
Stefan Nagy

Week 3: Lecture A
Improved Cipher Designs

Tuesday, September 3, 2024

1

Stefan Nagy

Announcements

￭ Project 1: Crypto released (see Assignments page on course website)
￭ Deadline: Thursday, September 19th by 11:59 PM

2

http://cs.utah.edu/~snagy/courses/cs4440/assignments/

Stefan Nagy 3

Stefan Nagy

Project Tips

￭ Projects are challenging—you’re performing real-world attacks!
￭ Build off of lecture concepts
￭ Make sure you understand the lectures
￭ Prepare you to defend in the real world

￭ Suggested strategy: get high-level idea down, then start implementing
1. Go through assignment and start sketching-out your approach
2. Come to Office Hours and ask if you’re on the right track!
3. Then start building your program

￭ Don’t get discouraged—we are here to help!
￭ Most issues are cleared up in a few minutes of white-boarding

4

Stefan Nagy

Announcements

5

See Discord for
meeting info!

utahsec.cs.utah.edu

Stefan Nagy

Questions?

6

Stefan Nagy

Last time on CS 4440…

7

Message Confidentiality
Substitution Ciphers

Frequency Cryptanalysis

Stefan Nagy

Message Confidentiality

￭ Confidentiality: ???

8

Alice BobMallory

Stefan Nagy

Message Confidentiality

￭ Confidentiality: ensure that only trusted parties can read the message
￭ Terminology: ???

9

Alice BobMallory

Stefan Nagy

Message Confidentiality

￭ Confidentiality: ensure that only trusted parties can read the message
￭ Terminology:

￭ p plaintext: original, readable message
￭ c ciphertext: transmitted, unreadable message
￭ k secret key: known only to Alice and Bob; facilitates p → c and c → p
￭ E encryption function: E (p, k) → c
￭ D decryption function: D (c, k) → p

10

c c

E (p, k) D (c, k)
k kAlice BobMallory

Stefan Nagy

Confidentiality via Ciphers

￭ We define a key as ???

11

A H U TU T E S

B H Z M

? ? ? ?

Stefan Nagy

Confidentiality via Ciphers

￭ We define a key as a set of shifts

￭ Each shift represented by a letter
￭ Relative position in the alphabet

12

A H U TU T E S

B H Z M

B A F T

1 0 5 19

Stefan Nagy

Confidentiality via Ciphers

￭ We define a key as a set of shifts

￭ Each shift represented by a letter
￭ Relative position in the alphabet

￭ Shift goes past end of alphabet?

13

A H U TU T E S

B H Z M

B A F T

1 0 5 19

T U V W X Y Z
0 1 2 3 4 5 6

???

Stefan Nagy

Confidentiality via Ciphers

￭ We define a key as a set of shifts

￭ Each shift represented by a letter
￭ Relative position in the alphabet

￭ Shift goes past end of alphabet?
￭ Wrap around to beginning!

14

A H U TU T E S

B H Z M

B A F T

1 0 5 19

T U V W X Y Z

J K LG H ID E FA B C M

0 1 2 3 4 5 6

7 8 9 0 1 2 3 4 5 6 7 8 9

Stefan Nagy

Caesar Ciphers

￭ Really old school cryptography
￭ First recorded use: Julius Caesar (100–144 B.C.)

￭ Replaces each plaintext letter with ???

15

Stefan Nagy

Caesar Ciphers

￭ Really old school cryptography
￭ First recorded use: Julius Caesar (100–144 B.C.)

￭ Replaces each plaintext letter with one a
fixed number of places down the alphabet
￭ Encryption: ci := (pi + k) mod 26
￭ Decryption: pi := (ci - k) mod 26

￭ Example for k = 3:
￭ Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ
￭ +Shift: 33333333333333333333333333
￭ =Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC

￭ Plain: go utes beat wash st
￭ +Key: 33 3333 3333 3333 33
￭ =Cipher: jr xwhv ehdw zdvk vw

16

Stefan Nagy

Caesar Cipher Cryptanalysis

17

Brute-forcing
every possible key

Cryptanalysis

Stefan Nagy

Caesar Cryptanalysis via Chi-Square Test

18

Expected English language letter frequencies:Expected English language letter frequencies:

Example ciphertext string (with a zero reverse shift): LJSGUKJYSEKDLJGGAKWOGLHWLJNWFZLVEX

Stefan Nagy

Caesar Cryptanalysis via Chi-Square Test

19

X 2L = (5.0 – 1.3685)2 / 1.3685

= 9.6367
OL = observed count for letter ‘L’ = 5.0

EL = expected count for letter ‘L’
= EnglishFreqL * StringLength
= 0.04025 * 34
= 1.3685

Expected English language letter frequencies:Expected English language letter frequencies:

Example ciphertext string (with a zero reverse shift): LJSGUKJYSEKDLJGGAKWOGLHWLJNWFZLVEX

Stefan Nagy

Caesar Cryptanalysis via Chi-Square Test

20

Example ciphertext string (with a zero reverse shift): LJSGUKJYSEKDLJGGAKWOGLHWLJNWFZLVEX

X 2L = (5.0 – 1.3685)2 / 1.3685

= 9.6367

1. Add X2 scores for all 26 alphabet letters
2. Final sum = that reverse shift’s X2 score
3. Repeat for the 25 other reverse shifts
4. Lowest score = the correct reverse shift
5. Mapped as forward shift = the key letter

OL = observed count for letter ‘L’ = 5.0

EL = expected count for letter ‘L’
= EnglishFreqL * StringLength
= 0.04025 * 34
= 1.3685

Expected English language letter frequencies:

Stefan Nagy

Vigènere Ciphers

￭ First described by Bellaso in 1553
￭ Later misattributed to Vigènere

￭ Encrypts successive letters via ???

