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Week 2: Lecture A 
Message Integrity

Tuesday, August 27, 2024
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Reminders

￭ Be sure to join the course Canvas and Piazza 
￭ See links at top of course page
￭ http://cs4440.eng.utah.edu

￭ Finish registering on PollEverywhere
￭ Account must be <yourUID>@utah.edu
￭ Location issues should be fixed
￭ Sign in at https://pollev.com/cs4440 

￭ Trouble accessing? See me after class!
￭ Or email me at: snagy@cs.utah.edu 
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Reminders

￭ First weekly Lecture Quiz was due last night
￭ Next one opens today after lecture! 
￭ Due following Monday by 11:59 PM
￭ Late submissions are not accepted

￭ You are welcome to consult your notes:
￭ E.g., Wiki resources, the course VM, etc.
￭ Designed to test understanding of key concepts
￭ May see similar questions later in the semester 😃
￭ Lowest quiz score will be dropped
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Reminders

￭ Officers Hours schedule
￭ http://cs4440.eng.utah.edu 
￭ Cancellations announced via Piazza
￭ Busier near deadlines—start early!
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Reminders

￭ Can work in teams of up to two
￭ Find teammates on Piazza
￭ Post on 

￭ Why work with someone else?
￭ Pair programming
￭ Divide and conquer
￭ Two sets of eyes to solve problems
￭ Teaching others helps you learn more

￭ Yes, you are free to work solo…
￭ But we encourage you to team up!
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Announcements

￭ Project 1: Crypto released (see Assignments page on course website)
￭ Deadline: Thursday, September 19th by 11:59 PM
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http://cs.utah.edu/~snagy/courses/cs4440/assignments/


Stefan Nagy

Announcements

7

See Discord for 
meeting info!
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Announcements

￭ Due to the Utah football game, 
Thursday’s class will be hybrid
￭ Zoom link will be posted on Piazza
￭ Feel free to join in-person if you can
￭ We’ll poll but not record attendance
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Questions?
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Last time on CS 4440…
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Intro to Python
Debugging Code
Course VM Setup
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Languages and Tools in CS 4440

￭ Projects cover a few languages and tools:
￭ Project1: Python 3
￭ Project2: C/C++, x86, GDB
￭ Project3: SQL, HTML, JavaScript
￭ Project4: Python 3, Wireshark

￭ This may seem daunting—but don’t panic! 
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Stefan Nagy

Languages and Tools in CS 4440

￭ Projects cover a few languages and tools:
￭ Project1: Python 3
￭ Project2: C/C++, x86, GDB
￭ Project3: SQL, HTML, JavaScript
￭ Project4: Python 3, Wireshark

￭ This may seem daunting—but don’t panic! 
￭ Only using a small subset of their capabilities
￭ We’ll cover some basics in lecture as we go along
￭ We’ll post resources for you on the CS 4440 Wiki
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Writing Python Scripts

￭ You’ll be writing relatively simple scripts
￭ No need for an IDE
￭ IDEs can/will break things

￭ Recommended text editors:
￭ VIM
￭ Nano
￭ Emacs
￭ FeatherPad
￭ Many others—pick one you like!
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Variables

￭ Types you’ll likely see:
￭ Integer (int)
￭ Float (float)
￭ String (str)
￭ Boolean (bool)
￭ Custom classes (e.g., md5)

￭ Variable assignment:
￭ Assignment uses the  “=” sign
￭ Value changed? So does type!
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 >>> x = 5

 >>> print(type(x))

 < c lass 'int'>

 >>> x = "cs4440"

 >>> print(type(x))

 < c lass 'str'>
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Variables

￭ Casting:
￭ Pick a desired data type
￭ “Wrap” your variable in it
￭ Re-casting will change type!
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 >>> x = 5

 >>> print(x, type(x))

 5 < c lass 'int'>

 >>> x = float(x)

 >>> print(x, type(x))

