
Stefan Nagy

Week 12: Lecture A
Software Reverse Engineering

Tuesday, November 12, 2024

1

Stefan Nagy

Announcements

￭ Project 3 grades are now available on Canvas

￭ Statistics:
￭ Average score: 97%
￭ Last year’s avg: 90%

￭ Fantastic job!

2

Stefan Nagy

Announcements

￭ Project 3 grades are now available on Canvas

￭ Think we made an error? Request a regrade!
￭ Valid regrade requests:

￭ You have verified your solution is correct
(i.e., we made an error in grading)

3

Project 3 Regrade Requests (see Piazza pinned link):
Submit by 11:59 PM on Monday 11/18 via Google Form

Stefan Nagy

Announcements

￭ Project 4: NetSec released
￭ Deadline: Thursday, December 5th by 11:59PM

4

Stefan Nagy 5

Stefan Nagy

Announcements

￭ I’ll be out of town rest of week 💍
￭ No office hours on Thursday

￭ Guest lecturer this Thursday
￭ Dr. Guanhong Tao: attacking LLMs
￭ Jailbreaking and backdoor attacks

￭ No PollEverywhere… but show up!
￭ Final exam is still comprehensive 😉

6

https://tao.aisec.world/

Stefan Nagy

Announcements

7

See Discord for
meeting info!

utahsec.cs.utah.edu

Stefan Nagy

Questions?

8

Stefan Nagy

Last time on CS 4440…

9

Security in Practice:
Tor—The Onion Router

Stefan Nagy

Anonymity Primitive: Onion Routing

￭ Each message is ???

10

Stefan Nagy

Anonymity Primitive: Onion Routing

￭ Each message is repeatedly encrypted
￭ Analogy: multiple layers of an onion

￭ Sent through multiple network nodes
￭ These nodes are called onion routers
￭ Each node removes an encryption layer to

uncover the message routing instructions
￭ Process repeats when sent to next router

￭ Anonymity: prevents ???

11

Stefan Nagy

Anonymity Primitive: Onion Routing

￭ Each message is repeatedly encrypted
￭ Analogy: multiple layers of an onion

￭ Sent through multiple network nodes
￭ These nodes are called onion routers
￭ Each node removes an encryption layer to

uncover the message routing instructions
￭ Process repeats when sent to next router

￭ Anonymity: prevents any intermediary
nodes from knowing message origin,
destination, and contents

12

Stefan Nagy

Onion Routing Visualized

13

Stefan Nagy

Tor: The Onion Router

￭ Tor: a distributed overlay network
￭ Anonymizes TCP-based applications

￭ Secure shell
￭ Web browsing
￭ Instant messaging

14

Stefan Nagy

Tor: The Onion Router

￭ Tor: a distributed overlay network
￭ Anonymizes TCP-based applications

￭ Secure shell
￭ Web browsing
￭ Instant messaging

￭ Clients choose ???

15

Stefan Nagy

Tor: The Onion Router

￭ Tor: a distributed overlay network
￭ Anonymizes TCP-based applications

￭ Secure shell
￭ Web browsing
￭ Instant messaging

￭ Clients choose the circuit paths
￭ Messages unwrapped at each onion

router using a symmetric key

￭ Onion routers only know ???

16

Stefan Nagy

Tor: The Onion Router

￭ Tor: a distributed overlay network
￭ Anonymizes TCP-based applications

￭ Secure shell
￭ Web browsing
￭ Instant messaging

￭ Clients choose the circuit paths
￭ Messages unwrapped at each onion

router using a symmetric key

￭ Onion routers only know their
successor or predecessor nodes
￭ They don’t know of any other nodes

17

Stefan Nagy

How Tor Works

18

Stefan Nagy

Attacking Tor

￭ Possible attacks against Tor?

19

Stefan Nagy

Attacking Tor

￭ Possible attacks against Tor?

￭ Leak DNS requests when they aren’t transmitted via Tor

￭ Perform volume/timing analysis to characterize behavior

￭ Add malicious nodes to intercept unencrypted exit traffic

20

Stefan Nagy

Attacking Tor

￭ Possible attacks against Tor?

￭ Leak DNS requests when they aren’t transmitted via Tor
￭ Defense: ???

￭ Perform volume/timing analysis to characterize behavior
￭ Defense: ???

￭ Add malicious nodes to intercept unencrypted exit traffic
￭ Defense: ???