21

Stefan Nagy

Vigènere Ciphers

￭ First described by Bellaso in 1553
￭ Later misattributed to Vigènere

￭ Encrypts successive letters via sequence of Caesar
ciphers determined by the letters of a keyword

￭ For an n-letter keyword k …
￭ Encryption: ci := (pi + ki mod n) mod 26
￭ Decryption: pi := (ci - ki mod n) mod 26

￭ Example for k = ABC (i.e., k0 = 0, k1 = 1, k2 = 2)
￭ Plain: bbbbbb amazon
￭ +Key: 012012 012012
￭ =Cipher: bcdbcd anczpp

22

Stefan Nagy

Vigènere Ciphers

￭ First described by Bellaso in 1553
￭ Later misattributed to Vigènere

￭ Encrypts successive letters via sequence of Caesar
ciphers determined by the letters of a keyword

￭ For an n-letter keyword k …
￭ Encryption: ci := (pi + ki mod n) mod 26
￭ Decryption: pi := (ci - ki mod n) mod 26

￭ Example for k = ABC (i.e., k0 = 0, k1 = 1, k2 = 2)
￭ Plain: bbbbbb amazon
￭ +Key: 012012 012012
￭ =Cipher: bcdbcd anczpp

23

Can we still perform frequency
analysis for Vigenere ciphers?

Stefan Nagy

Vigènere Ciphers

￭ First described by Bellaso in 1553
￭ Later misattributed to Vigènere

￭ Encrypts successive letters via sequence of Caesar
ciphers determined by the letters of a keyword

￭ For an n-letter keyword k …
￭ Encryption: ci := (pi + ki mod n) mod 26
￭ Decryption: pi := (ci - ki mod n) mod 26

￭ Example for k = ABC (i.e., k0 = 0, k1 = 1, k2 = 2)
￭ Plain: bbbbbb amazon
￭ +Key: 012012 012012
￭ =Cipher: bcdbcd anczpp

24

Yes—just partition it down into N
Caesar ciphers (where N = key size)

Can we still perform frequency
analysis for Vigenere ciphers?

Stefan Nagy

Finding Key Size via Kasiski Method

25

THERE ARETW OWAYS OFCON STRUC TINGA SOFTW AREDE SIGNO NEWAY
￭ Example:

SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY
LFWKI MJCLP SISWK HJOGL KMVGU RAGKM KMXMA MJCVX WUYLG GIISW
ISTOM AKEIT SOSIM PLETH ATTHE REARE OBVIO USLYN ODEFI CIENC
STEMS YSTEM SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST
ALXAE YCXMF KMKBQ BDCLA EFLFW KIMJC GUZUG SKECZ GBWYM OACFV
IESAN DTHEO THERW AYIST OMAKE ITSOC OMPLI CATED THATT HEREA
EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY STEMS YSTEM
MQKYF WXTWM LAIDO YQBWF GKSDI ULQGV SYHJA VEFWB LAEFL FWKIM
RENOO BVIOU SDEFI CIENC IESTH EFIRS TMETH ODISF ARMOR EDIFF
SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY
JCFHS NNGGN WPWDA VMQFA AXWFZ CXBVE LKWML AVGKY EDEMJ XHUXD

p

c

p

c

p

c

p

c

Stefan Nagy

Finding Key Size via Kasiski Method

￭ Pick realistic key lengths; a length of two or three is probably short

26

Dist. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

74 x

72 x x x x x x x

66 x x x x

36 x x x x x x

32 x x x x

30 x x x x x x

Stefan Nagy

Finding Key Size via Kasiski Method

￭ Then, group letters by columns—they received equal shifts!

27

LFWKIM JCLPSI SWKHJO GLKMVG URAGKM KMXMAM JCVXWU YLGGII SWALXA

EYCXMF KMKBQB DCLAEF LFWKIM JCGUZU GSKECZ GBWYMO ACFVMQ KYFWXT

WMLAID OYQBWF GKSDIU LQGVSY HJAVEF WBLAEF LFWKIM JCFHSN NGGNWP

WDAVMQ FAAXWF ZCXBVE LKWMLA VGKYED EMJXHU XD

123456 123456 123456 123456 123456 123456 123456 123456 123456

123456 123456 123456 123456 123456 123456 123456 123456 123456

123456 123456 123456 123456 123456 123456 123456 123456 123456

123456 123456 123456 123456 123456 123456 12

Stefan Nagy

Recap: Breaking Vigènere

1. ???

