Week 1: Lecture A Course Intro & The Security Mindset

Tuesday, August 19, 2024

Reminders

- Be sure to join the course Canvas and Piazza
 - See links at top of course page
 - http://cs4440.eng.utah.edu
- Trouble accessing? See me after class!
 - Or email me at: snagy@cs.utah.edu

Today's Class

- Welcome to CS 4440
- Course Overview
- The Security Mindset
 - Thinking like an attacker
 - Thinking as a defender
- Ethics and Academic Integrity

Course Staff

Course Instructor

Stefan Nagy Assistant Professor, KSoC

Email: snagy@cs.utah.edu **Office:** Merrill Eng. 3446

Teaching Assistants

Alishia Seo

Bella Miller

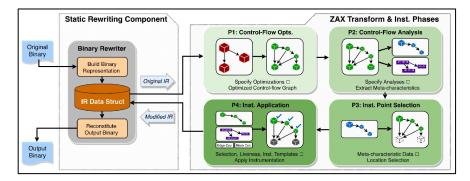
Ethan Quinlan

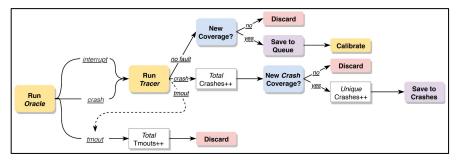
About Me

Stefan Nagy Assistant Professor, KSoC

cs.utah.edu/~snagy twitter.com/snagycs @snagy@infosec.exchange

Co-founder and Co-director:

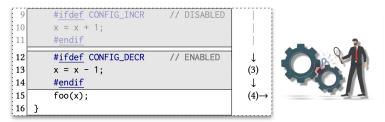



Places I've been:

University of Utah, 2022-now Virginia Tech, Ph.D. 2016-2022 Univ. of Illinois, B.S. 2012-2016

My Research: Fast Fuzzing

- Fastest techniques for fuzzing closed-source executable code
 - ZAFL (USENIX'21)
 - Make testing of closed-source code as fast as open-source
 - UnTracer (S&P'19), HeXcite (CCS'21)
 - Make testing of closed-source code <u>faster</u> than open-source



My Research: Fast Fuzzing

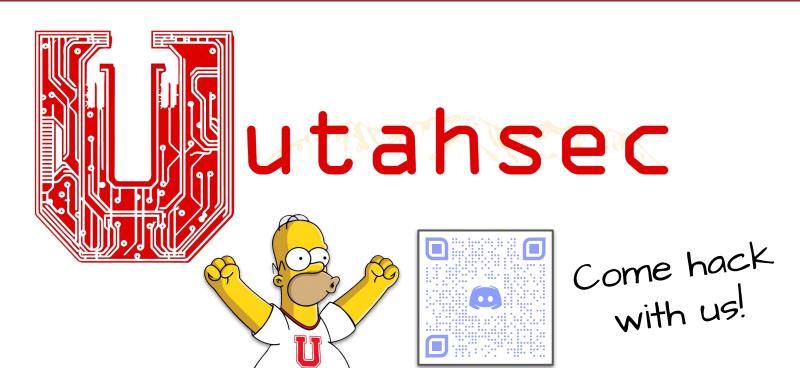
My Research: Extending Fuzzing's Reach

- Highly-configurable commodity software
 - Variability-induced bugs
 - Patch integrity vetting
 - Accelerating bug discovery

My Research: Extending Fuzzing's Reach

- Highly-configurable commodity software
 - Variability-induced bugs
 - Patch integrity vetting
 - Accelerating bug discovery
- Expanding auditing of opaque software
 - Testing binary analysis tools
 - Automated interface recovery
 - Closed-source operating systems

