
Stefan Nagy

Week 13: Lecture A
Side Channels & Hardware Security

Tuesday, November 19, 2024

1

Stefan Nagy

Announcements

￭ Project 3 grades are now available on Canvas

￭ Statistics:
￭ Average score: 97%
￭ Last year’s avg: 90%

￭ Fantastic job!

￭ Regrades coming soon!

2

Stefan Nagy

Announcements

￭ Project 4: NetSec released
￭ Deadline: Thursday, December 5th by 11:59PM

3

Stefan Nagy 4

Stefan Nagy

Final Exam

￭ Save the date: 1–3PM on Tuesday, December 10
￭ CDA accommodations: schedule exam via CDA Portal

￭ High-level details (more to come):
￭ One exam covering all course material
￭ Similar to project/quiz/lecture exercises

5

Stefan Nagy

Final Exam

￭ Save the date: 1–3PM on Tuesday, December 10
￭ CDA accommodations: schedule exam via CDA Portal

￭ High-level details (more to come):
￭ One exam covering all course material
￭ Similar to project/quiz/lecture exercises

￭ Practice Exam will be released this Thursday
￭ See Assignments page on the CS 4440 website

￭ Final lecture will serve as a review session
￭ Practice Exam solutions discussed in-class only—don’t skip!

6

Stefan Nagy

Announcements

7

See Discord for
meeting info!

utahsec.cs.utah.edu

Stefan Nagy

Questions?

8

Stefan Nagy

No Class Next Week

9

Stefan Nagy

Last time on CS 4440…

10

Binary Reverse Engineering
Instruction Recovery
Control Flow Analysis
Structure Recovery

RE Challenges

Stefan Nagy 11

Recap: the Compilation Process

Stefan Nagy

Recap: the Compilation Process

12

Stefan Nagy

Closed-source Software

￭ It’s everywhere!

13

Stefan Nagy

Closed-source Software

￭ It’s everywhere!

14

Freely-distributed proprietary software

Commercialized applications and libraries

Legacy software whose source code is lost

Stefan Nagy

Reverse Engineering (RE)

￭ What is RE?

15

“A process or method through which one
attempts to understand through deductive
reasoning how a previously made device,
process, system, or piece of software
accomplishes a task with very little (if any)
insight into exactly how it does so.”

Stefan Nagy

Three Pillars of RE

1. ???

16

Stefan Nagy

Three Pillars of RE

1. Instruction Recovery

17

Stefan Nagy

Pillar #1: Instruction Recovery

￭ Goal: ???

18

Stefan Nagy

Pillar #1: Instruction Recovery

￭ Goal: translate bytes into logical instructions
￭ Called instruction decoding
￭ Analogous to what CPU does
￭ General output: disassembly

19

Read bytes from input executable

Group bytes Decode instructions

Stefan Nagy

Three Pillars of RE

1. Instruction Recovery
￭ Decode bytes to instructions
￭ Disambiguate code from data

2. ???

20

Stefan Nagy

Three Pillars of RE

1. Instruction Recovery
￭ Decode bytes to instructions
￭ Disambiguate code from data

2. Control Flow Recovery
￭ Intra-procedural execution flow
￭ Inter-procedural execution flow

21

Stefan Nagy

Pillar #2: Control Flow Recovery

￭ Direct Edges
￭ ???

22

Stefan Nagy

Pillar #2: Control Flow Recovery

￭ Direct Edges
￭ Jump/call a function

￭ Indirect Edges
￭ ???

23

Target is pre-set staticallyjmp 0x4001AB3

Stefan Nagy

Pillar #2: Control Flow Recovery

￭ Direct Edges
￭ Jump/call a function

￭ Indirect Edges
￭ Transfer to a register
￭ Function pointers
￭ Switch-case tables

￭ “Pseudo” Edges
￭ ???

24

Target is pre-set statically

Target found at runtime

jmp 0x4001AB3

call %eax; where?

