
Stefan Nagy

Week 1: Lecture B
Python, Debugging, and VM Setup

Thursday, August 22, 2024

1

Stefan Nagy

Reminders

￭ Be sure to join the course Canvas and Piazza
￭ See links at top of course page
￭ http://cs4440.eng.utah.edu

￭ Finish registering on PollEverywhere
￭ Account must be <yourUID>@utah.edu
￭ Location issues should be fixed
￭ Sign in at https://pollev.com/cs4440

￭ Trouble accessing? See me after class!
￭ Or email me at: snagy@cs.utah.edu

2

http://cs4440.eng.utah.edu
https://pollev.com/cs4440
mailto:snagy@cs.utah.edu

Stefan Nagy

Reminders: Course Resources

Course website ………..…. wiki, assignments, schedule, slides, office hours

Piazza ……………………………..…………. questions, discussion, announcements

PollEverywhere …………….….….…….…….……………………… lecture participation

Canvas ……………………….…. quizzes, project submission, course gradebook

Instructor email (snagy@cs.utah.edu) …………....…... administrative issues

3

mailto:snagy@cs.utah.edu

Stefan Nagy

Reminders: Weekly Quizzes

￭ First weekly Lecture Quiz released on Canvas
￭ Submit by 11:59PM this Monday
￭ Late submissions not accepted

￭ Lecture quizzes released after Tuesday’s lecture
￭ Due the following Monday
￭ Covers content from both Tuesday + Thursday lectures

4

Stefan Nagy

Reminders: PollEverywhere

￭ PollEverywhere: check your UMail for an account registration email
￭ We’ll count today’s attendance—let us know of any issues!

￭ Use your UID@utah.edu when participating
￭ Should work automatically if you got the sign-up email

5

mailto:UID@utah.edu

Stefan Nagy

Reminders: Office Hours

￭ TA office hours (15 total hours)
￭ First-come/first-serve via TA Queue
￭ Help with programming projects

￭ Professor’s office hours
￭ Help understanding lecture material
￭ Administrative or grading issues

￭ Check the office hours calendar!
￭ http://cs4440.eng.utah.edu
￭ Cancellations announced via Piazza

6

Monday Tuesday Wednesday Thursday Friday

http://cs4440.eng.utah.edu

Stefan Nagy

Reminders: Find a Teammate!

￭ Can work in teams of up to two
￭ Find teammates on Piazza
￭ Post on

￭ Why work with someone else?
￭ Pair programming
￭ Divide and conquer
￭ Two sets of eyes to solve problems
￭ Teaching others helps you learn more

￭ Yes, you are free to work solo…
￭ But we encourage you to team up!

7

Stefan Nagy

Reminders: Grading Breakdown

8

■ 10% = weekly solo quizzes based on lectures

■ 50% = four Programming Projects (12.5% each)

■ 35% = Final Exam covering all course material

■ 5% = participation during lecture poll exercises

Stefan Nagy

Reminders: Collaboration Policy

￭ We encourage you to help each other learn!
￭ You may give or receive help on key high-level concepts

￭ However, all code must only be written by you or your team

￭ Cheating is when you give/receive an unfair advantage. Examples:
￭ Distributing your solutions (e.g., to GitHub, Chegg, CourseHero) = cheating
￭ Copying code/solutions (e.g., from GitHub, Google, another team) = cheating
￭ Copying code/solutions from AI tools (e.g., CoPilot, GPT, Bard, etc.) = cheating

￭ Violations = misconduct sanctions. Don’t jeopardize your degree!