28

Stefan Nagy

Recap: Breaking Vigènere

1. Identify the key length:
￭ Project 1: keys will always be of length eight
￭ Extra Credit: key varies—use Kasiski method!

2. ???

29

Stefan Nagy

Recap: Breaking Vigènere

1. Identify the key length:
￭ Project 1: keys will always be of length eight
￭ Extra Credit: key varies—use Kasiski method!

2. Divide ciphertext into N columns:
￭ Why? Because Vigènere uses a repeating key
￭ Vigènere cipher is a set of N Caesar ciphers

3. ???

30

ELFRQVOU
PIUGQHGQ
ELIWOTYE
WMOUPWKU

Col4 = RGWU…

Stefan Nagy

Recap: Breaking Vigènere

1. Identify the key length:
￭ Project 1: keys will always be of length eight
￭ Extra Credit: key varies—use Kasiski method!

2. Divide ciphertext into N columns:
￭ Why? Because Vigènere uses a repeating key
￭ Vigènere cipher is a set of N Caesar ciphers

3. Perform cryptanalysis on each column:
￭ Find all candidate reverse shifts per column

31

ELFRQVOU
PIUGQHGQ
ELIWOTYE
WMOUPWKU

Col4 = RGWU…

Candidate Col4 plaintexts:
● shift0 = RGWU…
● shift-1 = QFVT…
● shift-2 = PEUS…
● shift-3 = ODTR…

 ...
● shift-25 = SHXV…

Stefan Nagy

Candidate Col4 X2 scores:
● shift0 = 10.50
● shift-1 = 20.02
● shift-2 = 5.135
● shift-3 = 2.156

 ...
● shift-25 = 13.31

Recap: Breaking Vigènere

1. Identify the key length:
￭ Project 1: keys will always be of length eight
￭ Extra Credit: key varies—use Kasiski method!

2. Divide ciphertext into N columns:
￭ Why? Because Vigènere uses a repeating key
￭ Vigènere cipher is a set of N Caesar ciphers

3. Perform cryptanalysis on each column:
￭ Find all candidate reverse shifts per column
￭ Chi-square test: find best-fit reverse shift

32

ELFRQVOU
PIUGQHGQ
ELIWOTYE
WMOUPWKU

Col4 = RGWU…

Candidate Col4 plaintexts:
● shift0 = RGWU…
● shift-1 = QFVT…
● shift-2 = PEUS…
● shift-3 = ODTR…

 ...
● shift-25 = SHXV…

X2 = X2A + X
2
B + X

2
C

 + ... + X2Z

Stefan Nagy

Candidate Col4 X2 scores:
● shift0 = 10.50
● shift-1 = 20.02
● shift-2 = 5.135
● shift-3 = 2.156

 ...
● shift-25 = 13.31

Recap: Breaking Vigènere

1. Identify the key length:
￭ Project 1: keys will always be of length eight
￭ Extra Credit: key varies—use Kasiski method!

2. Divide ciphertext into N columns:
￭ Why? Because Vigènere uses a repeating key
￭ Vigènere cipher is a set of N Caesar ciphers

3. Perform cryptanalysis on each column:
￭ Find all candidate reverse shifts per column
￭ Chi-square test: find best-fit reverse shift
￭ Compute forward shift = column’s key letter

33

ELFRQVOU
PIUGQHGQ
ELIWOTYE
WMOUPWKU

Col4 = RGWU…

Candidate Col4 plaintexts:
● shift0 = RGWU…
● shift-1 = QFVT…
● shift-2 = PEUS…
● shift-3 = ODTR…

 ...
● shift-25 = SHXV…

X2 = X2A + X
2
B + X

2
C

 + ... + X2Z

Smallest X2 = correct reverse shift for Col4!

Stefan Nagy

Candidate Col4 X2 scores:
● shift0 = 10.50
● shift-1 = 20.02
● shift-2 = 5.135
● shift-3 = 2.156

 ...
● shift-25 = 13.31

Recap: Breaking Vigènere

1. Identify the key length:
￭ Project 1: keys will always be of length eight
￭ Extra Credit: key varies—use Kasiski method!

2. Divide ciphertext into N columns:
￭ Why? Because Vigènere uses a repeating key
￭ Vigènere cipher is a set of N Caesar ciphers

3. Perform cryptanalysis on each column:
￭ Find all candidate reverse shifts per column
￭ Chi-square test: find best-fit reverse shift
￭ Compute forward shift = column’s key letter
￭ Assemble all N column keys = the Vigènere key!

34

ELFRQVOU
PIUGQHGQ
ELIWOTYE
WMOUPWKU

Col4 = RGWU…

Candidate Col4 plaintexts:
● shift0 = RGWU…
● shift-1 = QFVT…
● shift-2 = PEUS…
● shift-3 = ODTR…

 ...
● shift-25 = SHXV…

X2 = X2A + X
2
B + X

2
C

 + ... + X2Z

Smallest X2 = correct reverse shift for Col4!

Rinse and repeat for
remaining columns
Col1, Col2, Col3, … !