 5.0 < c lass float>
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Strings

￭ You will use strings in many exercises
￭ Super flexible to use and manipulate
￭ We’ll cover some basic conventions

￭ Basic string manipulation:
￭ Length
￭ Appending
￭ Substrings
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 >>> x = "odoyle"

 >>> print(len(x))

 6

 >>> print(x + "rules")

 odoylerules

 >>> print("odoy" in x)

 True
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Strings

￭ Other string manipulations:
￭ Splitting by a delimiter
￭ Stripping characters
￭ Repeating characters
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 >>> x = "cs4440:fa23"

 >>> print(x.split(':')

 ['cs4440', 'fa23']

 >>> print(x.strip(':')

 cs4440fa23

 >>> print('A'*10)

 AAAAAAAAAA
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Byte Strings

￭ Sometimes you will work with data as bytes 
￭ In Python, byte strings appear as b'data'

￭ Examples:
￭ Encoding to a byte string
￭ Decoding a byte string
￭ Must keep the same codec (e.g., utf-8)

￭ Conceptually can be a little confusing
￭ Functions print() and type() are your friends!
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 >>> x = "cs4440"

 >>> x = x.encode(‘utf-8’))

 >>> print(x, type(x))

 b'cs4440' <class 'bytes'>

 >>> y = x.decode(‘utf-8’))

 >>> print(y, type(y))

 cs4440 <class 'str'>
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Other Key Concepts

￭ A few other concepts to review
￭ Check these out in the CS 4440 Wiki

￭ Lists
￭ Appending
￭ Prepending
￭ Insert, Remove

￭ Control Flow
￭ Loops
￭ If/Else Statements

￭ Functions
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Debugging is a Process

￭ Remember: print() and type() are your friend!
￭ Insert these, re-run your program, and check output
￭ Does the output match what you expect?
￭ If not, investigate further and try again!
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ERROR!

ERROR!

CORRECT
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Asking for Help

￭ It’s perfectly fine to ask for help
￭ That’s what we / Piazza are here for!

￭ Help others help you! Explain:
￭ What error code are you getting?
￭ What do you think it means?
￭ What fixes have you tried?
￭ What fixes did not work?

￭ Avoid “instructor private posts”
￭ We get a lot of these near deadlines
￭ Impossible to keep up / help everyone!
￭ We may un-private your post 🙂
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Questions?

22



Stefan Nagy

This time on CS 4440…
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Message Integrity
Kerckhoffs’s Principle

Pseudo-random Functions
Hashes and HMACs
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Security Policies

￭ What assets are we trying to protect?

￭ What properties are we trying to enforce?
￭ Confidentiality
￭ Integrity  <— you are here
￭ Availability
￭ Privacy
￭ Authenticity
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Message Integrity

￭ Two parties want to communicate via an untrusted intermediary or medium

￭ Problem: ensure a message received by one party was sent by the other 
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Exercise: cheating the final exam

￭ Goal: communicate answers while taking the final exam
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Alice Bob
m

a message
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Exercise: cheating the final exam

￭ Goal: communicate answers while taking the final exam
￭ Countermeasure: randomized seating

27

Alice Bob
m m ’  
sent 

message
received
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Exercise: cheating the final exam

￭ Goal: communicate answers while taking the final exam
￭ Countermeasure: randomized seating + curved grading
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Exercise: cheating the final exam

￭ Security policy
￭ Message integrity
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Exercise: cheating the final exam

￭ Security policy
￭ Message integrity

￭ Threat model 
￭ Mallory can see and tamper Alice’s messages, and forge her own messages
￭ Mallory wants to trick Bob into accepting a message Alice didn’t send
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Exercise: cheating the final exam

￭ Security policy
￭ Message integrity

￭ Threat model 
￭ Mallory can see and tamper Alice’s messages, and forge her own messages
￭ Mallory wants to trick Bob into accepting a message Alice didn’t send

￭ Risk assessment
￭ Very likely Mallory will strategically distort communication between Bob and Alice
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Exercise: cheating the final exam