9

Stefan Nagy

Reminders: Lecture Participation

￭ Lecture participation via PollEverywhere:
￭ Three lecture absences allowed at zero penalty
￭ We’ll track these internally—no need to notify us
￭ Log-in as your UMAIL (e.g., u8675309@utah.edu)

￭ Online participation on course Piazza:
￭ Make intellectual contributions to help others learn
￭ Collaboration policies apply—don’t share your code!
￭ New for Fall 2024: top-10 answerers get 5pts extra credit

￭ How to lose points:
￭ Frequently missing class, or not contributing online
￭ Engaging in disruptive behavior or violating policies

10

Stefan Nagy

Announcements: Course Wiki

￭ Our aim is to lower the
overall learning curve

￭ Resources to help you:
￭ Tutorials
￭ Cheat Sheets
￭ Software documentation

￭ Fall 2024: more pages!
￭ HTML, SQL basics
￭ Wireshark, Scapy
￭ Coming soon!

11

Stefan Nagy

Announcements: Course Wiki

￭ Our aim is to lower the
overall learning curve

￭ Resources to help you:
￭ Tutorials
￭ Cheat Sheets
￭ Software documentation

￭ Fall 2024: more pages!
￭ HTML, SQL basics
￭ Wireshark, Scapy
￭ Coming soon!

12

Contributions welcome!
￭ Page ideas, typo and bug fixes, etc.
￭ Tutorials that you would find helpful

Now open-source!
https://github.com/stevenagy/cs4440-wiki

￭ Significant Wiki contributions will be awarded 1
point extra credit to your participation grade

￭ Significance will be determined by instructors;
must clear page ideas with me before starting

https://github.com/stevenagy/cs4440-wiki

Stefan Nagy

Announcements: Project 1

￭ Project 1: Crypto releasing on Tuesday, August 27
￭ Deadline: Thursday, September 19th by 11:59PM

13

Stefan Nagy

Announcements: UtahSec

14

Stefan Nagy

Announcements: UtahSec

15

First meeting
TONIGHT @ 6PM

in MEB 3115

Stefan Nagy

Questions?

16

Stefan Nagy

Last time on CS 4440…

17

The Security Mindset
Modeling the Attacker

Assessing Risk
Secure Design

Stefan Nagy

Meet the Adversary

“Computer security studies how systems
behave in the presence of an adversary.”

￭ The adversary…
￭ a.k.a. the attacker
￭ a.k.a. the bad guy
￭ An intelligence that actively tries to

cause the system to misbehave.

18

Stefan Nagy

The Security Mindset

￭ Thinking like a defender
￭ Know what you’re defending, and against whom
￭ Weigh benefits vs. costs:

No system is ever completely secure.
￭ Embrace “rational paranoia”

￭ Thinking like an attacker
￭ Understand techniques for circumventing security
￭ Look for ways security can break,

not reasons why it won’t

19

Stefan Nagy

Thinking as a Defender

￭ Security policy
￭ What are we trying to protect?
￭ What properties are we trying to enforce?

￭ Threat model
￭ Who are the attackers? Capabilities? Motivations?
￭ What kind of attack are we trying to prevent?

￭ Risk assessment
￭ What are the weaknesses of the system?
￭ What will successful attacks cost us?

￭ How likely?
￭ Countermeasures
￭ Costs vs. benefits?
￭ Technical vs. nontechnical?

20

The challenge is to
think rationally and

rigorously about risk.
Rational paranoia.

Stefan Nagy

Threat Models

￭ Who are our adversaries?
￭ Motives?
￭ Capabilities?
￭ Level of access?

￭ What kinds of attacks must we prevent?
￭ Think like the attacker!

￭ Limits: kinds of attacks we should ignore?
￭ Unrealistic versus unlikely

21

Stefan Nagy

Security through… obscurity?

Common mistake:

￭ ???

22

Stefan Nagy

Security through… obscurity?

Common mistake:

￭ Trying to convince yourself the system is secure since attacker won't know X

Better approach:

￭ ???

23

Stefan Nagy

Security through… obscurity?

Common mistake:

￭ Trying to convince yourself the system is secure since attacker won't know X

Better approach:

￭ Limit the assumptions that the security of your system depends upon
￭ Assume the attacker knows everything but a small bit of data (e.g., a key)

24

Stefan Nagy

Assessing Risk

￭ Remember: Rational paranoia

￭ What would security breaches cost us?
￭ Direct: ???