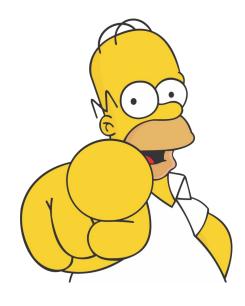
My Research Group

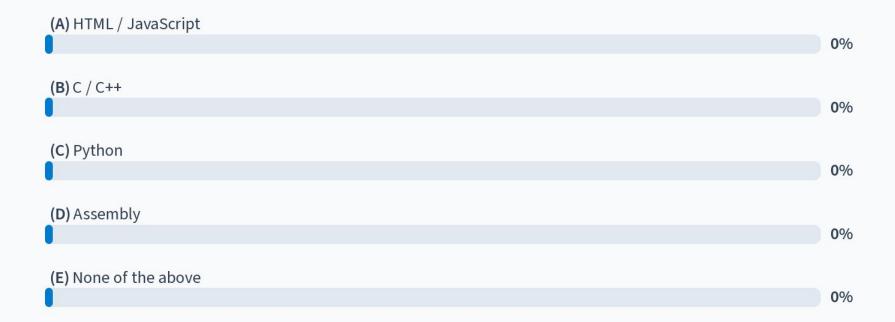

LAB FUTURE TECHNOLGY FOR USABLE, RELIABLE, & EFFICIENT SECURITY OF SOFTWARE & SYSTEMS

SCHOOL OF COMPUTING | THE UNIVERSITY OF UTAH | SALT LAKE CITY

Our work: systems and software security, binary analysis, fuzzing

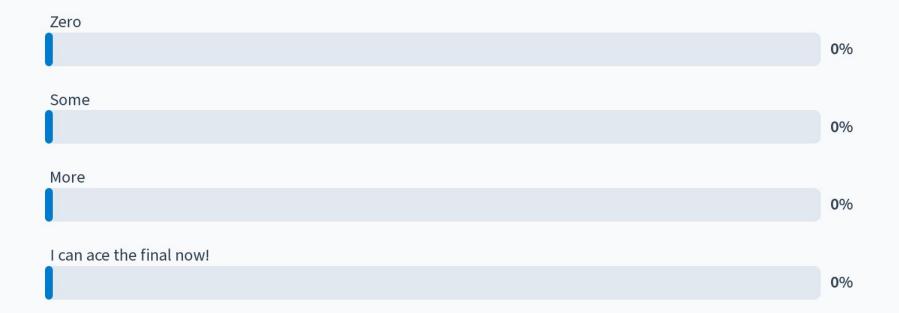
The Utah Cybersecurity Club


The Utah Cybersecurity Club

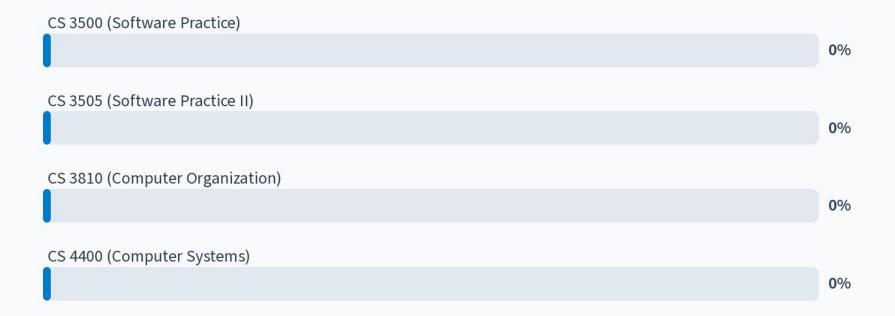

Help us get to know you!

Help us get to know you!

- Throughout lecture we'll use Poll Everywhere
 - Use your laptop to send-in your responses
 - Share location—we're checking you're here!
 - Poll participation = 5% of your grade
- To receive credit:
 - Log-in via your UMAIL (e.g., u8675309@utah.edu)
 - We've automatically registered you (if not, see me)
- Answer the following questions to give us some more info about you!