21

Stefan Nagy

Attacking Tor

￭ Possible attacks against Tor?

￭ Leak DNS requests when they aren’t transmitted via Tor
￭ Defense: enforce all DNS requests through Tor encryption

￭ Perform volume/timing analysis to characterize behavior
￭ Defense: inject noisy data to throw off analysis heuristics

￭ Add malicious nodes to intercept unencrypted exit traffic
￭ Defense: never use unencrypted protocols—use HTTPS

22

Stefan Nagy

Who uses Tor?
￭ ???

23

Stefan Nagy

Who uses Tor?
￭ Normal People

￭ Privacy-conscious folks

￭ Intelligence Agencies
￭ Secret agents in the field

￭ Law Enforcement
￭ Online “undercover” operations

￭ Journalists and Bloggers
￭ Citizen journalists inspiring social change

￭ Activists and Whistleblowers
￭ Raising their voice and avoiding persecution

￭ White-hat and Black-hat Hackers
￭ And everyone in between!

24

Stefan Nagy

Who uses Tor?

25

Stefan Nagy

What services get hidden?

26

Stefan Nagy

Positive Tor Use Cases

27

Stefan Nagy

Questions?

28

Stefan Nagy

Recap: Project 4 Overview

￭ Focuses on network packet analysis
￭ Leveraging data contained within packets to

achieve network defenses and attacks

￭ Scenario: helping a fictional university
secure its enterprise campus network
￭ Detect and characterizing likely attacks
￭ Demonstrate how info can be intercepted

29

Stefan Nagy

￭ We provide a series of network packet traces (pcaps)
￭ Your job: write scripts to analyze them!

￭ Part 1: detecting network attacks
￭ Password cracking, port scanning, SYN floods

￭ Part 2: stealing sensitive information
￭ Unencrypted credentials, browsing history
￭ Extra credit: stealing transfered files

30

Recap: Project 4 Overview

Stefan Nagy

￭ We provide a series of network packet traces (pcaps)
￭ Your job: write scripts to analyze them!

￭ Part 1: detecting network attacks
￭ Password cracking, port scanning, SYN floods

￭ Part 2: stealing sensitive information
￭ Unencrypted credentials, browsing history
￭ Extra credit: stealing transfered files

￭ You will use Python 3’s Scapy library
￭ A huge and powerful packet analysis API…
￭ But we’ll really only use a few parts of it

31

Recap: Project 4 Overview

Stefan Nagy

Recap: Scapy Fundamentals

￭ Python API for programmatic
packet capture and analysis
￭ Think of it as “Wireshark in API form”

￭ We provide skeleton code template
￭ Sets-up the packet parsing workflow

32

Stefan Nagy

Recap: Scapy Fundamentals

￭ Python API for programmatic
packet capture and analysis
￭ Think of it as “Wireshark in API form”

￭ We provide skeleton code template
￭ Sets-up the packet parsing workflow
￭ Your job: finish implementing the

function parsePacket()

33

Stefan Nagy

Recap: Scapy Fundamentals

￭ Python API for programmatic
packet capture and analysis
￭ Think of it as “Wireshark in API form”

￭ We provide skeleton code template
￭ Sets-up the packet parsing workflow
￭ Your job: finish implementing the

function parsePacket()

￭ You may also add additional code
￭ E.g., global variables or data structures
￭ E.g., printing functionality in main()

34

Stefan Nagy

Recap: Scapy Fundamentals

￭ Only a few things you’ll need…
￭ Get a packet’s TCP flags:

￭ Get a packet’s destination port

￭ Get a packet’s source IP address

￭ Get a packet’s TCP payload:

35

packet[“IP”].src

packet[“TCP”].dport

bytes(packet["TCP"].payload).decode('utf-8','replace')

packet[“TCP”].flags

Stefan Nagy

Recap: Suggested Workflow

￭ Before you start writing a Scapy script,
inspect the trace manually via Wireshark
￭ Super helpful for viewing a packet’s contents
￭ Use this to bootstrap your script’s approach!

36

Stefan Nagy

Recap: Suggested Workflow

￭ Before you start writing a Scapy script,
inspect the trace manually via Wireshark
￭ Super helpful for viewing a packet’s contents
￭ Use this to bootstrap your script’s approach!

￭ For each target, answer the following:
￭ What packet fields matter?
￭ How to extract relevant data?
￭ How to store and process this data?