25

Stefan Nagy

Assessing Risk

￭ Remember: Rational paranoia

￭ What would security breaches cost us?
￭ Direct: money, intellectual property, safety
￭ Indirect: ???

26

Stefan Nagy

Assessing Risk

￭ Remember: Rational paranoia

￭ What would security breaches cost us?
￭ Direct: money, intellectual property, safety
￭ Indirect: reputation, future business, well being

￭ How likely are these costs?
￭ Probability of attacks?
￭ Probability of success?

27

Stefan Nagy

Countermeasures

￭ Technical countermeasures
￭ Bug fixes, more crypto, re-architecting, etc.

￭ Nontechnical countermeasures
￭ Law, policy (government, institutional)
￭ Procedures, training, auditing, incentives, etc.

28

Stefan Nagy

Costs of Security

￭ No security mechanism is free

￭ Direct costs:
￭ Design, implementation, enforcement, false positives

￭ Indirect costs:
￭ Lost productivity, added complexity, time to market

￭ Challenge is to rationally weigh costs vs. risk
￭ Human psychology makes reasoning about high cost,

low probability events very difficult

29

Stefan Nagy

Rational Paranoia Exercises

Should you use a strong password?

￭ Assets?
￭ Adversaries?
￭ Risk assessment?
￭ Countermeasures?
￭ Costs/benefits?

30

Stefan Nagy

Rational Paranoia Exercises

Using a credit card safely?

￭ Assets?
￭ Adversaries?
￭ Risk assessment?
￭ Countermeasures?
￭ Costs/benefits?

31

Stefan Nagy

High-level Approaches

32

Attacks Defenses

Stefan Nagy

Questions?

33

Stefan Nagy

This time on CS 4440…

34

Intro to Python
Debugging Code
Course VM Setup

Stefan Nagy

Languages and Tools in CS 4440

￭ Projects cover a few languages and tools:
￭ Project1: Python 3
￭ Project2: C/C++, x86, GDB
￭ Project3: SQL, HTML, JavaScript
￭ Project4: Python 3, Wireshark

35

Stefan Nagy

Languages and Tools in CS 4440

￭ Projects cover a few languages and tools:
￭ Project1: Python 3
￭ Project2: C/C++, x86, GDB
￭ Project3: SQL, HTML, JavaScript
￭ Project4: Python 3, Wireshark

￭ This may seem daunting—but don’t panic!

36

Stefan Nagy

Languages and Tools in CS 4440

￭ Projects cover a few languages and tools:
￭ Project1: Python 3
￭ Project2: C/C++, x86, GDB
￭ Project3: SQL, HTML, JavaScript
￭ Project4: Python 3, Wireshark

￭ This may seem daunting—but don’t panic!
￭ Only using a small subset of their capabilities
￭ We’ll cover some basics in lecture as we go along
￭ We’ll post resources for you on the CS 4440 Wiki

37

Stefan Nagy 38

Stefan Nagy

An Intro to Python 3

39

Stefan Nagy

Python 3

￭ Primary language for your Projects
￭ Though expect to see some others too

￭ Characteristics:
￭ High-level
￭ Interpreted
￭ Object Oriented
￭ Dynamically Typed
￭ Lots of indentation

40

Stefan Nagy

Running Python Code

￭ Interactive mode
￭ Launch Python 3 console
￭ Enter code line-by-line
￭ Executed line-by-line

41

$ python3

>>> print("Hello from the interpreter!")

Hello f rom the interpreter!

>>> exit()

Stefan Nagy

Running Python Code

￭ Scripting mode
￭ Edit your script (e.g., MyScript.py)
￭ Then call the python3 binary on it

42

$ cat MyScript.py

#!/usr/bin/python3

print("Hello from scripting mode!")

$ python3 MyScript.py

Hello f rom scripting mode!

Stefan Nagy

Writing Scripts

￭ You’ll be writing relatively simple scripts
￭ No need for an IDE
￭ IDEs can/will break things

￭ Recommended text editors:
￭ VIM
￭ Nano
￭ Emacs
￭ FeatherPad
￭ Many others—pick one you like!