￭ Security policy
￭ Message integrity

￭ Threat model 
￭ Mallory can see and tamper Alice’s messages, and forge her own messages
￭ Mallory wants to trick Bob into accepting a message Alice didn’t send

￭ Risk assessment
￭ Very likely Mallory will strategically distort communication between Bob and Alice

￭ Countermeasures
￭ Today's focus
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Message Integrity
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Exercise: cheating the final exam

￭ Goal: communicate answers while taking the final exam
￭ Countermeasure: randomized seating + curved grading
￭ Threat: Mallory may change the message
￭ Counter-countermeasure: ???
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Message Integrity

￭ Goal: communicate answers while taking the final exam
￭ Approach: include a message-dependent message with the sent message

￭ Let v = f (m)

35
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Including a Message-dependent Message

￭ Think of it as a certificate of authenticity
￭ The output of a particular, pre-chosen function

￭ Unique to the original message
￭ If message changed, certificate will change too

￭ Alice sends this along with her message
￭ Bob recomputes this message-dependent code

on the message he thinks came from Alice
￭ Bob compares his code to the once he received
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Message Integrity

￭ Goal: communicate answers while taking the final exam
￭ Approach: include a message-dependent message with the sent message

￭ Let v = f (m)
￭ Bob accepts message if f (m’) = v’

37
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Message Integrity

￭ Goal: communicate answers while taking the final exam
￭ Approach: include a message-dependent message with the sent message

￭ Let v = f (m)
￭ Bob accepts message if f (m’) = v’ 
￭ If check fails, then ???

38
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Message Integrity

￭ Goal: communicate answers while taking the final exam
￭ Approach: include a message-dependent message with the sent message

￭ Let v = f (m)
￭ Bob accepts message if f (m’) = v’ 
￭ If check fails, m’ is untrusted

39
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Function Properties

￭ Goal: communicate answers while taking the final exam
￭ Approach: include a message-dependent message with the sent message

￭ Let v = f (m)
￭ Function f should:

￭ Consistent output
￭ One-to-one mapping between m and f (m)

40
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Function Properties

￭ Goal: communicate answers while taking the final exam
￭ Approach: include a message-dependent message with the sent message

￭ Let v = f (m)
￭ Function f should:

￭ Consistent output
￭ One-to-one mapping between m and f (m)
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Function Properties

￭ Goal: communicate answers while taking the final exam
￭ Approach: include a message-dependent message with the sent message

￭ Let v = f (m)
￭ Function f should:

￭ Consistent output
￭ One-to-one mapping between m and f (m)

42
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Function Properties

￭ Goal: communicate answers while taking the final exam
￭ Approach: include a message-dependent message with the sent message

￭ Let v = f (m)
￭ Function f should:

￭ Consistent output
￭ One-to-one mapping between m and f (m)
￭ Be known to Mallory?

43

Alice BobMallory
m , v m ’ , v ’ 
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Function Properties

￭ Goal: communicate answers while taking the final exam
￭ Approach: include a message-dependent message with the sent message

￭ Let v = f (m)
￭ Function f should:

￭ Consistent output
￭ One-to-one mapping between m and f (m)
￭ Be known to Mallory?  Be unknown to Mallory

45
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Function Properties

￭ Goal: communicate answers while taking the final exam
￭ Approach: include a message-dependent message with the sent message

￭ Let v = f (m)
￭ Function f should:

￭ Consistent output
￭ One-to-one mapping between m and f (m)
￭ Be known to Mallory?  Be unknown to Mallory
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Questions?
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Choosing an Ideal Function for 
Message-dependent Messages
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Kerckhoffs’s Principles

To be secure, a cryptosystem must…

1. Be practically—if not mathematically—indecipherable.
2. Not require total secrecy, and not fail if captured.
3. Not require reliance on written notes (keys), and 

be modifiable by the corresponding parties at will.
4. Be applicable to telegraph communications.
5. Be portable and not need many to handle/operate.
6. Be easy to use, and not require a long list of rules.
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Why Kerckhoffs’s principles?