Stefan Nagy

Questions?

35

Stefan Nagy

This time on CS 4440…

36

Pseudo-random Keys
One-time Pads

Transposition Ciphers
Cipher Metrics

Stefan Nagy

Pseudo-random Keys

37

Stefan Nagy

Recap: Confidentiality via Substitution Ciphers

￭ Clearly, simple substitution ciphers are vulnerable to frequency analysis
￭ Root cause: ???

38

Stefan Nagy

Recap: Confidentiality via Substitution Ciphers

￭ Clearly, simple substitution ciphers are vulnerable to frequency analysis
￭ Root cause: the key length is much smaller than the plaintext length

39

Stefan Nagy

Recap: Confidentiality via Substitution Ciphers

￭ Clearly, simple substitution ciphers are vulnerable to frequency analysis
￭ Root cause: the key length is much smaller than the plaintext length

40

How can we create a better key
to improve confidentiality?

Stefan Nagy 41

Stefan Nagy

Recap: Confidentiality via Substitution Ciphers

￭ Clearly, simple substitution ciphers are vulnerable to frequency analysis
￭ Root cause: the key length is much smaller than the plaintext length

42

How can we create a better key
to improve confidentiality?

Plaintext-length keys will deter
frequency analysis!

Stefan Nagy

Generating Keys

￭ Functions: ???

43

Stefan Nagy

Generating Keys

￭ Functions: takes input
and generates output
￭ E.g., Hash functions
￭ E.g., HMAC functions

￭ Generators: ???

44

“I really
love CS
4440!”

a6be04fc96f03c1f
45961259b0793a13

Stefan Nagy

Generating Keys

￭ Functions: takes input
and generates output
￭ E.g., Hash functions
￭ E.g., HMAC functions

￭ Generators: produces
output out of thin air
￭ E.g., number generators
￭ E.g., HMAC secret keys

45

“I really
love CS
4440!”

a6be04fc96f03c1f
45961259b0793a13

1 1 1 0 0 0 0 1 0 0 0 1 1 1 0
1 1 0 0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 1 0 1 0 0 0 1 0
0 1 1 1 1 1 1 1 0 1 1 0 1 0 1

Stefan Nagy

An ideal key is random…

46

Stefan Nagy 47

Stefan Nagy

Generating Random Keys

￭ Physical randomness:
￭ Coin flips
￭ Atomic decay
￭ Thermal noise
￭ Electromagnetic noise
￭ Physical variation

￭ Clock drift
￭ DRAM decay
￭ Image sensor errors
￭ SRAM startup-state

￭ Lava Lamps

48

Stefan Nagy

Generating Random Keys

￭ Harnessing physical randomness: “LavaRand”
￭ True randomness from lava lamps
￭ Used by CloudFlare today

49

Stefan Nagy

Generating Random Keys

￭ Harnessing physical randomness: “LavaRand”
￭ True randomness from lava lamps
￭ Used by CloudFlare today

50

Highest guarantees of security

Stefan Nagy

Generating Random Keys

￭ Harnessing physical randomness: “LavaRand”
￭ True randomness from lava lamps
￭ Used by CloudFlare today

51

Highest guarantees of security

Difficult to use, or rate-limited

Stefan Nagy

“Pseudo” Randomness

￭ What is true randomness?
￭ Physical process that’s inherently random
￭ Secure yet impractical

￭ Scarce, hard to use
￭ Rate-limited

52

Stefan Nagy

“Pseudo” Randomness

￭ What is true randomness?
￭ Physical process that’s inherently random
￭ Secure yet impractical

￭ Scarce, hard to use
￭ Rate-limited

￭ Pseudo-random generator (PRG)
￭ Input: a small seed that is truly random
￭ Output: long sequence that appears random

53

Stefan Nagy

“Pseudo” Randomness

￭ What is true randomness?
￭ Physical process that’s inherently random
￭ Secure yet impractical

￭ Scarce, hard to use
￭ Rate-limited

￭ Pseudo-random generator (PRG)
￭ Input: a small seed that is truly random
￭ Output: long sequence that appears random

54

PRGs offer the best of both worlds: practical
(fast, easy-to-use) and secure (appear random)

Stefan Nagy

Pseudo-random Generators (PRGs)

￭ We say a PRG is secure if Mallory can’t do better than random guessing

55

Stefan Nagy

Pseudo-random Generators (PRGs)

￭ We say a PRG is secure if Mallory can’t do better than random guessing

￭ Problem: How much true randomness is enough?
￭ Example: one coin flip = Mallory needs very few tries to guess

56

Stefan Nagy

Pseudo-random Generators (PRGs)

￭ We say a PRG is secure if Mallory can’t do better than random guessing

￭ Problem: How much true randomness is enough?
￭ Example: one coin flip = Mallory needs very few tries to guess

￭ Problem: Is our “true randomness” truly random?
￭ Example: coin flip output = one in two. Lava lamps have way more!