43

Stefan Nagy

Variables

￭ Can contain alphanumerical characters and some special characters

￭ Common conventions:
￭ Variable names that start with lower-case letters
￭ Class names beginning with a capital letter

￭ Some keywords are reserved (cannot be used as variable names)
￭ Examples: and, continue, break
￭ Python will complain if you use these

￭ Dynamically typed: a variable’s type is derived from its value

44

Stefan Nagy

Variables

￭ Types you’ll likely see:
￭ Integer (int)
￭ Float (float)
￭ String (str)
￭ Boolean (bool)
￭ Custom classes (e.g., md5)

45

Stefan Nagy

Variables

￭ Types you’ll likely see:
￭ Integer (int)
￭ Float (float)
￭ String (str)
￭ Boolean (bool)
￭ Custom classes (e.g., md5)

￭ Variable assignment:
￭ Assignment uses the “=” sign

46

 >>> x = 5

 >>> print(type(x))

 < c lass 'int'>

Stefan Nagy

Variables

￭ Types you’ll likely see:
￭ Integer (int)
￭ Float (float)
￭ String (str)
￭ Boolean (bool)
￭ Custom classes (e.g., md5)

￭ Variable assignment:
￭ Assignment uses the “=” sign
￭ Value changed? So does type!

47

 >>> x = 5

 >>> print(type(x))

 < c lass 'int'>

 >>> x = "cs4440"

 >>> print(type(x))

 < c lass 'str'>

Stefan Nagy

Variables

￭ Casting:
￭ Pick a desired data type
￭ “Wrap” your variable in it

48

 >>> x = 5

 >>> print(x, type(x))

 5 < c lass 'int'>

Stefan Nagy

Variables

￭ Casting:
￭ Pick a desired data type
￭ “Wrap” your variable in it
￭ Re-casting will change type!

49

 >>> x = 5

 >>> print(x, type(x))

 5 < c lass 'int'>

 >>> x = float(x)

 >>> print(x, type(x))

 5.0 < c lass float>

Stefan Nagy

Strings

￭ You will use strings in many exercises
￭ Super flexible to use and manipulate
￭ We’ll cover some basic conventions

50

 >>> x = "odoyle"

Stefan Nagy

Strings

￭ You will use strings in many exercises
￭ Super flexible to use and manipulate
￭ We’ll cover some basic conventions

￭ Basic string manipulation:
￭ Length

51

 >>> x = "odoyle"

 >>> print(len(x))

 6

Stefan Nagy

Strings

￭ You will use strings in many exercises
￭ Super flexible to use and manipulate
￭ We’ll cover some basic conventions

￭ Basic string manipulation:
￭ Length
￭ Appending

52

 >>> x = "odoyle"

 >>> print(len(x))

 6

 >>> print(x + "rules")

 odoylerules

Stefan Nagy

Strings

￭ You will use strings in many exercises
￭ Super flexible to use and manipulate
￭ We’ll cover some basic conventions

￭ Basic string manipulation:
￭ Length
￭ Appending
￭ Substrings

53

 >>> x = "odoyle"

 >>> print(len(x))

 6

 >>> print(x + "rules")

 odoylerules

 >>> print("odoy" in x)

 True

Stefan Nagy

Strings

￭ Other string manipulations:

54

 >>> x = "cs4440:fa23"

Stefan Nagy

Strings

￭ Other string manipulations:
￭ Splitting by a delimiter

55

 >>> x = "cs4440:fa23"

 >>> print(x.split(':')

 ['cs4440', 'fa23']

Stefan Nagy

Strings

￭ Other string manipulations:
￭ Splitting by a delimiter
￭ Stripping characters

56

 >>> x = "cs4440:fa23"

 >>> print(x.split(':')

 ['cs4440', 'fa23']

 >>> print(x.strip(':')

 cs4440fa23

Stefan Nagy

Strings

￭ Other string manipulations:
￭ Splitting by a delimiter
￭ Stripping characters
￭ Repeating characters