Stefan Nagy

Pillar #2: Control Flow Recovery

￭ Direct Edges
￭ Jump/call a function

￭ Indirect Edges
￭ Transfer to a register
￭ Function pointers
￭ Switch-case tables

￭ “Pseudo” Edges
￭ Post-call returns

￭ Tail Calls
￭ ???

25

Target is pre-set statically

Target found at runtime

Necessary to recover all paths

jmp 0x4001AB3

call %eax; where?

ret; goes where?

Stefan Nagy

Pillar #2: Control Flow Recovery

￭ Direct Edges
￭ Jump/call a function

￭ Indirect Edges
￭ Transfer to a register
￭ Function pointers
￭ Switch-case tables

￭ “Pseudo” Edges
￭ Post-call returns

￭ Tail Calls
￭ Call at function’s end

26

Target is pre-set statically

Target found at runtime

Necessary to recover all paths

Expressed as jumps, not calls

jmp 0x4001AB3

call %eax; where?

ret; goes where?

jmp &foo; call?

Stefan Nagy

Three Pillars of RE

1. Instruction Recovery
￭ Decode bytes to instructions
￭ Disambiguate code from data

2. Control Flow Recovery
￭ Intra-procedural execution flow
￭ Inter-procedural execution flow

3. ???

27

Stefan Nagy

Three Pillars of RE

1. Instruction Recovery
￭ Decode bytes to instructions
￭ Disambiguate code from data

2. Control Flow Recovery
￭ Intra-procedural execution flow
￭ Inter-procedural execution flow

3. Program Structure Recovery
￭ Identify program basic blocks
￭ Higher-level constructs (e.g., loops)

28

Stefan Nagy

Pillar #3: Structure Recovery

￭ Largely heuristic-based
￭ Construct-specific rules

￭ Functions:
￭ Start:

￭ ???

29

Stefan Nagy

Pillar #3: Structure Recovery

￭ Largely heuristic-based
￭ Construct-specific rules

￭ Functions:
￭ Start:

￭ Target of a call
￭ Target of a tail call
￭ A known prologue
￭ A dispatch table entry

￭ End:
￭ ???

30

Prologue

C-level Switch Table

Stefan Nagy

Pillar #3: Structure Recovery

￭ Largely heuristic-based
￭ Construct-specific rules

￭ Functions:
￭ Start:

￭ Target of a call
￭ Target of a tail call
￭ A known prologue
￭ A dispatch table entry

￭ End:
￭ Location of a ret
￭ Location of a tail call
￭ A known epilogue

31

Prologue

Epilogue

C-level Switch Table

Stefan Nagy

Challenges to RE

￭ ???

32

Stefan Nagy

Challenges to RE

￭ Compiler Craziness
￭ Data-in-code
￭ Optimizations

￭ Haphazard Heuristics
￭ Weird/esoteric patterns
￭ E.g., all jump table variants

￭ Obtuse Obfuscations
￭ Control-flow flattening
￭ Opaque predicates

33

Stefan Nagy

Questions?

34

Stefan Nagy

This time on CS 4440…

35

Side Channels
Hardware Security

Hardware Supply Chain Attacks

Stefan Nagy

Exploitable Security Flaws

36

￭ So far, we have studied attacks that exploit design flaws
string “/bin/sh”

system()’s first arg

system()’s ret addr

Address of system()

AAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s ret addr

main()’s frame ptr

Buffer
(non-executable)

http://cs4440.eng.utah
.edu/project3/search
?q=%3Cscript%3E...

Buffer Overflows SYN Flooding

Cross-site ScriptingECB Diffusion Analysis Hash Collisions

Sniffing Unencrypted Data

Stefan Nagy

Exploitable Security Flaws

37

￭ So far, we have studied attacks that exploit design flaws
string “/bin/sh”

system()’s first arg

system()’s ret addr

Address of system()

AAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s ret addr

main()’s frame ptr

Buffer
(non-executable)

http://cs4440.eng.utah
.edu/project3/search
?q=%3Cscript%3E...