￭ Quantify probability that adversary (Mallory) succeeds

￭ Different people can use same system, different keys:
￭ Alice and Bob use one key
￭ Jack and Diane use another
￭ Mutually distrusting parties

￭ Want to easily change key if something goes wrong
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Candidate 1: Steganographic Encoding

￭ Early form of message secrecy
￭ Messages hidden in ordinary objects

￭ Images, paper, video, music, etc.
￭ Not plainly visible to the human eye

￭ Unless known what to look for

￭ Examples: 
￭ Different hidden numbers appear 

when viewed under different lights
￭ “Invisible” ink 
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Candidate 1: Steganographic Encoding

￭ Early form of message secrecy
￭ Messages hidden in ordinary objects

￭ Images, paper, video, music, etc.
￭ Not plainly visible to the human eye

￭ Unless known what to look for

￭ Examples: 
￭ Different hidden numbers appear 

when viewed under different lights
￭ “Invisible” ink 

52

Impractical. Why?
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Candidate 1: Steganographic Encoding

￭ Early form of message secrecy
￭ Messages hidden in ordinary objects

￭ Images, paper, video, music, etc.
￭ Not plainly visible to the human eye

￭ Unless known what to look for

￭ Examples: 
￭ Different hidden numbers appear 

when viewed under different lights
￭ “Invisible” ink 

53

Impractical. Why?

Insecure. Why?
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Candidate 2: Random Functions

￭ Random Functions:
￭ Input: Any size up to huge maximum
￭ Output: Fixed size (e.g., 256 bits)

￭ Think of it as defined by a massive 
lookup table filled in by coin flips

￭ Maps inputs independently to any 
one of possible outputs

54

0 → 0011111001010001…

1 → 1110011010010100…

2 → 010101000101000…

… → …………………………………

Set of all functions in the universe
(each outputs 256 random bits)
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Candidate 2: Random Functions

￭ Random Functions:
￭ Input: Any size up to huge maximum
￭ Output: Fixed size (e.g., 256 bits)

￭ Think of it as defined by a massive 
lookup table filled in by coin flips

￭ Maps inputs independently to any 
one of possible outputs

55

0 → 0011111001010001…

1 → 1110011010010100…

2 → 010101000101000…

… → …………………………………

Provably Secure. Why?
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Candidate 2: Random Functions

￭ Random Functions:
￭ Input: Any size up to huge maximum
￭ Output: Fixed size (e.g., 256 bits)

￭ Think of it as defined by a massive 
lookup table filled in by coin flips

￭ Maps inputs independently to any 
one of possible outputs

56

Provably Secure. Why?

Impractical. Why?

0 → 0011111001010001…

1 → 1110011010010100…

2 → 010101000101000…

… → …………………………………
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Candidate 3: Pseudo-random Function Family (PRF)

￭ We want a set of functions that are practical but “look” random

￭ “Looks random” roughly means two inputs that differ by 1 will very likely 
produce two outputs that are far apart (but no way to know just how far)

￭ “Practical” means efficiently computable

￭ Also want to not rely on pre-sharing all possible input–output pairings
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Candidate 3: Pseudo-random Function Family (PRF)

￭ Can decimal → binary encoding be considered a pseudo-random function?
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Candidate 3: Pseudo-random Function Family (PRF)

￭ Can decimal → binary encoding be considered a pseudo-random function?