37

Stefan Nagy

Recap: Suggested Workflow

￭ Before you start writing a Scapy script,
inspect the trace manually via Wireshark
￭ Super helpful for viewing a packet’s contents
￭ Use this to bootstrap your script’s approach!

￭ For each target, answer the following:
￭ What packet fields matter?
￭ How to extract relevant data?
￭ How to store and process this data?

￭ Finalize your high-level game plan first!
￭ Then start developing your solution scripts!

38

Stefan Nagy

Questions?

39

Stefan Nagy

This time on CS 4440…

40

Binary Reverse Engineering
Instruction Recovery
Control Flow Analysis
Structure Recovery

RE Challenges

Stefan Nagy

How Software is Built

￭ clang hello.c -o hello

41

Stefan Nagy

How Software is Built

￭ clang hello.c -o hello

42

Compiler
Source File

Executable

Stefan Nagy

How Software is Built

43

Stefan Nagy

How Software is Built

44

Stefan Nagy

How Software is Built

45

Stefan Nagy

How Software is Built

46

Stefan Nagy

How Software is Built

47

Stefan Nagy

How Software is Built

48

Today’s
Focus

Stefan Nagy 49

Stefan Nagy

Closed-source Software

￭ It’s everywhere!

50

Stefan Nagy

Closed-source Software

￭ It’s everywhere!

51

Freely-distributed proprietary software

Commercialized applications and libraries

Legacy software whose source code is lost

Stefan Nagy

Auditing Open- versus Closed-source Code

52

▪ Publicly-available source codebase
▪ Achieves security by transparency

▪ Semantic richness facilitates
high-performance, effective vetting

Open Source:

Stefan Nagy

Auditing Open- versus Closed-source Code

53

▪ Publicly-available source codebase
▪ Achieves security by transparency

▪ Semantic richness facilitates
high-performance, effective vetting

Open Source:
▪ Distributed as a precompiled binary
▪ Opaque to everyone but its developer

▪ Upwards of 10x slower security vetting
▪ Forced to rely on crude techniques

Closed Source:

Stefan Nagy

Auditing Open- versus Closed-source Code

54

▪ Global market size over $240 billion
▪ 85% contains critical vulnerabilities
▪ 89% of the most exploited software

▪ Distributed as a precompiled binary
▪ Opaque to everyone but its developer

▪ Upwards of 10x slower security vetting
▪ Forced to rely on crude techniques

Closed Source:

Stefan Nagy

Reverse Engineering (RE)

￭ What is RE?

55

“A process or method through which one
attempts to understand through deductive
reasoning how a previously made device,
process, system, or piece of software
accomplishes a task with very little (if any)
insight into exactly how it does so.”

Stefan Nagy

Why do we care about RE?

￭ Discovering bugs

￭ Retrofitting fixes

￭ Malware analysis

￭ Right to repair!

56

Stefan Nagy

RE Tasks

￭ Disassembly
￭ ???

57

Stefan Nagy

RE Tasks

￭ Disassembly
￭ Machine code to human

readable assembly

￭ Decompilation
￭ ???

58

Stefan Nagy

RE Tasks

￭ Disassembly
￭ Machine code to human

readable assembly

￭ Decompilation
￭ Machine code to human

readable source code

￭ Rewriting
￭ ???

59

Stefan Nagy

RE Tasks

￭ Disassembly
￭ Machine code to human

readable assembly

￭ Decompilation
￭ Machine code to human

readable source code

￭ Rewriting
￭ Add more functionality

and rebuild executable

60

Stefan Nagy 61

Stefan Nagy

Three Pillars of RE

1. Instruction Recovery
￭ Decode bytes to instructions
￭ Disambiguate code from data

2. Control Flow Recovery
￭ Intra-procedural execution flow
￭ Inter-procedural execution flow

3. Program Structure Recovery
￭ Identify program basic blocks
￭ Higher-level constructs (e.g., loops)

62

Stefan Nagy

Questions?

63

Stefan Nagy

Pillars of RE:
Instruction Recovery

64

Stefan Nagy

Instructions

￭ What are they?

65

Stefan Nagy

Recap: The CPU

￭ State modified by assembly instructions
￭ ADD, SUB, XOR, CMP, CALL, JMP, RET
￭ And many more!