57

Stefan Nagy

Pseudo-random Generators (PRGs)

￭ We say a PRG is secure if Mallory can’t do better than random guessing

￭ Problem: How much true randomness is enough?
￭ Example: one coin flip = Mallory needs very few tries to guess

￭ Problem: Is our “true randomness” truly random?
￭ Example: coin flip output = one in two. Lava lamps have way more!

￭ Solutions:
￭ Generate a bunch of true randomness over a long time from a high entropy source
￭ Run through a PRF to get an easy-to-work-with, fixed-length randomness (e.g., 256 bits)

58

Stefan Nagy

Constructing a PRG

￭ Idea: Build a PRG using a PRF

59

Stefan Nagy

Constructing a PRG

￭ Idea: Build a PRG using a PRF

￭ Observation: PRF, given consecutive
inputs, produce outputs that are
randomly distributed (hopefully)

60

Stefan Nagy

Constructing a PRG

￭ Idea: Build a PRG using a PRF

￭ Observation: PRF, given consecutive
inputs, produce outputs that are
randomly distributed (hopefully)

￭ Result: For truly-random s and PRF f :
￭ Pseudo-random generated string =

fs (0) || fs (1) || fs (2) || fs (3) …

61

Stefan Nagy

Proving a PRG is Secure

￭ Theorem: if f is a secure PRF
￭ … and g is seeded from f
￭ … then g must be a secure PRG

62

Stefan Nagy

Proving a PRG is Secure

￭ Theorem: if f is a secure PRF
￭ … and g is seeded from f
￭ … then g must be a secure PRG

￭ Proof: if f is a secure PRF, we must show that g is a secure PRG
1. Assume g actually is insecure… then Mallory can break it
2. If that were true, Mallory could also break the PRF too
3. This would contradict the fact that f is a secure PRF!

63

Stefan Nagy

Proving a PRG is Secure

￭ Theorem: if f is a secure PRF
￭ … and g is seeded from f
￭ … then g must be a secure PRG

￭ Proof: if f is a secure PRF, we must show that g is a secure PRG
1. Assume g actually is insecure… then Mallory can break it
2. If that were true, Mallory could also break the PRF too
3. This would contradict the fact that f is a secure PRF!

64

How should we seed our PRG?

What happens if we fail?

Stefan Nagy

Proving a PRG is Secure

￭ Theorem: if f is a secure PRF
￭ … and g is seeded from f
￭ … then g must be a secure PRG

￭ Proof: if f is a secure PRF, we must show that g is a secure PRG
1. Assume g actually is insecure… then Mallory can break it
2. If that were true, Mallory could also break the PRF too
3. This would contradict the fact that f is a secure PRF!

65

When our assumptions hold, we
transform a small amount of

“true” randomness into a wealth
of “apparent” randomness

Stefan Nagy

Practical Randomness

￭ Where do you get true randomness?

￭ Modern OSes typically collect randomness

￭ They give you API calls to capture it

￭ e.g., Linux:
￭ /dev/random is a device that gives random bits; it blocks until available
￭ /dev/urandom gives output of a PRG; nonblocking; seeded from /dev/random eventually

66

Stefan Nagy

Questions?

67

Stefan Nagy

Plaintext-length Keys:
One-time Pads

68

Stefan Nagy

One-time Pads

69

￭ Alice and Bob generate a plaintext-length
string of random bits: the one-time pad k

Stefan Nagy

One-time Pads

￭ Alice and Bob generate a plaintext-length
string of random bits: the one-time pad k
￭ Encryption: ci := pi XOR ki
￭ Decryption: pi := ci XOR ki

70

a XOR b XOR b = a
a XOR b XOR a = b

Stefan Nagy

One-time Pads

￭ Alice and Bob generate a plaintext-length
string of random bits: the one-time pad k
￭ Encryption: ci := pi XOR ki
￭ Decryption: pi := ci XOR ki

￭ To be secure:
￭ Key must be truly random
￭ Key must never be reused

71

a XOR b XOR b = a
a XOR b XOR a = b

Stefan Nagy

Attacking OTPs: Non-random Keys

￭ Suppose the key bits aren’t truly random
￭ E.g., generated by selecting one of three values

￭ How would this help Mallory?

72

Stefan Nagy

Attacking OTPs: Non-random Keys

￭ Suppose the key bits aren’t truly random
￭ E.g., generated by selecting one of three values

￭ How would this help Mallory?
1. She intercepts an encrypted message

73

(a XOR k) a k

Stefan Nagy

Attacking OTPs: Non-random Keys

￭ Suppose the key bits aren’t truly random
￭ E.g., generated by selecting one of three values

￭ How would this help Mallory?
1. She intercepts an encrypted message
2. She guesses key values and decrypts

74

(a XOR k) XOR g

Guessed
Key g

a k

Stefan Nagy

Attacking OTPs: Non-random Keys

￭ Suppose the key bits aren’t truly random
￭ E.g., generated by selecting one of three values

￭ How would this help Mallory?
1. She intercepts an encrypted message
2. She guesses key values and decrypts
3. She can recover parts of the plaintext!