Buffer Overflows SYN Flooding

Cross-site ScriptingECB Diffusion Analysis Hash Collisions

Sniffing Unencrypted Data

What if I told you that
implementation flaws
can be just as severe?

Stefan Nagy

Side Channel Attacks

38

Stefan Nagy

Side Channel Attacks

“Any attack based on extra information
that can be gathered because of the
fundamental way a computer protocol
or algorithm is implemented, or minor,
but potentially devastating, mistakes or
oversights in the implementation.”

39

Stefan Nagy

Side Channels

￭ What are some potential sources of indirect info emitted by your computer?
￭ Additional channels of information beyond what is directly visible/accessible to you

40

Execution TimeEmitted Radiation Power Consumption

Stefan Nagy

Side Channels

￭ What are some potential sources of indirect info emitted by your computer?
￭ Additional channels of information beyond what is directly visible/accessible to you

41

Execution TimeEmitted Radiation Power Consumption

These (and other) side channels reveal
critical information that is exploitable

Stefan Nagy

Optical and Acoustic Side Channels

42

Stefan Nagy

Stealing Passwords

43

Stefan Nagy

Stealing Passwords

44

How did we know the passcode is 000000?

We can directly see him press those exact keys

Stefan Nagy

Stealing Passwords

￭ What if we can’t directly see
keys that someone is pressing?

45

Stefan Nagy

Stealing Passwords

￭ What if we can’t directly see
keys that someone is pressing?

￭ Optical side channel:
￭ Capture visible hand movements

46

Stefan Nagy

Stealing Passwords

￭ What if we can’t directly see
keys that someone is pressing?

￭ Optical side channel:
￭ Capture visible hand movements
￭ Assume attacker knows (or can

easily guess) the key interface

47

Stefan Nagy

Stealing Passwords

￭ What if we can’t directly see
keys that someone is pressing?

￭ Optical side channel:
￭ Capture visible hand movements
￭ Assume attacker knows (or can

easily guess) the key interface
￭ Attacker maps movements to

pressed keys on the interface

48

Stefan Nagy

Stealing Information

49

Stefan Nagy

Stealing Information

50

Stefan Nagy

Acoustic Side Channels

￭ Sound can leak information, too!
￭ Keyboard enthusiasts beware

51

Stefan Nagy

Acoustic Side Channels

￭ Sound can leak information, too!
￭ Keyboard enthusiasts beware

￭ Build model of key press noises
￭ Model refinement:

￭ ???

52

Stefan Nagy

Acoustic Side Channels

￭ Sound can leak information, too!
￭ Keyboard enthusiasts beware

￭ Build model of key press noises
￭ Model refinement:

￭ Consider microphone
￭ Remove ambient noise

￭ Use model to infer entered data
￭ Passwords
￭ Usernames
￭ Phone numbers

53

Stefan Nagy

Questions?

54

Stefan Nagy

Timing Side Channels

55

Stefan Nagy

Password Checking

￭ Password verification—how would you implement this?

56

bool checkPW(char *testPW, char *realPW, int len) {

 for (int i = 0; i < len; i++) {

 if (testPW[i] != realPW[i]) {
 return false;
 }
 }

 return true;
}

Analogous to
memcmp()

Stefan Nagy

bool checkPW(char *testPW, char *realPW, int len) {

 for (int i = 0; i < len; i++) {

 if (testPW[i] != realPW[i]) {
 return false;
 }
 }

 return true;
}

Password Checking

￭ Password verification—how would you implement this?

57

Analogous to
memcmp()

Does this password
checking code reveal

a security flaw?