Experience with Programming Languages



Experience with Cybersecurity

Courses Previously Taken

Experience with Tools

Debuggers (e.g., GDB)	
	0%
The Linux Terminal	
	0%
Virtual Machines (e.g., VirtualBox)	
	0%
Wireshark	
	0%
Firefox or Chrome Dev Consoles	
	0%

Last Question

What do you hope to get out of this course?

And no, I don't mean the grade that you want 🙂

19

Course Overview

Course Goals

Critical Thinking

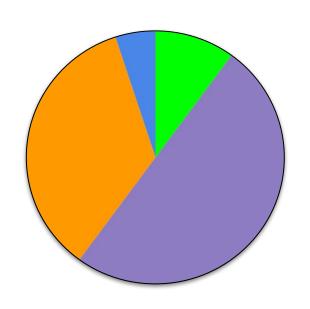
- How to think like an attacker
- How to reason about threats and risks
- How to balance security costs and benefits

Technical Skills

- How to protect yourself
- How to manage and defend systems
- How to design and program secure systems
- Learning to be a security-conscious citizen
- Learning to be a L337 H4X0R... but an ethical one!

Topics

 Course Intro & The Security Mindset Principles, threat modeling, vulnerabilities, attacking versus defending; VM setup 	Week 1
 P1: Communications Security Public- and private-key crypto, digital signatures, authentication, hashes, secure channels 	<u>Weeks 2–4</u>
 P2: Application Security Memory protection, sandboxing, virtual machines, software exploitation, malware, testing 	<u>Weeks 5–8</u>
 P3: Web and Network Security IP, TCP, routing, net protocols, web architecture, web attacks, firewalls, intrusion detection 	Weeks 9-12
 P4: New Frontiers in Security Side channels, hardware, ML security, reverse engineering, election security, policy, ethics 	Weeks 13-15
 Course Wrap-up Careers in cybersecurity, the security ecosystem; the final exam 	<u>Week 16</u>


Stefan Nagy

Common Concerns

- Attendance required? Yes.
 - Standard lecture format:
 - ~20 minutes of review
 - ~55 minutes of new material
- Textbook is required? No.
 - ... but highly recommended!
 - We provide 6 free textbooks on the site!
- Midterm exam? No. Final exam? Yes.
 - Covers entire course material
 - Review session as final lecture
 - Similar to in-class and quiz questions

Grading

- **10%** = weekly solo quizzes based on lectures
- 50% = four Programming Projects (12.5% each)
- 35% = Final Exam covering all course material
- **5%** = participation during lecture poll exercises

Stefan Nagy

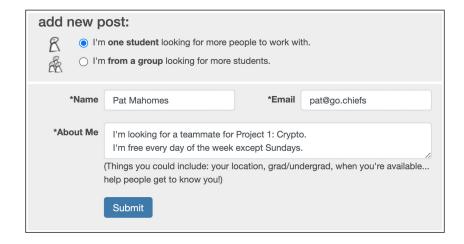
Lecture Quizzes (10%)

- Weekly exercises to be completed individually
 - Designed to test your understanding of the lectures

- Released on Canvas after Tuesday's lecture
 - You may work until the following Monday by 11:59 PM
 - Strict deadline—late submissions will not be accepted

Lowest score will be dropped at no penalty

25


Programming Projects (50%)

- Four projects completed in groups of no more than two
 - You can discuss your approaches with other groups
 - Must complete and submit only within your group
- Topics: Crypto, App security, Web security, Net security
- Where to find and submit?
 - Distributed via course website (we'll announce when)
 - Upload your work (one per team) as tarball to Canvas

26

Project Teams

- Can work in teams of up to two
 - Find teammates on Piazza
 - Post on Search for Teammates! 12/21/22
- Why work with someone else?
 - Pair programming
 - Divide and conquer
 - Two sets of eyes to solve problems
 - Teaching others helps you learn more
- Yes, you are free to work solo...
 - But we encourage you to team up!

