Week 12: Lecture A Software Reverse Engineering

Tuesday, November 12, 2024

Project 3 grades are now available on Canvas

Statistics:

- Average score: 97%
- Last year's avg: 90%
- Fantastic job!

- Project 3 grades are now available on Canvas
- Think we made an error? Request a regrade!
 - Valid regrade requests:
 - You have verified your solution is correct (i.e., we made an error in grading)

Project 3 Regrade Requests (see Piazza pinned link): Submit by 11:59 PM on Monday 11/18 via Google Form

Project 4: NetSec released

Deadline: Thursday, December 5th by 11:59PM

Project 4: Network Security

Deadline: Thursday, December 5 by 11:59PM.

Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies.

You may optionally work alone, or in teams of **at most two** and submit **one project per team**. If you have difficulties forming a team, post on **Piazza's Search for Teammates** forum. Note that the final exam will cover project material, so you and your partner should collaborate on each part.

The code and other answers your group submits must be entirely your own work, and you are bound by the University's Student Code. You may consult with other students about the conceptualization of the project and the meaning of the questions, but you may not look at any part of someone else's solution or collaborate with anyone outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your code comments). **Don't risk your grade and degree by cheating!**

Complete your work in the **CS 4440 VM**—we will use this same environment for grading. You may not use any **external dependencies**. Use only default Python 3 libraries and/or modules we provide you.

Project 4 Progress

Working on Part 1.0: Password Cracking	
	0%
Working on Part 1.1: Port Scanning	
	0%
Working on Part 1.2: Anomalous Activity	
	0%
Finished Part 1, working on Part 2!	
	0%
None of the above	
	0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at **pollev.com/app**

- I'll be out of town rest of week 💍
 - No office hours on Thursday
- **Guest lecturer** this Thursday
 - Dr. Guanhong Tao: attacking LLMs
 - Jailbreaking and backdoor attacks
- No PollEverywhere... but show up!
 - Final exam is still comprehensive 😉

https://tao.aisec.world/

Questions?

Last time on CS 4440...

Security in Practice: Tor—The Onion Router

Anonymity Primitive: Onion Routing

Each message is ???

Anonymity Primitive: Onion Routing

- Each message is repeatedly encrypted
 - Analogy: multiple layers of an onion
- Sent through multiple network nodes
 - These nodes are called **onion routers**
 - Each node removes an encryption layer to uncover the message routing instructions
 - Process repeats when sent to next router
- Anonymity: prevents ???

Anonymity Primitive: Onion Routing

- Each message is repeatedly encrypted
 - Analogy: multiple layers of an onion
- Sent through multiple network nodes
 - These nodes are called **onion routers**
 - Each node removes an encryption layer to uncover the message routing instructions
 - Process repeats when sent to next router
- Anonymity: prevents any intermediary nodes from knowing message origin, destination, and contents

Onion Routing Visualized

Sending data to a website

Receiving data from a website

Stefan Nagy

- Anonymizes TCP-based applications
 - Secure shell
 - Web browsing
 - Instant messaging

- Anonymizes TCP-based applications
 - Secure shell
 - Web browsing
 - Instant messaging
- Clients choose ???

- Anonymizes TCP-based applications
 - Secure shell
 - Web browsing
 - Instant messaging
- Clients choose the circuit paths
 - Messages unwrapped at each onion router using a symmetric key
- Onion routers only know ???

- Anonymizes TCP-based applications
 - Secure shell
 - Web browsing
 - Instant messaging
- Clients choose the circuit paths
 - Messages unwrapped at each onion router using a symmetric key
- Onion routers only know their successor or predecessor nodes
 - They don't know of any other nodes

How Tor Works

Stefan Nagy

Possible attacks against Tor?

- Possible attacks against Tor?
- Leak DNS requests when they aren't transmitted via Tor

Perform **volume/timing analysis** to characterize behavior

• Add malicious nodes to intercept unencrypted exit traffic

- Possible attacks against Tor?
- Leak DNS requests when they aren't transmitted via Tor
 - Defense: ???
- Perform **volume/timing analysis** to characterize behavior
 - Defense: ???
- Add malicious nodes to intercept unencrypted exit traffic
 - Defense: ???

