can record this, then attack old key
￭ Old key then used to uncover new key

￭ Worse yet:
￭ If long chain of keys, he can attack anyone—chain unravels!
￭ Chain only as strong as its weakest link!

￭ Forward secrecy: learning old key shouldn’t help adversary learn new key

119

Stefan Nagy

Next time on CS 4440…

120

Security in Practice: Cryptocurrency