75

(a XOR k) XOR g

Guessed
Key g

a k

Stefan Nagy

Attacking OTPs: Key Reuse

76

(a XOR k) (b XOR k)

Stefan Nagy

Attacking OTPs: Key Reuse

77

(a XOR k) (b XOR k)

(a XOR k) XOR (b XOR k)

Stefan Nagy

Attacking OTPs: Key Reuse

78

= a XOR b

(a XOR k) (b XOR k)

(a XOR k) XOR (b XOR k)

Stefan Nagy

One-time Pads

￭ Alice and Bob generate a plaintext-length
string of random bits: the one-time pad k
￭ Encryption: ci := pi XOR ki
￭ Decryption: pi := ci XOR ki

￭ To be secure:
￭ Key must be truly random
￭ Key must never be reused

79

a XOR b XOR b = a
a XOR b XOR a = b

Provably Secure
(if key is random + not reused)

Stefan Nagy

One-time Pads

￭ Alice and Bob generate a plaintext-length
string of random bits: the one-time pad k
￭ Encryption: ci := pi XOR ki
￭ Decryption: pi := ci XOR ki

￭ To be secure:
￭ Key must be truly random
￭ Key must never be reused

80

a XOR b XOR b = a
a XOR b XOR a = b

Provably Secure
(if key is random + not reused)

Highly Impractical

Stefan Nagy

Impracticality of OTPs

￭ Generating OTPs
￭ Slow and/or rate-limited

￭ By hand, LavaRand, etc.

￭ Deploying OTPs
￭ Potentially very long
￭ Challenging to conceal

￭ Cold War numbers stations
￭ Encrypted message sent via

short-wave radio to agents
￭ Agent decrypts with their OTP

￭ Throw OTP away after!
￭ Many remain in service today!

￭ Lincolnshire Poacher

81

Stefan Nagy

Questions?

82

Stefan Nagy 83

Plaintext-length Keys:
Stream Ciphers

Stefan Nagy

Stream Cipher

￭ Idea: Use a Pseudo-random Generator instead of a truly random pad

￭ Recall: a secure PRG inputs a true-random seed, outputs a stream that’s
indistinguishable from true randomness (unless attacker knows seed)

1. Start with a shared secret truly random seed (from a lava lamp, mouse clicks, etc.)
2. Alice & Bob each use this seed to seed their PRG and generate k bits of PRG output
3. To encrypt and decrypt, perform the same operations as the One-time Pad:

￭ Encryption: ci := pi XOR ki
￭ Decryption: pi := ci XOR ki

84

Stefan Nagy

Stream Cipher

￭ Idea: Use a Pseudo-random Generator instead of a truly random pad

￭ Recall: Secure PRG inputs a seed k, outputs a stream practically
indistinguishable from true randomness (unless attacker knows k)

1. Start with shared secret truly random number k (e.g., from a lava lamp, mouse clicks, etc.)
2. Alice & Bob each use k to seed their PRG
3. To encrypt, Alice XORs next bit of her generator’s output with next bit of plaintext
4. To decrypt, Bob XORs next bit of his generator’s output with next bit of ciphertext

85

What if you reuse the PRG’s
random seed or its output?

Stefan Nagy

Stream Cipher

￭ Idea: Use a Pseudo-random Generator instead of a truly random pad

￭ Recall: Secure PRG inputs a seed k, outputs a stream practically
indistinguishable from true randomness (unless attacker knows k)

1. Start with shared secret truly random number k (e.g., from a lava lamp, mouse clicks, etc.)
2. Alice & Bob each use k to seed their PRG
3. To encrypt, Alice XORs next bit of her generator’s output with next bit of plaintext
4. To decrypt, Bob XORs next bit of his generator’s output with next bit of ciphertext

86

Vulnerable to partial (or full)
recovery of the plaintext!

What if you reuse the PRG’s
random seed or its output?

Stefan Nagy

Stream Cipher

￭ Idea: Use a pseudorandom generator instead of a truly random pad

￭ Recall: Secure PRG inputs a seed k, outputs a stream practically
indistinguishable from true randomness (unless attacker knows k)

1. Start with shared secret key truly random number k
2. Alice & Bob each use k to seed the PRG
3. To encrypt, Alice XORs next bit of her generator’s output with next bit of plaintext
4. To decrypt, Bob XORs next bit of his generator’s output with next bit of ciphertext

87

What is the tradeoff between
an OTP and Stream Cipher?

Stefan Nagy

Questions?

88

Stefan Nagy

Transposition Ciphers

89

Stefan Nagy

Transposition Ciphers

￭ Substitution ciphers swap-out plaintext symbols for others
￭ E.g., shifting, XORing, etc.

￭ We’ve learned about several substitution ciphers
￭ E.g., Caesar, Vigenere, one-time pad, stream cipher

￭ Can we come up with an alternative to substitution?

90

Stefan Nagy

Transposition Ciphers

￭ Substitution ciphers swap-out plaintext symbols for others
￭ E.g., shifting, XORing, etc.

￭ We’ve learned about several substitution ciphers
￭ E.g., Caesar, Vigenere, one-time pad, stream cipher

￭ Can we come up with an alternative to substitution?