￭ Assembly instruction syntaxes
￭ AT&T = Instruction Source Destination
￭ Intel = Instruction Destination Source
￭ Example: MOV SRC, DST versus MOV DST, SRC
￭ This lecture: AT&T syntax

66

Stefan Nagy

Instructions

￭ What are they?
￭ Operations that modify CPU state

￭ Source = ???

￭ x86 asm = ???

67

Stefan Nagy

Instructions

￭ What are they?
￭ Operations that modify CPU state

￭ Source = high-level instructions
￭ Human-readable

￭ x86 asm = low-level instructions
￭ Somewhat human-readable

68

Key to inferring what
the program is doing

Stefan Nagy

Recovering Instructions

￭ Goal: translate bytes into logical instructions
￭ Called instruction decoding
￭ Analogous to what CPU does
￭ General output: disassembly

69

Read bytes from input executable

Group bytes Decode instructions

Stefan Nagy

Instruction Recovery Techniques

￭ Linear Sweep
￭ Start decoding at binary entry
￭ Attempt to decode all bytes
￭ Stop at end of .TEXT section

70

Intuition: compilers lay code
sequentially for compactness

Challenge: data within code

Stefan Nagy

Instruction Recovery Techniques

￭ Linear Sweep
￭ Start decoding at binary entry
￭ Attempt to decode all bytes
￭ Stop at end of .TEXT section

￭ Recursive Descent
￭ Follow all control-flow transfers
￭ jmp 0x100 → start decoding

instructions at address 0x100
￭ Stop when you’ve covered all

possible control-flow paths

71

Intuition: compilers lay code
sequentially for compactness

Challenge: data within code

Intuition: following the logical
flow of execution reveals a lot

Challenge: indirect branches

Stefan Nagy

Instruction Recovery Techniques

￭ Linear Sweep
￭ Start decoding at binary entry
￭ Attempt to decode all bytes
￭ Stop at end of .TEXT section

￭ Recursive Descent
￭ Follow all control-flow transfers
￭ jmp 0x100 → start decoding

instructions at address 0x100
￭ Stop when you’ve covered all

possible control-flow paths

72

Intuition: compilers lay code
sequentially for compactness

Challenge: data within code

Intuition: following the logical
flow of execution reveals a lot

Challenge: indirect branches

Most modern RE adopts a combined
approach in addition to heuristics

Stefan Nagy

CISC Architectures

￭ Variable-length instructions
￭ E.g., x86-32, x86-64

￭ Almost any byte sequence
can be a valid instruction!

￭ Being just one byte off can
totally mess up decoding!

73

Stefan Nagy

CISC Architectures

￭ Example of byte offsets and possible decodings:

74

js 0xffffffffec840f58

0x0F 0x88 0x52 0x0F 0x84 0xEC

Stefan Nagy

CISC Architectures

￭ Example of byte offsets and possible decodings:

75

mov BYTE PTR [rdx+0xf],dl
test ah,ch

0x0F 0x88 0x52 0x0F 0x84 0xEC

Stefan Nagy

CISC Architectures

￭ Example of byte offsets and possible decodings:

76

0x0F 0x88 0x52 0x0F 0x84 0xEC

add eax,0x40080f20
in al,dx

Stefan Nagy

Instruction Decoder Bugs

￭ Results from Trail of Bits’ Mishegos fuzzer:

77

Stefan Nagy

Code vs. Data

￭ Some compilers tightly interweave data (e.g., bytes, values) within code
￭ Imprecision can create trickle-down errors in instruction recovery!
￭ Example from OpenSSL (one of the most popular HTTPS libraries):

78

popfq // original
.byte 0xf3,0xc3
.size AES_cbc_encrypt
.align 64
.LAES_Te
.long 0xa56363c6

popfq // disassembled
repz retq
nop
nop
(bad)
movslq -0x5b(%rbx),%esp

Stefan Nagy

Questions?

79

Stefan Nagy

Pillars of RE:
Control Flow Recovery

80

Stefan Nagy

Control Flow

￭ What is it?
￭ ???

81

Stefan Nagy

Control Flow

￭ What is it?
￭ How execution flows

from one application
component to others

￭ Why do we care?
￭ ???

82

Stefan Nagy

Control Flow

￭ What is it?
￭ How execution flows

from one application
component to others

￭ Why do we care?
￭ Want to understand

the entire program!