60

No! Small changes 
in input don’t lead 
to BIG changes in 

the output.
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Candidate 3: Pseudo-random Function Family (PRF)

￭ Start with a big family of functions
￭ Subset of our huge random coin-flip table

61
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Candidate 3: Pseudo-random Function Family (PRF)

￭ Start with a big family of functions
￭ Subset of our huge random coin-flip table

￭ f0, f1, f2, …, f(2^N)-1 all known to Mallory
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Candidate 3: Pseudo-random Function Family (PRF)

￭ Start with a big family of functions
￭ Subset of our huge random coin-flip table

￭ f0, f1, f2, …, f(2^N)-1 all known to Mallory

￭ Use fk where k is a secret value (or key) 
￭ Known only to Alice and Bob
￭ k is (say) 256 bits, chosen randomly
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Candidate 3: Pseudo-random Function Family (PRF)

￭ Start with a big family of functions
￭ Subset of our huge random coin-flip table

￭ f0, f1, f2, …, f(2^N)-1 all known to Mallory

￭ Use fk where k is a secret value (or key) 
￭ Known only to Alice and Bob
￭ k is (say) 256 bits, chosen randomly

64

How the functions 
work is not secret…
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Candidate 3: Pseudo-random Function Family (PRF)

￭ Start with a big family of functions
￭ Subset of our huge random coin-flip table

￭ f0, f1, f2, …, f(2^N)-1 all known to Mallory

￭ Use fk where k is a secret value (or key) 
￭ Known only to Alice and Bob
￭ k is (say) 256 bits, chosen randomly

65

How the functions 
work is not secret…

But which function 
is chosen is secret
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Formal Definition of a Secure PRF

￭ We say  f  is a secure PRF if Mallory can 
only beat this via random guessing

66

How the functions 
work is not secret…
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Formal Definition of a Secure PRF

￭ We say  f  is a secure PRF if Mallory can 
only beat this via random guessing
￭ Function fk is practically indistinguishable 

from a random function (unless k known)

￭ What is Mallory left with?

67

How the functions 
work is not secret…

But which function 
is chosen is secret
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Formal Definition of a Secure PRF

￭ We say  f  is a secure PRF if Mallory can 
only beat this via random guessing
￭ Function fk is practically indistinguishable 

from a random function (unless k known)

￭ What is Mallory left with? Brute Forcing
￭ Mallory would need to enumerate every 

possible function to figure out which is fk 

￭ How does this guarantee security?

68

How the functions 
work is not secret…

But which function 
is chosen is secret
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Formal Definition of a Secure PRF

￭ We say  f  is a secure PRF if Mallory can 
only beat this via random guessing
￭ Function fk is practically indistinguishable 

from a random function (unless k known)

￭ What is Mallory left with? Brute Forcing
￭ Mallory would need to enumerate every 

possible function to figure out which is fk 

￭ How does this guarantee security?
￭ Idea is that Mallory’s cost of brute-forcing is 

so high that it’s computationally infeasible
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How the functions 
work is not secret…

But which function 
is chosen is secret
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Message Integrity via PRFs

￭ Goal: communicate answers while taking the final exam
￭ Approach: use PRFs

￭ Let f be a secure PRF
￭ In advance, choose random k known only to Alice and Bob
￭ Let v = fk(m)
￭ Bob checks that fk(m*) == v*, otherwise m* untrusted

70

Alice BobMallory
m , v m ’ , v ’ 
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Message Integrity for Multiple Messages

￭ Goal: send multiple messages with integrity
￭ Problems: ???

71
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Message Integrity for Multiple Messages

￭ Goal: send multiple messages with integrity
￭ Problems: 

￭ Replay attack: Mallory injects messages from an earlier exam question
￭ Reordering attack: Mallory answers question 1 after answering question 2

72
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Message Integrity for Multiple Messages

￭ Goal: send multiple messages with integrity
￭ Problems: 

￭ Replay attack: Mallory injects messages from an earlier exam question
￭ Reordering attack: Mallory answers question 1 after answering question 2

￭ Countermeasures: change k, add a sequence number

73

1A 2B 3C, 642 1A 2B 3C, 642
Alice BobMallory

m , v m ’ , v ’ 
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Existing PRFs

￭ Annoying question: 
￭ Do PRFs actually exist?

￭ Annoying answer: 
￭ We don’t know for sure…
￭ But we strongly believe they do!