Project Lateness Policy

- Course staff constraints:
 - We want to return graded work promptly
 - Can't discuss solutions until all work graded
- Project lateness policy:
 - 10% penalty for being late up to two days past deadline
 - Will not accept after 48 hours past the original deadline
 - Extensions made only under extraordinary circumstances
- Please start early! It is your responsibility to...
 - Turn in assignments <u>ahead</u> of the deadline
 - Ensure your submissions work as intended

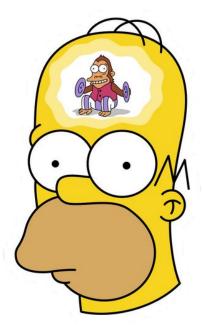
Stefan Nagy

Project Regrade Policy

- After grades posted, regrade form open for one week
 - We'll distribute regrade forms via Piazza
- Valid regrade requests:
 - You have verified your solution is correct (i.e., we made an error in grading)
- Requests that will be rejected:
 - My code crashed, but I've now fixed it
 - I am looking for more partial credit
 - I submitted late without an extension
 - I missed the regrade request deadline
- Your responsibility to stay atop of this!

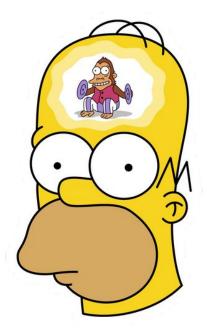
Project Collaboration Policy

- We encourage you to help each other learn!
 - You may give or receive help on key high-level concepts
- However, all code must only be written by you or your team
- Cheating is when you give/receive an unfair advantage. Examples:
 - Distributing your solutions (e.g., to GitHub, Chegg, CourseHero) = cheating
 - Copying code/solutions (e.g., from GitHub, Google, another team) = cheating
 - Copying code/solutions from AI tools (e.g., CoPilot, GPT, Bard, etc.) = cheating
- Violations = misconduct sanctions. Don't jeopardize your degree!


30

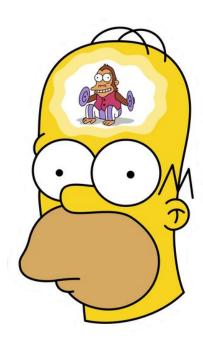
Final Exam (35%)

- One exam covering all course material
- Questions similar to homework problems
- Final lecture will serve as a review session
- Save the date: 1–3PM on Tuesday, December 10
 - Late exams only for conflicts with other finals



- Lecture participation via PollEverywhere:
 - Three lecture absences allowed at zero penalty
 - We'll track these internally—no need to notify us
 - Log-in as your UMAIL (e.g., u8675309@utah.edu)

Stefan Nagy


- Lecture participation via PollEverywhere:
 - Three lecture absences allowed at zero penalty
 - We'll track these internally—no need to notify us
 - Log-in as your UMAIL (e.g., u8675309@utah.edu)
- Online participation on course Piazza:
 - Make intellectual contributions to help others learn
 - Collaboration policies apply—don't share your code!

- Lecture participation via PollEverywhere:
 - Three lecture absences allowed at zero penalty
 - We'll track these internally—no need to notify us
 - Log-in as your UMAIL (e.g., u8675309@utah.edu)
- Online participation on course Piazza:
 - Make intellectual contributions to help others learn
 - Collaboration policies apply—don't share your code!
 - New for Fall 2024: top-10 answerers get 5pts extra credit

- Lecture participation via PollEverywhere:
 - Three lecture absences allowed at zero penalty
 - We'll track these internally—no need to notify us
 - Log-in as your UMAIL (e.g., u8675309@utah.edu)
- Online participation on course Piazza:
 - Make intellectual contributions to help others learn
 - Collaboration policies apply—don't share your code!
 - New for Fall 2024: top-10 answerers get 5pts extra credit
- How to lose points:
 - Frequently missing class, or not contributing online
 - Engaging in disruptive behavior or violating policies