- Possible attacks against Tor?
- Leak DNS requests when they aren't transmitted via Tor
 - Defense: enforce all DNS requests through Tor encryption
- Perform **volume/timing analysis** to characterize behavior
 - Defense: inject noisy data to throw off analysis heuristics
- Add malicious nodes to intercept unencrypted exit traffic
 - Defense: never use unencrypted protocols—use HTTPS

23

Who uses Tor?

- Normal People
 - Privacy-conscious folks
- Intelligence Agencies
 - Secret agents in the field
- Law Enforcement
 - Online "undercover" operations
- Journalists and Bloggers
 - Citizen journalists inspiring social change
- Activists and Whistleblowers
 - Raising their voice and avoiding persecution
- White-hat and Black-hat Hackers
 - And everyone in between!

Who uses Tor?

SCHOOL OF COMPUTING UNIVERSITY OF UTAH

Stefan Nagy

What services get hidden?

Positive Tor Use Cases

Questions?

Recap: Project 4 Overview

Focuses on network packet analysis

- Leveraging data contained within packets to achieve network defenses and attacks
- Scenario: helping a fictional university secure its enterprise campus network
 - Detect and characterizing likely attacks
 - Demonstrate how info can be intercepted

Recap: Project 4 Overview

- We provide a series of network packet traces (pcaps)
 - Your job: write scripts to analyze them!
- Part 1: detecting network attacks
 - Password cracking, port scanning, SYN floods
- Part 2: stealing sensitive information
 - Unencrypted credentials, browsing history
 - Extra credit: stealing transfered files

Recap: Project 4 Overview

- We provide a series of network packet traces (pcaps)
 - Your job: write scripts to analyze them!
- Part 1: detecting network attacks
 - Password cracking, port scanning, SYN floods
- Part 2: stealing sensitive information
 - Unencrypted credentials, browsing history
 - Extra credit: stealing transfered files
- You will use Python 3's Scapy library
 - A huge and powerful packet analysis API...
 - But we'll really only use a few parts of it

- Python API for programmatic packet capture and analysis
 - Think of it as "Wireshark in API form"
- We provide **skeleton code** template
 - Sets-up the packet parsing workflow

#!/usr/bin/python3

```
import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *
import re
```

def parsePacket(packet):

if not packet.haslayer("TCP"): return

TODO: finish implementing parsePacket()!

return

```
if __name__ == "__main__":
    for packet in rdpcap(sys.argv[1]):
        parsePacket(packet)
```

- Python API for programmatic packet capture and analysis
 - Think of it as "Wireshark in API form"
- We provide skeleton code template
 - Sets-up the packet parsing workflow
 - Your job: finish implementing the function parsePacket()

#!/usr/bin/python3

```
import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *
import re
```


- Python API for programmatic packet capture and analysis
 - Think of it as "Wireshark in API form"
- We provide skeleton code template
 - Sets-up the packet parsing workflow
 - Your job: finish implementing the function parsePacket()
- You may also add additional code
 - E.g., global variables or data structures
 - E.g., printing functionality in main()

#!/usr/bin/python3

```
import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *
import re
```


- Only a few things you'll need...
 - Get a packet's TCP flags:

packet["TCP"].flags

Get a packet's destination port

packet["TCP"].dport

Get a packet's source IP address

packet["IP"].src

• Get a packet's TCP **payload**:

Scapy API reference		
scapy.asn1 package	/ Scapy API reference	C Edit on GitHub
scapy.contrib package		
scapy.layers package	Soony ABI reference	
scapy.ansmachine	Scapy API lefelence	
scapy.as_resolvers	Scapy: create, send, spiff, dissect and manipulate network p	packets.
scapy.asn1fields		
scapy.asn1packet	Usable either from an interactive console or as a Python lib	rary. https://scapy.net
scapy.automaton		
scapy.autorun	Subpackages	
capy.base_classes	 comprom1 package 	
capy.config	 scapy.ash1 package scapy.contrib package 	
capy.consts	scapy.layers package	
scapy.dadict		
scapy.data	Submodules	
scapy.error		
capy.fields	scapy.ansmachine	
capy.interfaces	 scapy.as_resolvers scapy.asn1fields 	
scapy.main	 scapy.asn1packet 	
scany nacket	scapy.automaton	
scopy.puerce	scapy.autorun	
scapy.piperooi	 scapy.base_classes 	

bytes(packet["TCP"].payload).decode('utf-8', 'replace')

Recap: Suggested Workflow

- Before you start writing a Scapy script, inspect the trace manually via Wireshark
 - Super helpful for viewing a packet's contents
 - Use this to bootstrap your script's approach!