￭ Transposition: rearrange plaintext symbols to create ciphertext

91

Stefan Nagy

Columnar Transposition

￭ Rearrange plaintext symbols to create ciphertext
￭ Create a table with |k| columns and |p|/|k| rows (k is the keyword)
￭ Place plaintext symbols in columns (left to right), cycling around to

next row of the first column when current row of last column is filled
￭ Create the ciphertext by writing entire columns (as a serial stream)

to the output, where the keyword determines the column order

￭ Example:
￭ k = “ZEBRAS” (632415)
￭ p = “We are discovered flee at once”

92

6 3 2 4 1 5

Stefan Nagy

Columnar Transposition

￭ Rearrange plaintext symbols to create ciphertext
￭ Create a table with |k| columns and |p|/|k| rows (k is the keyword)
￭ Place plaintext symbols in columns (left to right), cycling around to

next row of the first column when current row of last column is filled
￭ Create the ciphertext by writing entire columns (as a serial stream)

to the output, where the keyword determines the column order

￭ Example:
￭ k = “ZEBRAS” (632415)
￭ p = “We are discovered flee at once”

93

6 3 2 4 1 5

W E A R E D

I S C O V E

R E D F L E

E A T O N C

E null null null null null

Stefan Nagy

Columnar Transposition

￭ Rearrange plaintext symbols to create ciphertext
￭ Create a table with |k| columns and |p|/|k| rows (k is the keyword)
￭ Place plaintext symbols in columns (left to right), cycling around to

next row of the first column when current row of last column is filled
￭ Create the ciphertext by writing entire columns (as a serial stream)

to the output, where the keyword determines the column order

￭ Example:
￭ k = “ZEBRAS” (632415)
￭ p = “We are discovered flee at once”
￭ c = EVLN ACDT ESEA

ROFO DEEC WIREE

94

6 3 2 4 1 5

W E A R E D

I S C O V E

R E D F L E

E A T O N C

E null null null null null

Stefan Nagy

Columnar Transposition

￭ Rearrange plaintext symbols to create ciphertext
￭ Create a table with |k| columns and |p|/|k| rows (k is the keyword)
￭ Place plaintext symbols in columns (left to right), cycling around to

next row of the first column when current row of last column is filled
￭ Create the ciphertext by writing entire columns (as a serial stream)

to the output, where the keyword determines the column order

￭ Example:
￭ k = “ZEBRAS” (632415)
￭ p = “We are discovered flee at once”
￭ c = EVLNX ACDTQ ESEAM

ROFOP DEECD WIREE
￭ Replace null with nonsense symbol

95

6 3 2 4 1 5

W E A R E D

I S C O V E

R E D F L E

E A T O N C

E null null null null null

Stefan Nagy

Rail Fence (aka Zig Zag or Scytale) Cipher

￭ Rearrange plaintext on downwards, diagonally successive “rails”

￭ c = WECRLTE ERDSOEEFEAOC AIVDEN

96

W E C R L T E

E R D S O E E F E A O C

A I V D E N

Stefan Nagy

Rail Fence (aka Zig Zag or Scytale) Cipher

￭ Rearrange plaintext on downwards, diagonally successive “rails”

￭ c = WECRLTE ERDSOEEFEAOC AIVDEN

￭ Decryption: use same-diameter cylinder!

97

W E C R L T E

E R D S O E E F E A O C

A I V D E N

Stefan Nagy

Columnar Cipher Cryptanalysis

￭ What does a brute force attack look like?

98

Stefan Nagy

Columnar Cipher Cryptanalysis

￭ What does a brute force attack look like?
1. Guess number of columns
2. Rearrange ciphertext in (probably) wrong order
3. Look for anagrams to get correct order

￭ Harder if null characters are rewritten

￭ Weakness of a transposition cipher?

99

Stefan Nagy

Columnar Cipher Cryptanalysis

￭ What does a brute force attack look like?
1. Guess number of columns
2. Rearrange ciphertext in (probably) wrong order
3. Look for anagrams to get correct order

￭ Harder if null characters are rewritten

￭ Weakness of a transposition cipher?
￭ Plaintext characters end up in the ciphertext

100

Stefan Nagy

Is it transposition or substitution?

￭ Given a message ciphertext, how can you determine whether a
transposition or a substitution cipher encrypted the plaintext?
￭ Hint: frequency analysis

101

Stefan Nagy

Is it transposition or substitution?

￭ Given a message ciphertext, how can you determine whether a
transposition or a substitution cipher encrypted the plaintext?
￭ Hint: frequency analysis

￭ Transposition:
￭ Letters have expected letter frequencies

￭ Substitution:
￭ Letters have different letter frequencies

102

Stefan Nagy

Stronger Transposition

￭ How would you build a stronger columnar transposition cipher?
￭ Transpose multiple times with same or different keywords

103

6 3 2 4 1 5

W E A R E D

I S C O V E

R E D F L E

E A T O N C

E null null null null null

k1 = “ZEBRAS” (632415)
c1 = EVLNX ACDTQ ESEAM

ROFOP DEECD WIREE

Stefan Nagy

Stronger Transposition

￭ How would you build a stronger columnar transposition cipher?
￭ Transpose multiple times with same or different keywords