- Lectures where attendance will NOT be graded:
 - Today's introductory lecture
 - Week 2B due to the football game
 - Hybrid streamed via Zoom
 - Details to come via Piazza
 - Week 6B and Week 12B
 - Instructor out of town
 - Guest lectures planned
 - Week 14B (final review lecture)

Stefan Nagy 36

Lectures

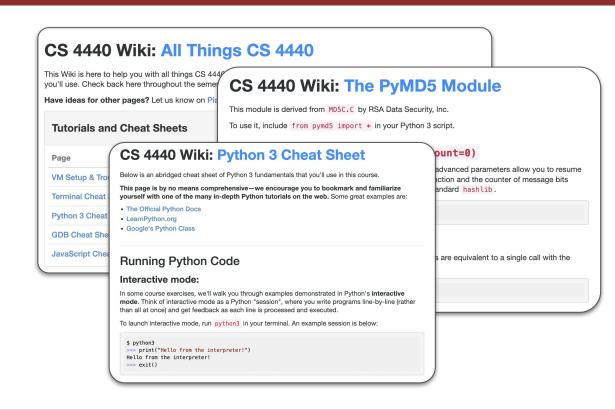
- Tuesdays and Thursdays
 - 2:00-3:20 PM at Warnock L105
- Take notes!
 - Studies show most effective if hand-written •
- Slides posted prior to each lecture
 - See "Schedule" on http://cs4440.eng.utah.edu
- Interrupt with questions, (relevant) stories
- Not recorded—come to lectures!

Office Hours

- TA office hours (15 total hours)
 - First-come/first-serve via TA Queue
 - Help with programming projects
- Professor's office hours
 - Help understanding lecture material
 - Administrative or grading issues
- Check the office hours calendar!
 - http://cs4440.eng.utah.edu
 - Cancellations announced via Piazza

Communication

- Course website: your go-to resource for all things CS 4440
 - http://cs4440.eng.utah.edu



Stefan Nagy

Changes in Fall 2023: The CS 4440 Wiki

- Our aim is to lower the overall learning curve
- Resources to help you:
 - Tutorials
 - Cheat Sheets
 - Software documentation
- Fall 2024: more pages!
 - HTML, SQL basics
 - Wireshark, Scapy
 - Coming soon!

Stefan Nagy

Changes in Fall 2023: The CS 4440 Wiki

 Our aim is to lower the overall learning curve

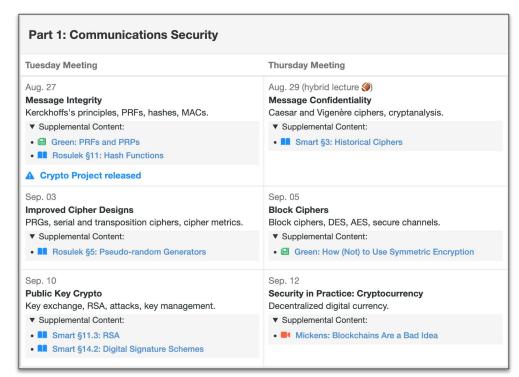
CS 4440 Wiki: All Things CS 4440

you'll use. Check back here throughout the seme: CS 4440 Wiki: The PvMD5 Module

- Resources to h
 - Tutorials
 - Cheat Sheets
 - Software doci

Contributions welcome!

- Page ideas, typo and bug fixes, etc.
- Tutorials that you would find helpful
- Let us know via the course Piazza!
- Fall 2024: more
 - HTML, SQL basics
 - Wireshark, Scapy
 - Coming soon!


In some course exercises, we'll walk you through examples demonstrated in Python's Interactive mode. Think of Interactive mode as a Python's session', where you write programs line-by-line (rathe than all at once) and get feedback as each line is processed and executed.

To launch interactive mode, run python3 in your terminal. An example session is below

\$ python3
>>> print("Hello from the interpreter!"
Hello from the interpreter!