	Edit	View	Go	Cap	ture	Ana	alyze	Statis	tics	Teleph	ony	Wire	eless	Too	ls H	lelp			
1		۲	010		C	٩	()	-	<u>ه</u>	2		Đ,	Q	Q. I	4				
	synergy.	packet_	type =	= "DKL	IP"											X		•	+
lo.		Time		S	ource	2			De	stinatio	n			Pro	otocol	Len	gth	Ir	1
	428	3.994	768	1	.92.	168.1	1.106		19	2.168	.1.2	13		sy	nergy	y	68		
	442	4.402	758	1	92.	168.1	1.106		19	2.168	.1.2	13		sy	nergy	y	68		
	453	5.042	758	1	92.	168.1	1.106		19	2.168	.1.2	13		sy	nergy	y	68		
	464	5.290	740	1	92.	168.1	1.106		19	2.168	.1.2	13		sy	nergy	4	68		
	486	5.826	760	1	92.	168.1	1.106		19	2.168	.1.2	13		sy	nergy	y	68		
	494	5.978	736	1	92.	168.1	1.106		19	2.168	.1.2	13		sy	nergy	Y	68		
	512	6.186	737	1	92.	168.1	1.106		19	2.168	.1.2	13		sy	nergy	y	68		
	519	6.314	737	1	.92.	168.1	1.106		19	2.168	.1.2	13		sy	nergy	y	68		
	532	6.426	754	1	92.	168.1	1.106		19	2.168	.1.2	13		sy	nergy	V	68		
	Frame Ethern Intern	428: (et II et Pro	58 by Src	tes o : ASU 1 Ver	n wi STek sior	ire ((C_14	544 b 1:f6:e Src:	its) 8 <mark>(</mark> 3 192.	, 68 8:d5: 168.1	bytes 47:14 .106,	cap :f6: Dst	ture ≥8), : 19	d (54 Dst 2.16	14 b Ap	its) ple_9 213	on i 0d:dc	nte :83	rfac (a0	e :7
	Frame 4 Ethern Intern Transm	428: (et II et Pro ission	58 by Src otoco	tes o : ASU l Ver trol	n wi STeł sior Prot	ire (c_14 n 4, tocol	544 b 1:f6:e Src: 1, Src	its) 8 (3 192. Por	, 68 8:d5: 168.1 t: 24	bytes 47:14 .106, 800,	cap :f6: Dst Dst	ture e8), : 19 Port	d (5 Dst 2.16 : 49	14 b Ap 3.1. 727,	its) ple_9 213 Seq:	on i 0d:dc	inte :83	rfac (a0 Ack:	e :7 7
	Frame Ethern Intern Transm Synerg Pacl	428: (et II et Pro ission y Prot ket Le	58 by Src otoco Con tocol	tes o : ASU l Ver trol	n wi STek sior Prot	ire ((C_14 n 4, tocol	544 b Ff6:e Src: , Src	its) 8 (3 192. Por	, 68 8:d5: 168.1 t: 24	bytes 47:14 .106, 800,	cap :f6: Dst Dst	ture e8), : 19 Port	d (54 Dst 2.16 : 49	44 b Ap 3.1. 727,	its) ple_9 213 Seq:	on i 9d:dc : 109	inte ::83	rfac (a0 Ack:	e :7: 7:
	Frame Ethern Intern Transm Synerg Pacl Pacl	428: (et II et Pro ission y Prof ket Le ket Ty	58 by Src otoco Con tocol ength rpe: H	tes o : ASU l Ver trol : 10 (ev R	n wi STek sior Prot	ire (C_14 n 4, tocol	(544 b src: Src: Src: (DKUP	its) 8 (3 192. Por	, 68 8:d5: 168.1 t: 24	bytes 47:14 .106, 800,	cap :f6: Dst Dst	ture 28), : 19 Port	d (54 Dst 2.16 : 49	14 b : Ap 3.1. 727,	its) ple_9 213 Seq:	on i 9d:dc	inte ::83	rfac (a0	e :7: 7:
	Frame Ethern Intern Transm Synerg Pack Pack Y Key	428: (et II, et Pro ission y Prot ket Le ket Ty Relea	58 by , Src otocol tocol ength pe: H	tes o : ASU l Ver trol : 10 (ey R	n wi STek sior Prot	ire (C_14 n 4, tocol	544 b Ff6:e Src: , Src (DKUP	vits) 8 (3 192. Por	, 68 8:d5: 168.1 t: 24	bytes 47:14 .106, 800,	cap :f6: Dst Dst	ture e8), : 19 Port	d (54 Dst 2.160 : 49	14 b Ap 3.1. 727,	its) ple_9 213 Seq:	on i 9d:dc	inte ::83	rfac (a0	e ' :78 72
	Frame Ethern Intern Transm Synerg Pacl Pacl V Key	428: (et II, et Pro ission y Prot ket Le ket Ty Relea (ev Id	58 by 57 Src 50 Con 50	tes o : ASU l Ver trol : 10 Key R	n wi STek sior Prot	ire (C_14 n 4, tocol	(DKUP	its) 8 (3 192. Por	, 68 8:d5: 168.1 t: 24	bytes 47:14 .106, 800, 1	cap :f6: Dst Dst	ture e8), : 19 Port	d (54 Dst 2.16 : 49	14 b Ap 3.1. 727,	its) ple_9 213 Seq:	on i)d:dc	inte :83	rfac (a0	e ' :78 71