104

6 3 2 4 1 5

W E A R E D

I S C O V E

R E D F L E

E A T O N C

E null null null null null

5 6 4 2 3 1

E V L N A C

D T E S E A

R O F O D E

E C W I R I

E null null null null null

k1 = “ZEBRAS” (632415)
c1 = EVLNX ACDTQ ESEAM

ROFOP DEECD WIREE

k2 = “STRIPE” (632415)
c2 = CAEIX NSOIN AEDRX

LEFWS EDREE VTOCG

Stefan Nagy

Stronger Transposition

￭ How would you build a stronger columnar transposition cipher?
￭ Transpose multiple times with same or different keywords

￭ Myszkowski Transposition on recurring letters in key

105

T O M A T O

5 3 2 1 6 4

W E A R E D

I S C O V E

R E D F L E

E A T O N C

E null null null null null

c = ROFOXACDTWESEAZDEECNWIREEEVLNQ

Stefan Nagy

Stronger Transposition

￭ How would you build a stronger columnar transposition cipher?
￭ Transpose multiple times with same or different keywords

￭ Myszkowski Transposition on recurring letters in key

106

T O M A T O

5 3 2 1 6 4

W E A R E D

I S C O V E

R E D F L E

E A T O N C

E null null null null null

T O M A T O

4 3 2 1 4 3

W E A R E D

I S C O V E

R E D F L E

E A T O N C

E null null null null null

c = ROFOXACDTWESEAZDEECNWIREEEVLNQ c = ROFOXACDTBEDSEEEACTWWEIVRLENEQ

Stefan Nagy

Stronger Transposition

￭ How would you build a stronger columnar transposition cipher?

￭ Fractionation: convert letters into symbols and transpose those
￭ E.g., morse code encoding, bits instead of letters

107

Stefan Nagy

Stronger Transposition

￭ How would you build a stronger columnar transposition cipher?

￭ Fractionation: convert letters into symbols and transpose those
￭ E.g., morse code encoding, bits instead of letters

￭ Suppose p = “We are discovered…”
￭ Morse: o—— o o2— o—o o —oo oo ooo —o—o ——— ooo— o o—o o —oo
￭ Binary: 01010111 01100101 01100001 01110010 01100101 01100100 01101001 01110011

 01100011 01101111 01110110 01100101 01110010 01100101 01100100

108

Stefan Nagy

Stronger Transposition

￭ How would you build a stronger columnar transposition cipher?

￭ Combine with a substitution cipher
￭ Makes anagram discovery more difficult

109

6 3 2 4 1 5

W E A R E D

I S C O V E

R E D F L E

E A T O N C

E null null null null null

c1 = EVLNB ACDTA ESEAR
ROFOX DEECB WIREE

Stefan Nagy

Stronger Transposition

￭ How would you build a stronger columnar transposition cipher?

￭ Combine with a substitution cipher
￭ Makes anagram discovery more difficult

110

6 3 2 4 1 5

W E A R E D

I S C O V E

R E D F L E

E A T O N C

E null null null null null

c1 = EVLNB ACDTA ESEAR
ROFOX DEECB WIREE

c2 = EWNNC CCEVA FUEBT
RPHOY FEFEB XKRFG

ks = ABCAB CABCA BCABC

Stefan Nagy

Questions?

111

Stefan Nagy

Cipher Metrics

112

Stefan Nagy

Confusion and Diffusion

￭ “Confusion”
￭ Every bit of the ciphertext should depend on several parts of the plaintext
￭ Maintains that the ciphertext is statistically independent of the plaintext

￭ “Diffusion”
￭ A change to one plaintext bit should change 50% of the ciphertext bits
￭ A change to one ciphertext should change 50% of the plaintext bits
￭ Plaintext features spread throughout the entire ciphertext

￭ These are cipher metrics—how we “weigh” a cipher’s security

113

Stefan Nagy

Cipher Metrics: Transposition Ciphers

￭ Do transposition ciphers achieve confusion or diffusion?

114

Stefan Nagy

Cipher Metrics: Transposition Ciphers

￭ Do transposition ciphers achieve confusion or diffusion?
￭ Diffusion—they spread the plaintext around!

115

Stefan Nagy

Cipher Metrics: Substitution Ciphers

￭ What level of confusion & diffusion do simple substitution ciphers have?

116

Stefan Nagy

Cipher Metrics: Substitution Ciphers

￭ What level of confusion & diffusion do simple substitution ciphers have?
￭ None—hence why frequency analysis is useful
￭ Changing one plaintext or key symbol changes one ciphertext symbol

117

Stefan Nagy

Cipher Metrics: Noisy Channels

￭ How does low diffusion impact communication across a noisy channel?

118

ABCDEFGH

Stefan Nagy

Cipher Metrics: Noisy Channels

￭ How does low diffusion impact communication across a noisy channel?
￭ Low diffusion = more tolerant to corrupted symbols

119

ABCDEFGH

BCD#$!HI

Stefan Nagy

Questions?

120

Stefan Nagy

Next time on CS 4440…

121

Block ciphers, AES, secure channels