New for Fall 2024: Supplemental Content

- To further help you learn, we've provided supplemental content relevant to every lecture topic
 - Short blog posts
 - Free textbook chapters
 - Fun podcasts or videos
- Totally optional—not required
 - ... though we do recommend them as additional resources to lectures!
- To access, click the drop-down
 ">" button beside each lecture

Stefan Nagy

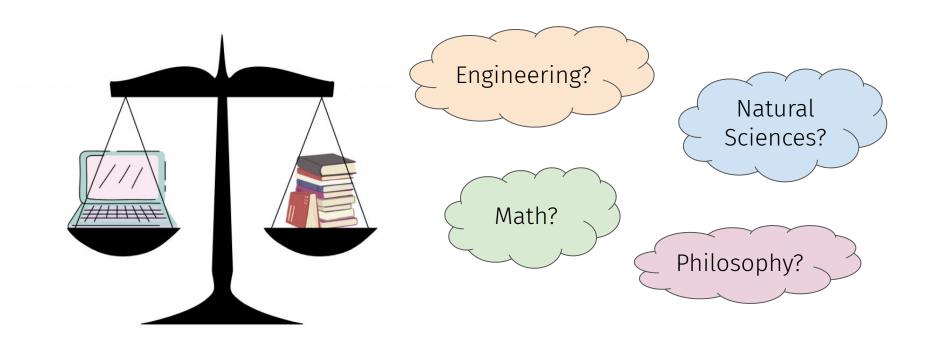
New for Fall 2024: Free Online Textbooks

- We now make available several freely-distributed textbooks via the Wiki
 - Some textbook chapters are referenced as lecture-relevant Supplemental Content
 - Also totally optional—they are meant only as additional resources to help you learn

Recommended Textbooks	
Textbook	Author(s)
An Introduction to Computer Networks	Peter L Dordal
Computer Networks: A Systems Approach	Bruce Davie, Larry Peterson
Computer Systems Security: Planning for Success	Ryan Tolboom
Cryptography: An Introduction	Nigel Smart
Software Security: Principles, Policies, and Protection	Mathias Payer
The Joy of Cryptography	Mike Rosulek

Summary

Course website	wiki, assignments, schedule, slides, office hours
Piazza	questions, discussion, announcements
PollEverywhere	lecture participation
Canvas	quizzes, project submission, course gradebook
Instructor email (snagy(ocs.utah.edu) administrative issues


Stefan Nagy

Questions?

The Security Mindset

What does Computer Science impact?

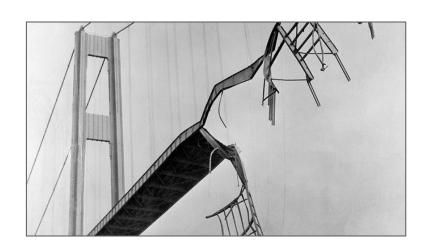
What does Computer Security impact?

Computers Nowadays

- ... are like wheelbarrows of orangutans
 - Think of every app, user, file as an orangutan
- What could go wrong?

Computers Nowadays

- ... are like wheelbarrows of orangutans
 - Think of every app, user, file as an orangutan
- What could go wrong?
 - One might try to throw another one off
 - One is probably trying to spy on another
 - One will bite you and steal your credit card



Computers Nowadays

- ... are like wheelbarrows of orangutans
 - Think of every app, user, file as an orangutan
- What could go wrong?
 - One might try to throw another one off
 - One is probably trying to spy on another
 - One will bite you and steal your credit card
- Call to action: let's adjust our thinking based on the possibility of such attacks
 - How we design new systems
 - How we permit user interaction
 - How we store sensitive information

What's the difference?