	Frame Ethern Intern Transm Synerg Pacl Pacl Y Key	428: (et II, et Pro ission y Prot ket Le ket Ty Relea (ey Io (ey Mo	58 by 57 Src 50 Con tocol ingth rpe: 1 5 sed 1: 110 difie	tes o : ASU l Ver trol : 10 (ey R G : : Ma:	n wi STek sior Prot	ire (C_14 1 4, tocol 1 sed	544 b Ff6:e Src: , Src (DKUP)	, 68 8:d5: 168.1 t: 24	bytes 47:14 .106, 800,	cap :f6: Dst Dst	ture 28), : 19 Port	d (54 Dst 2.16 : 49	14 b : Ap 3.1. 727,	its) ple_9 213 Seq:	on i 9d:dc	inte :83	rfac (a0	e ' :78 71
	Frame Ethern Intern Transm Synerg Pack Pack Pack V Key	428: (et II, et Pro ission y Prot ket Le ket Ty Relea (ey IC (ey Bu	58 by 57 Src 50 Con tocol toco	tes o : ASU l Ver trol : 10 (ey R : : : : : : : : : : : : : : : : : : :	n wi STek sior Prot elea	ire (cC_14 1 4, tocol 1 sed 8192	(544 b Ff6:e Src: , Src (DKUP	vits) 8 (3 192. Por	, 68 8:d5: 168.1 t: 24	bytes 47:14 .106, 800,	cap :f6: Dst Dst	ture 28), : 19 Port	d (54 Dst 2.16 : 49	14 b : Ap 3.1. 727,	its) ple_9 213 Seq:	on i 9d:dc	inte ::83	rfac (a0	e 7: 7:
	Frame Ethern Intern Transm Synerg Pacl Pacl Y Key	428: (et II, et Prof ission y Prof ket Le ket Ty Relea (ey Id (ey Bu	58 by Src otocol cont cocol ength pe: H ssed : 110 difie	tes o : ASU l Ver trol : 10 (ey R : : : : : : : : : : : : : : : : : : :	n wi STek sior Prot elea	ire (C_14 tocol sed	(DKUP	its) 8 (3 192. Por	, 68 8:d5: 168.1 t: 24	bytes 47:14 .106, 800, 1	cap :f6: Dst Dst	ture 28), : 19 Port	d (54 Dst 2.160 : 49	14 b : Ap 3.1. 727,	its) ple_9 213 Seq:	on i 9d:dc	inte ::83	rfac (a0	e ' :78 71
	Frame F Ethern Intern Transm Synerg Pack Pack Pack F Key F F F F F F F F F F F F F F F F F F F	428: (et II, et Pro ission y Prot ket Le ket Ty Relea (ey IC (ey Bu (ey Bu 78 17	58 by Src otocol c	tes o : ASU l Ver trol : 10 (ey R : : : : : : : : : : : : : : : : : : :	n wi STek sior Prot elea sk:	ire (cC_14 1 4, tocol 1 sed 8192	(DKUP	(3 192. Por)	, 68 8:d5: 168.1 t: 24	bytes 47:14 .106, 800,	cap :f6: Dst Dst	ture 28), 19 Port	d (5 Dst 2.16 : 49	44 b. : Ap 3.1 727,	its) ple_9 213 Seq:	on i od:dc : 109)1, 4	rfac (a0	e ' :78 71
	Frame of Etherno Interno Transm Synerg Pack Pack Pack Pack Pack Pack Pack Pack	428: (et II, et Pro ission y Prot ket Le ket Ty Relea (ey Id (ey Mo (ey Bu 78 17 36 10	58 by Src otocol c	tes o : ASU l Ver trol : 10 (ey R : : 20 ic 83 :0 00	n wi STek sior Prot elea sk: <u>38</u> 80	ire (cC_14 1 4, cocol 8192 8192 d5 06	544 b 1:f6:e Src: , Src (DKUP 47 14 00 00	<pre>pits) 8 (3 192. Por) f6 (c0 a</pre>	, 68 8:d5: 168.1 t: 24 t: 24	00 45 6a c0	cap: 156: Dst Dst 5 00 3 a8	ture 28), 19 Port	d (5. Dst 2.16: : 49	44 b. : App 3.1 727,	its) ple_9 213 Seq:	on i 9d:dc 109)1, /	rfac (a@	e ' :78 72
	Frame Ethern Intern Transm Synerg Pack Pack Key Key Key Key Key Key Key Key Key Key	428: (et II, et Pro ission y Prot ket Le ket Ty Relea (ey Bu (ey Bu (ey Bu (ey Bu 78 17 36 10 d5 60	58 by 57 Src 50 Con 50 Con	tes o : ASU l Ver trol : 10 : 10 : 10 : 20 : 20 : 20 : 20 : 20 : 20 : 20 : 2	n wi STek sior Prot elea sk: <u>38</u> 80 80	d5 dc	544 b Fif6:e Src: (DKUP (DKUP 47 14 00 00 d4 58	its) 8 (3 192. Por))	, 68 8:d5: 168.1 t: 24 t: 24 8 08 8 01 57 72	00 49 6a c0 6a 50	cap :f6: Dst Dst Dst S 00 0 a8 0 18	ture 28), 19 Port	d (5- Dst 2.16 : 49	44 b. : Ap∣ 3.1. 727,	its) ple_9 213 Seq: 5	on i d:dc : 109)1, /	rfac (a0	e ' 72
Recap: Suggested Workflow