83

Stefan Nagy

Recovering Control Flow

￭ Direct Edges
￭ Jump/call a function

84

jmp 0x4001AB3 Target is pre-set statically

Stefan Nagy

Recovering Control Flow

￭ Direct Edges
￭ Jump/call a function

￭ Indirect Edges
￭ Transfer to a register
￭ Function pointers
￭ Switch-case tables

85

Target is pre-set statically

Target found at runtime

jmp 0x4001AB3

call %eax; where?

Stefan Nagy

Recovering Control Flow

￭ Direct Edges
￭ Jump/call a function

￭ Indirect Edges
￭ Transfer to a register
￭ Function pointers
￭ Switch-case tables

￭ “Pseudo” Edges
￭ Post-call returns

86

Target is pre-set statically

Target found at runtime

Necessary to recover all paths

jmp 0x4001AB3

call %eax; where?

ret; goes where?

Stefan Nagy

Recovering Control Flow

￭ Direct Edges
￭ Jump/call a function

￭ Indirect Edges
￭ Transfer to a register
￭ Function pointers
￭ Switch-case tables

￭ “Pseudo” Edges
￭ Post-call returns

￭ Tail Calls
￭ Call at function’s end

87

Target is pre-set statically

Target found at runtime

Necessary to recover all paths

Expressed as jumps, not calls

jmp 0x4001AB3

call %eax; where?

ret; goes where?

jmp &foo; call?

Stefan Nagy

Symbol Stripping

￭ Debugging symbols: maps instructions in the compiled binary program to
their corresponding variable, function, or line in the source code.

88

int addition(int num1, int num2){
 return num1+num2;
}

int main(){
 int var1, var2;
 printf("Enter number 1: ");
 scanf("%d",&var1);
 printf("Enter number 2: ");
 scanf("%d",&var2);
 int res = addition(var1, var2);
 printf ("Output: %d", res);
 return 0;
}

Stefan Nagy

Symbol Stripping

￭ Debugging symbols: maps instructions in the compiled binary program to
their corresponding variable, function, or line in the source code.
￭ Makes RE easy if you have symbols…

89

int addition(int num1, int num2){
 return num1+num2;
}

int main(){
 int var1, var2;
 printf("Enter number 1: ");
 scanf("%d",&var1);
 printf("Enter number 2: ");
 scanf("%d",&var2);
 int res = addition(var1, var2);
 printf ("Output: %d", res);
 return 0;
}

$ objdump --syms example | grep .text
0000000000001090 l F .text 0000000000000000 deregister_tm_clones
00000000000010c0 l F .text 0000000000000000 register_tm_clones
0000000000001100 l F .text 0000000000000000 __do_global_dtors_aux
0000000000001140 l F .text 0000000000000000 frame_dummy
0000000000001150 g F .text 0000000000000018 addition
0000000000001060 g F .text 0000000000000026 _start
0000000000001170 g F .text 0000000000000085 main

Stefan Nagy

Symbol Stripping

￭ Debugging symbols: maps instructions in the compiled binary program to
their corresponding variable, function, or line in the source code.
￭ Makes RE easy if you have symbols… but often stripped from the binary!

90

int addition(int num1, int num2){
 return num1+num2;
}

int main(){
 int var1, var2;
 printf("Enter number 1: ");
 scanf("%d",&var1);
 printf("Enter number 2: ");
 scanf("%d",&var2);
 int res = addition(var1, var2);
 printf ("Output: %d", res);
 return 0;
}

$ objdump --syms example

example: file format elf64-x86-64

SYMBOL TABLE:
no symbols

Stefan Nagy

Obfuscation

￭ Obfuscation: techniques designed to make third-party analysis difficult
￭ ???

91

Stefan Nagy

Obfuscation

￭ Obfuscation: techniques designed to make third-party analysis difficult
￭ Developers want to keep their intellectual property secret to just themselves!

92

Stefan Nagy

Obfuscation

￭ Obfuscation: techniques designed to make third-party analysis difficult
￭ Developers want to keep their intellectual property secret to just themselves!
￭ Example: opaque predicates → introduces “fake” control-flow that is confusing!

93

Stefan Nagy

Obfuscation

￭ Obfuscation: techniques designed to make third-party analysis difficult
￭ Developers want to keep their intellectual property secret to just themselves!
￭ Example: control-flow flattening → removes any recognizable flow ordering

94

Stefan Nagy

Questions?