￭ Best we can do:
￭ Well-studied functions without problems (yet)

￭ E.g., HMAC-SHA256
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Questions?
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Obsolete PRFs: Hash Functions

76
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Cryptographic Hash Functions

￭ Based on idea of compression

￭ Input:  arbitrary length data

￭ Output:  fixed-size digest (n bits)

￭ No key and fixed function

￭ Examples: SHA-256, SHA-512, SHA-3
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The SHA-256 Cryptographic Hash

￭ Input:  arbitrary-length data
￭ Output:  256-bit hash digest

78

256 bits

Input Message

Digest
c3b10f50
25d33602
e69ad16b
ee9c1210
9d9c1e31
20fff3e1
6e62d8d6
ef882cd9
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The SHA-256 Cryptographic Hash

￭ Input:  arbitrary-length data
￭ Output:  256-bit hash digest

￭ Internal compression function h

79

256 bits

Digest
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The SHA-256 Cryptographic Hash

￭ Input:  arbitrary-length data
￭ Output:  256-bit hash digest

￭ Internal compression function h

￭ Inputs to h:  
￭ 256-bit initialization vector

￭ Public—known to Mallory!

80

256 bits

Digest
c3b10f50
25d33602
e69ad16b
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9d9c1e31
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6e62d8d6
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The SHA-256 Cryptographic Hash

￭ Input:  arbitrary-length data
￭ Output:  256-bit hash digest

￭ Internal compression function h

￭ Inputs to h:  
￭ 256-bit initialization vector

￭ Public—known to Mallory!
￭ 512-bit input message block

￭ Input split up into 512-bit blocks
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The SHA-256 Cryptographic Hash

￭ Input:  arbitrary-length data
￭ Output:  256-bit hash digest

￭ Internal compression function h

￭ Inputs to h:  
￭ 256-bit initialization vector

￭ Public—known to Mallory!
￭ 512-bit input message block

￭ Input split up into 512-bit blocks
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512 bits

Digest
c3b10f50
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e69ad16b
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ef882cd9

SHA-256, SHA-512, MD5, etc. are called 
Merkle–Damgård Construction hashes
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Merkle–Damgård Hash Construction

1. Pad input message (using a fixed, public algorithm) to a multiple of 512 bits 

83

512 
bits

512 
bits

512 
bits

Input Message ?
112b
its



Stefan Nagy

Merkle–Damgård Hash Construction

1. Pad input message (using a fixed, public algorithm) to a multiple of 512 bits 
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Merkle–Damgård Hash Construction

1. Pad input message (using a fixed, public algorithm) to a multiple of 512 bits 
2. Split input message into 512-bit blocks:  b1, b2, …, bn
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Merkle–Damgård Hash Construction

1. Pad input message (using a fixed, public algorithm) to a multiple of 512 bits 
2. Split input message into 512-bit blocks:  b1, b2, …, bn
3. Initial state y1 is an Initialization Vector (not a key!)
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Merkle–Damgård Hash Construction

1. Pad input message (using a fixed, public algorithm) to a multiple of 512 bits 
2. Split input message into 512-bit blocks:  b1, b2, …, bn
3. Initial state y1 is an Initialization Vector (not a key!)
4. Rest of block digests calculated as: yn = h (yn-1, bn-1)
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Merkle–Damgård Hash Construction

1. Pad input message (using a fixed, public algorithm) to a multiple of 512 bits 
2. Split input message into 512-bit blocks:  b1, b2, …, bn
3. Initial state y1 is an Initialization Vector (not a key!)
4. Rest of block digests calculated as: yn = h (yn-1, bn-1)
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Properties of Cryptographic Hash Functions

￭ Collision resistance: 
￭ Can’t find any m1 != m2 such that

h (m1 ) = h (m2 )

￭ Second pre-image resistance: 
￭ Given m1 , can’t find m2 != m1  such that 

h (m1 ) = h ( m2 )

￭ Pre-image resistance: 
￭ Given h (m), can’t find m

￭ “Can’t find” = infeasible to compute 
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Properties of Cryptographic Hash Functions