Reliability does not equal

Security

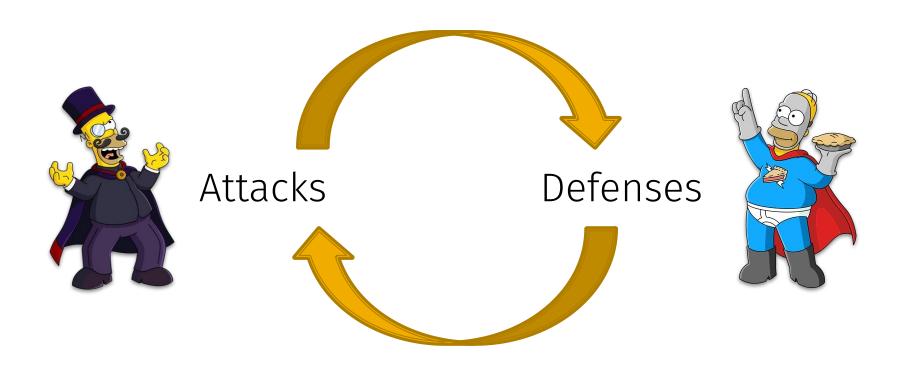
Meet the Adversary

"Computer security studies how systems behave in the presence of an adversary."

- The adversary...
- a.k.a. the attacker
- a.k.a. the bad guy
- An intelligence that actively tries to cause the system to misbehave.

Know thine Enemy

- Motives?
 - Disruption
 - Espionage
 - Money
- Capabilities?
 - Denial of service
 - Code execution
- Degree of access?
 - Physical access
 - Root privileges


The Security Mindset

- Thinking like a defender
 - Know what you're defending, and against whom
 - Weigh benefits vs. costs:
 No system is ever completely secure.
 - Embrace "rational paranoia"
- Thinking like an attacker
 - Understand techniques for circumventing security
 - Look for ways security can break, not reasons why it won't

High-level Approaches

Why study attacks?

- Identify vulnerabilities so they can be fixed
- Create incentives for vendors to be careful
- Learn about new classes of threats
 - Determine what we need to defend against
 - Help designers build stronger systems
 - Help users more accurately evaluate risk

"Insecurity"

A hierarchy view

"The Attack"

Assault = recipe, vulnerabilities are ingredients Level-2 Problem: "Weakness"

Factors that predispose systems to vulnerability

Level-1 Problem: "Vulnerability"

Specific errors that could be exploited in an assault.

Level-0 Problem: "The Attack"

Actual malicious attempt to cause harm.

Thinking like an Attacker

- Look for the weakest links
 - What is easiest to attack
- Identify assumptions that the security depends on
 - Are any assumptions false?
 - Can you render them false?
- Think outside the box!
 - Don't be constrained by the system designer's worldview

Practice thinking like an attacker:

For every system you interact with, think about what it means for it to be secure, and **imagine how it could be exploited**

Exercise

What are some security systems that you interact with in everyday life?

Exercise

- What are some security systems that you interact with in everyday life?
 - Breaking into a University professor's office after hours to alter your grade?

Thinking as a Defender

- Security policy
 - What are we trying to protect?
 - What properties are we trying to enforce?
- Threat model
 - Who are the attackers? Capabilities? Motivations?
 - What kind of attack are we trying to prevent?
- Risk assessment
 - What are the weaknesses of the system?
 - What will successful attacks cost us?
- How likely?
 - Countermeasures
 - Costs vs. benefits?
 - Technical vs. nontechnical?

The challenge is to think rationally and rigorously about risk.

Rational paranoia.

Security Policies

What assets are we trying to protect?

- What properties are we trying to enforce?
 - Confidentiality
 - Integrity
 - Availability
 - Privacy
 - Authenticity

Threat Models

- Who are our adversaries?
 - Motives?
 - Capabilities?
 - Level of access?

- What kinds of attacks must we prevent?
 - Think like the attacker!

- Limits: kinds of attacks we should ignore?
 - Unrealistic versus unlikely

Security through... obscurity?

Common mistake:

Trying to convince yourself the system is secure since attacker won't know X

Security through... obscurity?