57

 >>> x = "cs4440:fa23"

 >>> print(x.split(':')

 ['cs4440', 'fa23']

 >>> print(x.strip(':')

 cs4440fa23

 >>> print('A'*10)

 AAAAAAAAAA

Stefan Nagy

Byte Strings

￭ Sometimes you will work with data as bytes
￭ In Python, byte strings appear as b'data'

￭ Examples:
￭ Encoding to a byte string

58

 >>> x = "cs4440"

 >>> x = x.encode(‘utf-8’))

 >>> print(x, type(x))

 b'cs4440' <class 'bytes'>

Stefan Nagy

Byte Strings

￭ Sometimes you will work with data as bytes
￭ In Python, byte strings appear as b'data'

￭ Examples:
￭ Encoding to a byte string
￭ Decoding a byte string

59

 >>> x = "cs4440"

 >>> x = x.encode(‘utf-8’))

 >>> print(x, type(x))

 b'cs4440' <class 'bytes'>

 >>> y = x.decode(‘utf-8’))

 >>> print(y, type(y))

 cs4440 <class 'str'>

Stefan Nagy

Byte Strings

￭ Sometimes you will work with data as bytes
￭ In Python, byte strings appear as b'data'

￭ Examples:
￭ Encoding to a byte string
￭ Decoding a byte string
￭ Must keep the same codec (e.g., utf-8)

60

 >>> x = "cs4440"

 >>> x = x.encode(‘utf-8’))

 >>> print(x, type(x))

 b'cs4440' <class 'bytes'>

 >>> y = x.decode(‘utf-8’))

 >>> print(y, type(y))

 cs4440 <class 'str'>

Stefan Nagy

Byte Strings

￭ Sometimes you will work with data as bytes
￭ In Python, byte strings appear as b'data'

￭ Examples:
￭ Encoding to a byte string
￭ Decoding a byte string
￭ Must keep the same codec (e.g., utf-8)

￭ Conceptually can be a little confusing
￭ Functions print() and type() are your friends!

61

 >>> x = "cs4440"

 >>> x = x.encode(‘utf-8’))

 >>> print(x, type(x))

 b'cs4440' <class 'bytes'>

 >>> y = x.decode(‘utf-8’))

 >>> print(y, type(y))

 cs4440 <class 'str'>

Stefan Nagy

Other Key Concepts

￭ A few other concepts to review
￭ Check these out in the CS 4440 Wiki

62

Stefan Nagy

Other Key Concepts

￭ A few other concepts to review
￭ Check these out in the CS 4440 Wiki

￭ Lists
￭ Appending
￭ Prepending
￭ Insert, Remove

63

Stefan Nagy

Other Key Concepts

￭ A few other concepts to review
￭ Check these out in the CS 4440 Wiki

￭ Lists
￭ Appending
￭ Prepending
￭ Insert, Remove

￭ Control Flow
￭ Loops
￭ If/Else Statements

64

Stefan Nagy

Other Key Concepts

￭ A few other concepts to review
￭ Check these out in the CS 4440 Wiki

￭ Lists
￭ Appending
￭ Prepending
￭ Insert, Remove

￭ Control Flow
￭ Loops
￭ If/Else Statements

￭ Functions

65

Stefan Nagy

Questions?

66

Stefan Nagy

Debugging Your Code

67

Stefan Nagy

Sample Program

￭ What will the following code do?

68

 age = input("How old are you? ")

 next_age = age + 1

 print("Next year you will be", next_age)

Stefan Nagy 69

Stefan Nagy

￭ What will the following code do?

Sample Program

70

 age = input("How old are you? ")

 next_age = age + 1

 print("Next year you will be", next_age)

Stefan Nagy

Where to begin debugging?

￭ Errors say where the error is!
￭ Filename
￭ Line number
￭ The actual line of code

71

Traceback (most recent call last):

 File "MyScript.py", line 2, in <module>

 next_age = age + 1

TypeError: must be str, not int

Stefan Nagy

Where to begin debugging?