Stefan Nagy 58

bool checkPW(char *testPW, char *realPW, int len) {

 for (int i = 0; i < len; i++) {

 if (testPW[i] != realPW[i]) {
 return false;
 }
 }

 return true;
}

Stefan Nagy

Password Checking

￭ Password verification—how would you implement this?

59

ABCDEFGH == PASSWORD
￭ ???

Password Login Attempts:
bool checkPW(char *testPW, char *realPW, int len) {

 for (int i = 0; i < len; i++) {

 if (testPW[i] != realPW[i]) {
 return false;
 }
 }

 return true;
}

Stefan Nagy

Password Checking

￭ Password verification—how would you implement this?

60

PASSEFGH == PASSWORD
￭ ???

ABCDEFGH == PASSWORD
￭ False on first iteration

Password Login Attempts:
bool checkPW(char *testPW, char *realPW, int len) {

 for (int i = 0; i < len; i++) {

 if (testPW[i] != realPW[i]) {
 return false;
 }
 }

 return true;
}

Stefan Nagy

Password Checking

￭ Password verification—how would you implement this?

61

ABCDEFGH == PASSWORD
￭ False on first iteration

PASSEFGH == PASSWORD
￭ True on iterations 1–4
￭ False on fifth iteration

More code executed
for a correct symbol!

Password Login Attempts:
bool checkPW(char *testPW, char *realPW, int len) {

 for (int i = 0; i < len; i++) {

 if (testPW[i] != realPW[i]) {
 return false;
 }
 }

 return true;
}

Stefan Nagy

Password Checking

62

How can this side channel be exploited?

Stefan Nagy

Password Checking

63

How can this side channel be exploited?

Attacker: ABCDEF

Stefan Nagy

Password Checking

64

How can this side channel be exploited?

Attacker: ABCDEF

Server: False
Server took 1ms to respond

Stefan Nagy

Password Checking

65

How can this side channel be exploited?

Attacker: ABCDEF

Server: False
Server took 1ms to respond

Attacker: CBCDEF

Server: False
Server took 2ms to respond

“C” took
longer!

Stefan Nagy

Password Checking

66

How can this side channel be exploited?

Server: False

Attacker: CRCDEF

Server took 2ms to respond

Stefan Nagy

Password Checking

67

How can this side channel be exploited?

Attacker: CRCDEF

Server: False
Server took 2ms to respond

Attacker: CHIDEF

Server: False
Server took 4ms to respond

“CHI”…
Getting
warmer!

Stefan Nagy

Password Checking

68

How can this side channel be exploited?

Attacker: CHIEFS

Server: True
Server took 7ms to respond

Stefan Nagy

Password Checking

69

How can this side channel be exploited?

Attacker: CHIEFS

Server: True
Server took 7ms to respond

Through timing analysis, attacker can infer the
correctness of individual password symbols!

Stefan Nagy

Password Checking

￭ Solution:
￭ ???

70

Stefan Nagy

Password Checking

￭ Solution:
￭ Constant-time implementation (e.g., using bitwise AND-ing)

71

bool checkPW(char *testPW, char *realPW, int len) {

bool result = 1; // integer equiv of “true”

for (int i = 0; i < len; i++) {

 result &= ca[i] == cb[i];

 return result;
 }
}

Guess: PASSEFGH
Bit: 11110000
Result: False

Stefan Nagy

Password Checking

￭ Solution:
￭ Constant-time implementation (e.g., using bitwise AND-ing)

72

bool checkPW(char *testPW, char *realPW, int len) {

bool result = 1; // integer equiv of “true”

for (int i = 0; i < len; i++) {

 result &= ca[i] == cb[i];

 return result;
 }
}

PASSEFGH == PASSWORD
￭ False on last iteration

ABCDEFGH == PASSWORD
￭ False on last iteration

PASSWORD == PASSWORD
￭ True on last iteration

Guess: PASSEFGH
Bit: 11110000
Result: False

Password Login Attempts:

True and False run
for identical time!