Common mistake:

Trying to convince yourself the system is secure since attacker won't know X

Better approach:

- Limit the assumptions that the security of your system depends upon
- Assume the attacker knows everything but a small bit of data (e.g., a key)

Assessing Risk

Remember: Rational paranoia

- What would security breaches cost us?
 - Direct: money, intellectual property, safety
 - Indirect: reputation, future business, well being

- How likely are these costs?
 - Probability of attacks?
 - Probability of success?

Countermeasures

- Technical countermeasures
 - Bug fixes, more crypto, re-architecting, etc.

- Nontechnical countermeasures
 - Law, policy (government, institutional)
 - Procedures, training, auditing, incentives, etc.

Costs of Security

- No security mechanism is free
- Direct costs:
 - Design, implementation, enforcement, false positives
- Indirect costs:
 - Lost productivity, added complexity, time to market
- Challenge is to rationally weigh costs vs. risk
 - Human psychology makes reasoning about high cost, low probability events very difficult

Exercises

Should you lock your house/room door?

- Assets?
- Adversaries?
- Risk assessment?
- Countermeasures?
- Costs/benefits?

Exercises

Using a credit card safely?

- Assets?
- Adversaries?
- Risk assessment?
- Countermeasures?
- Costs/benefits?

Secure Design

- Common mistake:
 - Trying to convince yourself that the system is secure as-is

Secure Design

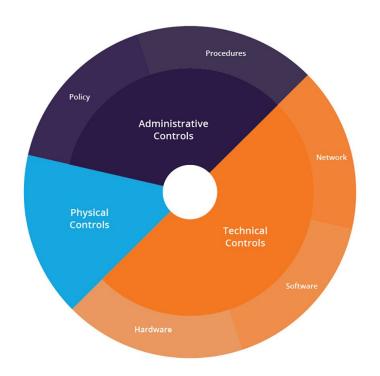
- Common mistake:
 - Trying to convince yourself that the system is secure as-is
- Better approach:
 - Identify the weaknesses of your design and focus on correcting them

Secure Design

- Common mistake:
 - Trying to convince yourself that the system is secure as-is
- Better approach:
 - Identify the weaknesses of your design and focus on correcting them
- Secure design is a process
 - Must be practiced continuously
 - Very difficult to be retrofitted

Where to Focus Defenses

- Trusted components (aka Trusted Computing Base)
 - Parts that must function correctly for the system to be secure.


- Attack surface.
 - Parts of the system exposed to the attacker

Complexity versus security are inversely related

/5

Other Principles

- Defense-in-Depth
 - Multiple layers of safeguards
 - Physical, technical, administrative
- Diversity
 - More moving parts = harder to attack
 - Conversely, harder to secure
- Maintainability
 - Minimize maintainer workload
 - Make fixes easy/fast to deploy

Exercise

Preventing cheating on the CS 4440 Final Exam?

Security Testing

- Testing against requirements
 - What you have done up until now?
 - What are the correct requirements?
- Adversarial testing (my work)
 - Black-box testing
 - White-box testing
 - Gray-box testing
- Example: airport security

Red Team agents use disguises, ingenuity to expose TSA vulnerabilities

Learning from Failures

- Time-honored engineering practice
 - Especially important in security
- Identifying causes of failures
 - Where, how, why
 - First step of fixing
- What can failure teach us?
 - New kinds of attacks
 - New kinds of defenses

Questions?

A Note on Ethics...

Laws and Ethics

- Don't be evil!
 - Ethics requires you to refrain from doing harm
 - Always respect privacy and property rights
 - Otherwise, you will fail the course (and worse)
- Federal/state laws criminalize computer intrusion, wiretapping, or other abuse
 - Computer Fraud and Abuse Act (CFAA)
 - You can be sued or go to jail
- University policies prohibit tampering with campus or other systems
 - You can/will be disciplined and even expelled

Questions?

Next time on CS 4440...

Python Tutorial and Course VM Setup

Bring your laptops, and pre-download your VM image!