95

Stefan Nagy

Pillars of RE:
Structure Recovery

96

Stefan Nagy

Program Structure

￭ Why do we care?
￭ ???

97

Stefan Nagy

Program Structure

￭ Why do we care?
￭ Know how the code’s

parts work together

98

Stefan Nagy

Program Structure

￭ Why do we care?
￭ Know how the code’s

parts work together

￭ Examples:
￭ Basic Blocks
￭ Loop Types
￭ Recursion
￭ Jump Tables
￭ Functions

99

Stefan Nagy

Structure Recovery

￭ Largely heuristic-based
￭ Construct-specific rules

100

Stefan Nagy

Structure Recovery

￭ Largely heuristic-based
￭ Construct-specific rules

￭ Basic Blocks:
￭ Start:

￭ Target of a jmp
￭ Target of a call
￭ Target of a ret

￭ End:
￭ Ends in a jmp
￭ Ends in a call
￭ Ends in a ret

101

Stefan Nagy

Structure Recovery

￭ Largely heuristic-based
￭ Construct-specific rules

￭ Functions:
￭ Start:

￭ Target of a call
￭ Target of a tail call
￭ A known prologue
￭ A dispatch table entry

￭ End:
￭ Location of a ret
￭ Location of a tail call
￭ A known epilogue

102

Prologue

Epilogue

C-level Switch Table

Stefan Nagy

Questions?

103

Stefan Nagy

RE Tasks: Decompilation

104

Stefan Nagy

Decompilation

￭ Goal: ???

105

Stefan Nagy

Decompilation

￭ Goal: obtain semantically-equivalent source code from a compiled binary

106

Control
Flow

Analysis

Data Flow
analysis

Structure
Recovery

Structure
Analysis

C Code
Generation

Instruction
Recovery

Stefan Nagy

Decompilation

￭ Goal: obtain semantically-equivalent source code from a compiled binary
￭ In practice: really difficult with little guarantee of success (compilable or correct code)

107

Control
Flow

Analysis

Data Flow
analysis

Structure
Recovery

Structure
Analysis

C Code
Generation

Instruction
Recovery

Will it re-compile?
Will it run correctly?

Is it human readable?

Stefan Nagy

Try it yourself!

108

112d: push %ebp
112e: mov %esp,%ebp // mov src,dst
1131: mov %edi,$0x14(%ebp)
1134: mov $0x0,$0x4(%ebp)
113b: cmp $0x1,$0x14(%ebp)
113f: jne 1148
1141: add 0x1337,$0x4(%ebp)
1148: mov $0x0,%eax
114d: pop %ebp
114e: ret
114f: nop

https://rev.fish/files/bar2022_keynote.pdf

Stefan Nagy

Try it yourself!

109

112d: push %ebp
112e: mov %esp,%ebp // mov src,dst
1131: mov %edi,$0x14(%ebp)
1134: mov $0x0,$0x4(%ebp)
113b: cmp $0x1,$0x14(%ebp)
113f: jne 1148
1141: add 0x1337,$0x4(%ebp)
1148: mov $0x0,%eax
114d: pop %ebp
114e: ret
114f: nop

https://rev.fish/files/bar2022_keynote.pdf

112d

1148

1141

foo = 0; // 1134
if (bar == 1) { // 113b

// 1141
foo = foo + 0x1337;

}
return 0; // 1148

Variables:
ebp-0x4: foo
ebp-0x14: bar

Stefan Nagy

Popular Decompilers

￭ Many decompilers available today (both commercial and open-source)
￭ Can lift binaries to different languages (e.g., C/C++, LLVM IR, custom IRs, etc.)

110

angr IDA Pro Binary Ninja Ghidra

Stefan Nagy

Different Decompilers = Different Outputs

￭ Example: HelloWorld (ARM version) on DogBolt.org

111

Stefan Nagy

Challenges to Binary Decompilation

114

Accurate Decompilation →

Source Code
Optimizations

Binary Formats
Obfuscations

↓

Stefan Nagy

Supplemental Content: Domain-specific RE

￭ Dr. Zhiqiang Lin’s
keynote at BAR’23

￭ Lots of cool bugs!
￭ Tesla Infotainment
￭ “Super Apps”
￭ And more!

￭ Check it out!

124

Stefan Nagy

Next time on CS 4440…

125

Attacking Large Language Models (guest lecture)