Stefan Nagy

Password Checking

￭ Implications:
￭ ???

73

Stefan Nagy

Password Checking

￭ Implications:
￭ Never use timing-unsafe string compares when handling sensitive data!

74

Stefan Nagy

Questions?

75

Stefan Nagy

Power Side Channels

76

Stefan Nagy

Recap: RSA Encryption

￭ Summary:
￭ ???

77

Stefan Nagy

Recap: RSA Encryption

￭ Summary:
￭ Encrypt with public key
￭ Decrypt with private key
￭ Public key = (e,N)
￭ Private key = (d,N)

￭ To encrypt:
￭ E(x) = xe mod N

￭ To decrypt:
￭ D(x) = xd mod N

78

Stefan Nagy

Recap: RSA Encryption

￭ Summary:
￭ Encrypt with public key
￭ Decrypt with private key
￭ Public key = (e,N)
￭ Private key = (d,N)

￭ To encrypt:
￭ E(x) = xe mod N

￭ To decrypt:
￭ D(x) = xd mod N

79

Modular exponentiation must
be implemented efficiently

Stefan Nagy

Modular Exponentiation

￭ Decryption: D(x) = C privKey mod N

80

x = C

for (int i = 0; i < len; i++){

x = (x·x) mod(N)

if (privKey[i] == 1){
x = (x·C) mod(N)

}
}
return x

Does this decryption code
reveal a security flaw?

Stefan Nagy 81

x = C

for (int i = 0; i < len; i++){

x = (x·x) mod(N)

if (privKey[i] == 1){
x = (x·C) mod(N)

}
}
return x

Stefan Nagy

Modular Exponentiation

￭ Decryption: D(x) = C privKey mod N

82

x = C

for (int i = 0; i < len; i++){

x = (x·x) mod(N)

if (privKey[i] == 1){
x = (x·C) mod(N)

}
}
return x

Bit-specific Operations:

privKey[i] == 1
1. Find square of x
2. Take modulo N

privKey[i] == 0
1. Find square of x
2. Take modulo N

Stefan Nagy

Modular Exponentiation

￭ Decryption: D(x) = C privKey mod N

83

x = C

for (int i = 0; i < len; i++){

x = (x·x) mod(N)

if (privKey[i] == 1){
x = (x·C) mod(N)

}
}
return x

Bit-specific Operations:

privKey[i] == 1
1. Find square of x
2. Take modulo N
3. Multiply by C
4. Take modulo N

privKey[i] == 0
1. Find square of x
2. Take modulo N

Timing and power will differ
between key bits 0 versus 1!

Stefan Nagy

RSA Power Analysis

84

How can this side channel be exploited?

Stefan Nagy

RSA Power Analysis

85

How can this side channel be exploited?

Attacker can retrieve a user’s private key!

Stefan Nagy

Realistic Power Analysis

86

Stefan Nagy

Questions?

87

Stefan Nagy

Cache-based Side Channels

88

Stefan Nagy

CPU Caches

￭ RAM is expensive to load from
￭ Disk is even more expensive!

￭ Fastest retrieval: ???

89

Storage Read Time Capacity Managed By

Hard Disk 10ms 1 TB Software/OS

Flash Drive 10–100us 100 GB Software/OS

RAM 200 cycles 10 GB Software/OS

https://computationstructures.org/lectures/caches/caches.html

Stefan Nagy

CPU Caches

￭ RAM is expensive to load from
￭ Disk is even more expensive!

￭ Fastest retrieval: the CPU cache
￭ Small storage built-in to CPU
￭ Common hierarchy: L1, L2, L3, L4

￭ Key purpose: accelerate retrieval
of commonly-accessed data

90

Storage Read Time Capacity Managed By

Hard Disk 10ms 1 TB Software/OS

Flash Drive 10–100us 100 GB Software/OS

RAM 200 cycles 10 GB Software/OS

L3 Cache 40 cycles 10 MB Hardware

L2 Cache 10 cycles 256 KB Hardware

L1 Cache 2–4 cycles 32 KB Hardware

https://computationstructures.org/lectures/caches/caches.html

Stefan Nagy

Program Execution

￭ What do you expect to happen here?
￭ index < arraySize

￭ ???