￭ Collision resistance: 
￭ Can’t find any m1 != m2 such that

h (m1 ) = h (m2 )

￭ Second pre-image resistance: 
￭ Given m1 , can’t find m2 != m1  such that 

h (m1 ) = h ( m2 )

￭ Pre-image resistance: 
￭ Given h (m), can’t find m

￭ “Can’t find” = infeasible to compute 
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Are “secure” hashes 
secure forever?
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Properties of Cryptographic Hash Functions

￭ Collision resistance: 
￭ Can’t find any m1 != m2 such that

h (m1 ) = h (m2 )

￭ Second pre-image resistance: 
￭ Given m1 , can’t find m2 != m1  such that 

h (m1 ) = h ( m2 )

￭ Pre-image resistance: 
￭ Given h (m), can’t find m

￭ “Can’t find” = infeasible to compute 
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Are “secure” hashes 
secure forever? No!
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Questions?
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Attacks on Hash Functions
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What are some everyday uses of hashes?

￭ What are some everyday uses of hashes?
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What are some everyday uses of hashes?

￭ What are some everyday uses of hashes?
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Alice Bob
m

Mallory
m*

vDe-duplication

File 
Transfer

Email 
Signing

Blockchain
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Problem: Collision Attacks

￭ Suppose the Crabapple yPhone prompts you to install a software update…
￭ How do you know the file you downloaded is the file Crabapple wanted you to download?
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Problem: Collision Attacks
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￭ Suppose the Crabapple yPhone prompts you to install a software update…
￭ How do you know the file you downloaded is the file Crabapple wanted you to download?

EvilUpdate.zip Hash=5393066469
7580619f21731fc
31ff20109595445
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Problem: Collision Attacks
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Defeated Hash Functions

￭ MD5
￭ Once ubiquitous
￭ Broken in 2004
￭ Now easy to find collisions 

￭ You will in Project 1 😁
￭ Exploited to attack real systems

￭ SHA-1
￭ All major web browser vendors ceased acceptance of SHA-1 SSL certificates in 2017
￭ February 2017: CWI Amsterdam and Google announced  a collision attack against SHA-1

￭ Created two dissimilar PDF files with same SHA-1 hash
￭ April 2019: Leurent and Peyrin created an attack capable of finding chosen-prefix collisions 

in approximately 268 SHA-1 evaluations, requiring only $100,000 of cloud processing
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Defeated Hash Functions

￭ Hashes proven to be insecure—do not use cryptographically!
￭ valerieaurora.org/hash.html 
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https://valerieaurora.org/hash.html
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Recap: Mallory-known Function

￭ We talked about the case where Mallory knows the internals of function f
￭ What happens? 
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Recap: Mallory-known Function

￭ We talked about the case where Mallory knows the internals of function f
￭ What happens? She can forge fake messages and hashes!
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Recap: Mallory-known Function

￭ We talked about the case where Mallory knows the internals of function f
￭ What happens? She can forge fake messages and hashes!

104

Alice BobMallory

ABC, 123 BDA, 241

f (m  ’) = v  ’

m , v m ’ , v ’ If our function is a Merkle–Damgård Hash, what 
control could Mallory have over the final digest?
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Problem: Length Extension Attacks

￭ Merkle–Damgård construction: digest is formed from the last chaining value
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Problem: Length Extension Attacks

￭ Merkle–Damgård construction: digest is formed from the last chaining value
￭ Nothing stopping Mallory from continuing the hash chain…
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Problem: Length Extension Attacks

￭ Merkle–Damgård construction: digest is formed from the last chaining value
￭ Nothing stopping Mallory from continuing the hash chain…

￭ Mallory doesn’t need to know the previous blocks’ plaintext
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Problem: Length Extension Attacks

￭ Merkle–Damgård construction: digest is formed from the last chaining value
￭ Nothing stopping Mallory from continuing the hash chain…

￭ Mallory doesn’t need to know the previous blocks’ plaintext
￭ But she does know that the last block was padded to 512 bits
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Problem: Length Extension Attacks

￭ What if Mallory figures out the length of the input message?
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Problem: Length Extension Attacks

￭ What if Mallory figures out the length of the input message?
￭ She can then calculate the final block’s padding!