- Before you start writing a Scapy script, inspect the trace manually via Wireshark
 - Super helpful for viewing a packet's contents
 - Use this to bootstrap your script's approach!
- For each target, answer the following:
 - What packet fields matter?
 - How to extract relevant data?
 - How to store and process this data?

No	. 1	Time	Source	Destination			
	1 (0.000000	10.0.0.2	10.128.0.2			
	2 (0.003987	10.128.0.2	10.0.0.2			
	3 (0.005514	10.128.0.2	10.0.0.2			
	4 (0.008429	10.0.0.2	10.128.0.2			
	5 (0.010233	10.128.0.2	10.0.2			
	6 (0.014072	10.128.0.2	10.0.0.2			
	7 (0.016830	10.0.0.2	10.128.0.2			
	8 (0.022220	10.128.0.2	10.0.0.2			
	9 (0.023496	10.128.0.2	10.0.0.2			
	10 (0.025243	10.0.0.2	10.128.0.2			
	11 (0.026672	10.128.0.2	10.0.0.2			
	12 (0.028038	10.128.0.2	10.0.0.2			
	13 (0.030523	10.128.0.2	10.0.0.2			
4							
•	Frame 2	: 58 bytes	on wire (464 bits), 58 bytes captured (464 b			
•	Etherne	t II, Src:	42:01:0a:f0:00:01	(42:01:0a:f0:00:01), Dst:			
•	Interne	t Protocol	Version 4, Src: 1	0.128.0.2, Dst: 10.0.0.2			
•	 Transmission Control Protocol, Src Port: 80, Dst Port: 3222, Source Port: 80 						
Destination Port: 3222							
	[Stre	am index:					
	[TCP Segment Len: 0]						
	Seque	nce number	: 0 (relative s	sequence number)			
	LNext	sequence	number: 0 (rela	tive sequence number)]			
	Ackno	wledgment	number: 1 (rela	tive ack number)			
	0110	= Hea	der Length: 24 byt	tes (6)			
	Flags	: 0x012 (S	YN, ACK)				
	Windo	w size val	ue: 29200				
	[Calc	ulated win	dow size: 29200]				
	Check	sum: 0x426	8 [Unverified]				
	LCnec	ksum statu	s: unverified]				
	urgen	it pointer:					
	Optio	ins: (4 byt	es), maximum segme	ent size			
	▶ [lime	scamps					