￭ Errors say where the error is!
￭ Filename
￭ Line number
￭ The actual line of code

72

Traceback (most recent call last):

 File "MyScript.py", line 2, in <module>

 next_age = age + 1

TypeError: must be str, not int

Stefan Nagy

Where to begin debugging?

￭ Errors say where the error is!
￭ Filename
￭ Line number
￭ The actual line of code

￭ The error’s root cause:
￭ Program tried "29"+1
￭ Strings and numbers are

different data types!

73

Traceback (most recent call last):

 File "MyScript.py", line 2, in <module>

 next_age = age + 1

TypeError: must be str, not int

Stefan Nagy

Where to begin debugging?

￭ Errors say where the error is!
￭ Filename
￭ Line number
￭ The actual line of code

￭ The error’s root cause:
￭ Program tried "29"+1
￭ Strings and numbers are

different data types!

￭ The fix: cast age as an int

74

 age = input("How old are you? ")

 next_age = int(age) + 1

Stefan Nagy

Debugging is a Process

￭ Remember: print() and type() are your friend!
￭ Insert these, re-run your program, and check output
￭ Does the output match what you expect?
￭ If not, investigate further and try again!

75

Stefan Nagy

Debugging is a Process

￭ Remember: print() and type() are your friend!
￭ Insert these, re-run your program, and check output
￭ Does the output match what you expect?
￭ If not, investigate further and try again!

76

ERROR!

ERROR!

CORRECT

Stefan Nagy

Lazy Debugging

77

Stefan Nagy

Asking for Help

￭ It’s perfectly fine to ask for help
￭ That’s what we / Piazza are here for!

78

Stefan Nagy

Asking for Help

￭ It’s perfectly fine to ask for help
￭ That’s what we / Piazza are here for!

￭ Help others help you! Explain:
￭ What error code are you getting?
￭ What do you think it means?
￭ What fixes have you tried?
￭ What fixes did not work?

79

Stefan Nagy

Asking for Help

￭ It’s perfectly fine to ask for help
￭ That’s what we / Piazza are here for!

￭ Help others help you! Explain:
￭ What error code are you getting?
￭ What do you think it means?
￭ What fixes have you tried?
￭ What fixes did not work?

￭ Please try to avoid “instructor private posts” about debugging your code
￭ We get a lot of these near deadlines—it becomes impossible to keep up / help everyone!
￭ We may un-private your post if it contains information that’s useful for the class 🙂

80

Stefan Nagy

Questions?

81

Stefan Nagy

VM Setup

82

Stefan Nagy

Virtual Machines (VM)

￭ Why do we use a VM in this course?
￭ Minor software differences can break your attacks
￭ We want everyone to have the same software and OS

￭ Python & Firefox versions, security settings, etc.
￭ We’ll grade everyone using this Linux VM environment

83

Stefan Nagy

Virtual Machines (VM)

￭ Why do we use a VM in this course?
￭ Minor software differences can break your attacks
￭ We want everyone to have the same software and OS

￭ Python & Firefox versions, security settings, etc.
￭ We’ll grade everyone using this Linux VM environment

￭ Important: your computer determines what VM software you will use
￭ Use VirtualBox if:

￭ Your laptop is a Windows-, Linux-, or Intel-based Mac (i.e., NOT an M1/M2/etc.)
￭ Use UTM if:

￭ Your laptop is an ARM-based Mac (i.e., an M1/M2/etc.)

84

Stefan Nagy 85

Stefan Nagy

Setup the CS 4440 VM

￭ Open the CS 4440 Wiki
￭ See the VM Setup page
￭ Follow the instructions
￭ Once your VM is setup,

you are free to leave!
￭ In the meantime, feel

free to ask questions

86

Course Homepage: http://cs4440.eng.utah.edu

Stefan Nagy

Next time on CS 4440…

87

Message integrity (a.k.a. applied cryptography)