￭ Suppose our system validates users’ command strings via their hashes…
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Problem: Length Extension Attacks

￭ What if Mallory figures out the length of the input message?
￭ She can then calculate the final block’s padding!

￭ Suppose our system validates users’ command strings via their hashes…
￭ Mallory can inject her own commands—just by knowing the original message length!
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m = “doGood”, 
v = 123

m , v m ’ , v ’ 
m = “doGood”+“doEvil”, 

v = 241
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Problem: Length Extension Attacks

￭ What if Mallory figures out the length of the input message?
￭ She can then calculate the final block’s padding!

￭ Suppose our system validates users’ command strings via their hashes…
￭ Mallory can inject her own commands—just by knowing the original message length!
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Alice BobMallory
m , v m ’ , v ’ 

m = “doGood”, 
v = 123

m = “doGood”+“doEvil”, 
v = 241

f (m ’) = v ’

Final outcome:
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Solution: Use a MAC Instead

￭ Cryptographic Hash Function
￭ e.g., SHA256
￭ Not a strong PRF

￭ Length-extension attacks
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Solution: Use a MAC Instead

￭ Cryptographic Hash Function
￭ e.g., SHA256
￭ Not a strong PRF

￭ Length-extension attacks

￭ Message Authentication Code (MAC)
￭ Think of as synonymous with PRF

￭ Widely believed to be PRFs
￭ e.g., HMAC-SHA256

￭ HMAC = keyed-hash MAC
￭ Currently recommended
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The HMAC-SHA256 Function

￭ HMACk (m) = 

SHA256 ( (k ⊕ padouter) || SHA256 ((k ⊕ padinner) || m) )

￭ Here, k = secret key
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The HMAC-SHA256 Function

￭ HMACk (m) = 

SHA256 ( (k ⊕ padouter) || SHA256 ((k ⊕ padinner) || m) )

￭ Here, k = secret key
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The HMAC-SHA256 Function

￭ HMACk (m) = 

SHA256 ( (k ⊕ padouter) || SHA256 ((k ⊕ padinner) || m) )

￭ Here, k = secret key; padding = 0x5c and 0x36 repeated 64 times 
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The HMAC-SHA256 Function

￭ HMACk (m) = 

SHA256 ( (k ⊕ padouter) || SHA256 ((k ⊕ padinner) || m) )

￭ Here, k = secret key; padding = 0x5c and 0x36 repeated 64 times 
￭ Nested construction rather than chained like Merkle–Damgård

￭ Goodbye length extension and forgery!
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0x5c5c5c5c… 0x36363636…
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Questions?
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Project Tips
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Project Tips

￭ Projects are challenging—you’re performing real-world attacks!
￭ Build off of lecture concepts
￭ Make sure you understand the lectures
￭ Prepare you to defend in the real world
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Project Tips

￭ Projects are challenging—you’re performing real-world attacks!
￭ Build off of lecture concepts
￭ Make sure you understand the lectures
￭ Prepare you to defend in the real world

￭ Suggested strategy: get high-level idea down, then start implementing
1. Go through assignment and start sketching-out your approach
2. Come to Office Hours and ask if you’re on the right track! 
3. Then start building your program
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Project Tips

￭ Projects are challenging—you’re performing real-world attacks!
￭ Build off of lecture concepts
￭ Make sure you understand the lectures
￭ Prepare you to defend in the real world

￭ Suggested strategy: get high-level idea down, then start implementing
1. Go through assignment and start sketching-out your approach
2. Come to Office Hours and ask if you’re on the right track! 
3. Then start building your program

￭ Don’t get discouraged—we are here to help!
￭ Most issues are cleared up in a few minutes of white-boarding
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Next time on CS 4440…
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Confidentiality, Substitution Ciphers 