91

int read(int index){
int result = -1;
result = array[index];
return result;

}

Stefan Nagy

Program Execution

￭ What do you expect to happen here?
￭ index < len(array)

￭ Within-bounds read… success
￭ index > len(array)

￭ ???

92

int read(int index){
int result = -1;
result = array[index];
return result;

}

Stefan Nagy

Program Execution

￭ What do you expect to happen here?
￭ index < len(array)

￭ Within-bounds read… success
￭ index > len(array)

￭ Out-of-bounds read… prevent

￭ Optimization: Speculative Execution
￭ Perform the OOB read anyways

93

int read(int index){
int result = -1;
result = array[index];
return result;

}

Stefan Nagy

Program Execution

￭ What do you expect to happen here?
￭ index < len(array)

￭ Within-bounds read… success
￭ index > len(array)

￭ Out-of-bounds read… prevent

￭ Optimization: Speculative Execution
￭ Perform the OOB read anyways
￭ Cache whatever data is accessed
￭ Check if it’s allowed… after the fact
￭ Roll-back the cache to correct state

94

int read(int index){
int result = -1;
result = array[index];
return result;

}

Save time by having data
pre-cached and ready to go!

Stefan Nagy

Program Execution

￭ What do you expect to happen here?
￭ index < arraySize

￭ Within-bounds read… success
￭ index > arraySize …

￭ Out-of-bounds read… prevent

￭ Optimization: Speculative Execution
￭ Perform the OOB read anyways
￭ Cache whatever data is accessed
￭ Check if it’s allowed… after the fact
￭ Roll-back the cache to correct state

95

int read(int index){
int result = -1;
result = array[index];
return result;

}

Save time by having data
pre-cached and ready to go!

Implication: data we shouldn’t have access
to (e.g., from another program) is cached

Cache lookup is faster… can we exploit a
timing side channel to recover this data?

Stefan Nagy

Attacking Speculative Execution

￭ Suppose speculative execution caches a secret result of 4440

96

// index > len(array)
int read(int index){

int result = -1;
result = array[index];
return result;

}

Stefan Nagy

Attacking Speculative Execution

￭ Suppose speculative execution caches a secret result of 4440

97

// index > len(array)
int read(int index){

int result = -1;
result = array[index];
return result;

}

1. Cache array[index]

2. Bounds check index

3. Clear array[index]

Due to roll-back, we
can’t retrieve result!

Stefan Nagy

Attacking Speculative Execution

￭ Suppose speculative execution caches a secret result of 4440

98

// index > len(array)
int read(int index){

int result = -1;
result = array[index];
int dummy = hugeArray[result];
return result;

}

1. Cache array[index]

2. Cache hugeArray[result]

3. Bounds check index, result

4. Clear array[index]

5. hugeArray[result] stays…

Stefan Nagy

Attacking Speculative Execution

￭ Suppose speculative execution caches a secret result of 4440

99

// index > len(array)
int read(int index){

int result = -1;
result = array[index];
int dummy = hugeArray[result];
return result;

}

1. Cache array[index]

2. Cache hugeArray[result]

3. Bounds check index, result

4. Clear array[index]

5. hugeArray[result] stays…

How can attacker figure out result is 4440?

Since 4440 was cached, hugeArray[4440]
has the fastest access time of all array indices!

for (int i=0; i<...; i++){
int x = hugeArray[i];

}

index

ac
ce
ss

 t
im
e 4440

Stefan Nagy

Questions?