Recap: Suggested Workflow

- Before you start writing a Scapy script, inspect the trace manually via Wireshark
 - Super helpful for viewing a packet's contents
 - Use this to bootstrap your script's approach!
- For each target, answer the following:
 - What packet fields matter?
 - How to extract relevant data?
 - How to store and process this data?

Finalize your **high-level game plan** first!

Then start developing your solution scripts!

No.	Time	Source	Destination				
1	0.000000	10.0.0.2	10.128.0.2				
	0.003987	10.128.0.2	10.0.0.2				
3	0.005514	10.128.0.2	10.0.0.2				
4	0.008429	10.0.0.2	10.128.0.2				
5	0.010233	10.128.0.2	10.0.2				
6	0.014072	10.128.0.2	10.0.0.2				
7	0.016830	10.0.0.2	10.128.0.2				
8	0.022220	10.128.0.2	10.0.0.2				
9	0.023496	10.128.0.2	10.0.2				
10	0.025243	10.0.0.2	10.128.0.2				
11	0.026672	10.128.0.2	10.0.0.2				
12	0.028038	10.128.0.2	10.0.0.2				
13	0.030523	10.128.0.2	10.0.0.2				
4							
▶ Frame	2: 58 bytes on	wire (464 bits), 58	bytes captured (464 b)				
Ethern	et II, Src: 42	:01:0a:10:00:01 (42:0	01:0a:f0:00:01), Dst:				
Intern	et Protocol Ve	rsion 4, Src: 10.128.	0.2, Dst: 10.0.0.2				
- Transm	ission control	Protocol, Src Port:	80, DSt Port: 3222, S				
Sour	Source Port: 80						
Dest	ination Port:	3222					
LSLI TTO	eam index: ij	01					
	segment Len:						
Sequ	tence number: c	hor (relative sequence	te number)				
Lives	a sequence num	ber 1 (relative s	sequence number)				
ACKI	iowreugment num	iber: 1 (relative a	ack number)				
		Length: 24 bytes (6))				
P Flat	S. 0X012 (STN,	20200					
VIII Col	iow Size value.	29200					
Chor	koum: 0x4269	upvorified]					
[Che	ckeum Status	Unverified]					
	ont pointor: 0	ouvertited]					
b Onti	one: (4 bytee)	Maximum cogmont ci	10				
, opti	octompol	, maximum segment siz	LC .				
	ies camps]						

Questions?

This time on CS 4440...

Binary Reverse Engineering Instruction Recovery Control Flow Analysis Structure Recovery RE Challenges

clang hello.c -o hello

Stefan Nagy

Stefan Nagy

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at **pollev.com/app**

Closed-source Software

It's everywhere!

Closed-source Software

It's everywhere!

Auditing Open- versus Closed-source Code

Open Source:

- Publicly-available source codebase
- Achieves security by transparency

Semantic richness facilitates
 high-performance, effective vetting

Auditing Open- versus Closed-source Code

Open Source:

- Publicly-available source codebase
- Achieves security by transparency

 Semantic richness facilitates high-performance, effective vetting

Closed Source:

- Distributed as a precompiled binary
- Opaque to everyone but its developer

- Upwards of 10x slower security vetting
- Forced to rely on crude techniques

Auditing Open- versus Closed-source Code

- Global market size over \$240 billion
- 85% contains critical vulnerabilities
- 89% of the most exploited software

Closed Source:

- Distributed as a precompiled binary
- Opaque to everyone but its developer

Upwards of 10x slower security vetting
Forced to rely on crude techniques

Reverse Engineering (RE)

What is RE?