100

Stefan Nagy

Hardware Security

101

Stefan Nagy

Hardware

102

Hardware

Firmware

Hypervisor

Operating System

Applications

The foundation
of our computers

Stefan Nagy

Hardware

103

Untrusted Hardware

Firmware

Hypervisor

Operating System

Applications

Weaknesses weaken
the entire system

The foundation
of our computers

Stefan Nagy

Hardware

104

Untrusted Hardware

Firmware

Hypervisor

Operating System

Applications

Weaknesses weaken
the entire system

The foundation
of our computers

Stefan Nagy

Creating Hardware

105

DesignSpecification Synthesis

Text HDL

Design Time

Stefan Nagy

Creating Hardware

106

DesignSpecification Synthesis

Text HDL

Design Time

Similar to software design

Stefan Nagy

Creating Hardware

107

DesignSpecification Synthesis Layout Fabrication Package Deployment

Text HDL Netlist GDSII Wafer/ Die Chip / PCB

Design Time Fabrication Time/Supply Chain

Similar to software design

Stefan Nagy

Creating Hardware

108

DesignSpecification Synthesis Layout Fabrication Package Deployment

Text HDL Netlist GDSII Wafer/ Die Chip / PCB

Design Time Fabrication Time/Supply Chain

Similar to software design Required to build a physical device

Stefan Nagy

Creating Hardware

109

DesignSpecification Synthesis Layout Fabrication Package Deployment

Text HDL Netlist GDSII Wafer/ Die Chip / PCB

Design Time Fabrication Time/Supply Chain

Similar to software design Required to build a physical device
Verification Testing

Stefan Nagy

Hardware Bugs

110

DesignSpecification Synthesis Layout Package Deployment

Text HDL Netlist GDSII Wafer/ Die Chip / PCB

Design Time Fabrication Time/Supply Chain

Similar to software design Required to build a physical device
Verification Testing

Fabrication

Cannot be patched
following Fabrication

Stefan Nagy

Hardware Bugs

111

DesignSpecification Synthesis Layout Package Deployment

Text HDL Netlist GDSII Wafer/ Die Chip / PCB

Design Time Fabrication Time/Supply Chain

Similar to software design Required to build a physical device
Verification Testing

Fabrication

Cannot be patched
following Fabrication

Stefan Nagy

Hardware Bugs

112

Stefan Nagy

Hardware Threats

113

Stefan Nagy

Hardware Trojans

￭ Trojan Horse:
￭ ???

114

Stefan Nagy

Hardware Trojans

￭ Trojan Horse:
￭ Attack pre-inserted into chip
￭ Will be exploited at run time
￭ Remotely triggered by attacker

115

Stefan Nagy

Hardware Trojans

￭ Trojan Horse:
￭ Attack pre-inserted into chip
￭ Will be exploited at run time
￭ Remotely triggered by attacker

￭ Ideal characteristics:
￭ Small
￭ Stealthy
￭ Controllable

116

Stefan Nagy

Hardware Trojans

￭ Trojan Horse:
￭ Attack pre-inserted into chip
￭ Will be exploited at run time
￭ Remotely triggered by attacker

￭ Ideal characteristics:
￭ Small
￭ Stealthy
￭ Controllable

￭ Engineering a trigger

117

Division sets
div-by-zero flag

Addition resets
div-by-zero flag

Software state will
affect analog state!

Stefan Nagy

Hardware Trojans

118

Stefan Nagy

Recycled and Counterfeit Hardware

119

Stefan Nagy

Recycled and Counterfeit Hardware

￭ Counterfeit and recycled chips have a shorter lifespan
￭ Absolutely dangerous for security-critical use cases

120

Stefan Nagy

Recycled and Counterfeit Hardware

￭ Counterfeit and recycled chips have a shorter lifespan
￭ Absolutely dangerous for security-critical use cases

121

Stefan Nagy

Secure Hardware

￭ Can we ever know for sure that a chip is secure?

122

Stefan Nagy

Next time on CS 4440…

123

Election Security