"A process or method through which one attempts to **understand** through deductive reasoning how a previously made **device**, **process**, **system**, or piece of **software** accomplishes a task with **very little (if any) insight** into exactly how it does so."

Why do we care about RE?

Discovering bugs

Retrofitting fixes

Malware analysis

Right to repair!

JNIVERSITY OF UTAH

- Disassembly
 - ???

Disassembly

 Machine code to human readable assembly

Decompilation

???

0000003	4F	dec edi
00000004	6A1E	push byte +0x1e
00000006	B7B5	mov bh, 0xb5
00000008	0C12	or al,0x12
0000000A	6A04	push byte +0x4
0000000C	EAA08EA57B2BB1	jmp dword 0xb12b:0x7ba58ea0
00000013	B114	mov cl,0x14

Disassembly

 Machine code to human readable assembly

Decompilation

- Machine code to human readable source code
- Rewriting

00000003	4 F	dec edi
00000004	6A1E	push byte +0x1e
00000006	B7B5	mov bh,0xb5
00000008	0C12	or al,0x12
A000000A	6A04	push byte +0x4
0000000C	EAA08EA57B2BB1	jmp dword 0xb12b:0x7ba58ea0
00000013	B114	mov cl,0x14

Disassembly

 Machine code to human readable assembly

Decompilation

 Machine code to human readable source code

Rewriting

 Add more functionality and rebuild executable

00000003	4 F	dec edi
00000004	6A1E	push byte +0x1e
00000006	B7B5	mov bh,0xb5
80000008	0C12	or al,0x12
A000000A	6A04	push byte +0x4
0000000C	EAA08EA57B2BB1	jmp dword 0xb12b:0x7ba58ea0
00000013	B114	mov cl,0x14

Disassembly (e.g., objdump)

Decompilation (e.g., Ghidra, IDA)

Something else!

None of the above (totally fine!)

0%

0%

0%

0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Three Pillars of RE

1. Instruction Recovery

- Decode bytes to instructions
- Disambiguate code from data

2. Control Flow Recovery

- Intra-procedural execution flow
- Inter-procedural execution flow

3. Program Structure Recovery

- Identify program basic blocks
- Higher-level constructs (e.g., loops)

SCHOOL OF COMPUTING UNIVERSITY OF UTAH

Questions?

Pillars of RE: Instruction Recovery

Instructions

What are they?

0	
MAXPS	Maximum of Packed Single-Precision Floating-Point Values
MAXSD	Return Maximum Scalar Double-Precision Floating-Point Value
MAXSS	Return Maximum Scalar Single-Precision Floating-Point Value
MFENCE	Memory Fence
MINPD	Minimum of Packed Double-Precision Floating-Point Values
MINPS	Minimum of Packed Single-Precision Floating-Point Values
MINSD	Return Minimum Scalar Double-Precision Floating-Point Value
<u>MINSS</u>	Return Minimum Scalar Single-Precision Floating-Point Value
MONITOR	Set Up Monitor Address
MOV	Move
<u>MOV</u> (1)	Move to/from Control Registers
<u>MOV</u> (2)	Move to/from Debug Registers
MOVAPD	Move Aligned Packed Double-Precision Floating-Point Values
<u>MOVAPS</u>	Move Aligned Packed Single-Precision Floating-Point Values
MOVBE	Move Data After Swapping Bytes
MOVD	Move Doubleword/Move Quadword
MOVDDUP	Replicate Double FP Values
MOVDIR64B	Move 64 Bytes as Direct Store
MOVDIRI	Move Doubleword as Direct Store
MOVDQ2Q	Move Quadword from XMM to MMX Technology Register

Recap: The CPU

- State modified by assembly instructions
 - ADD, SUB, XOR, CMP, CALL, JMP, RET
 - And many more!
- Assembly instruction syntaxes
 - AT&T = Instruction Source Destination
 - Intel = Instruction Destination Source
 - Example: MOV SRC, DST versus MOV DST, SRC
 - This lecture: **AT&T syntax**

Instructions

- What are they?
 - Operations that modify CPU state
- Source = ???

x86 asm = ???

MAXPS	Maximum of Packed Single-Precision Floating-Point Values
MAXSD	Return Maximum Scalar Double-Precision Floating-Point Value
MAXSS	Return Maximum Scalar Single-Precision Floating-Point Value
MFENCE	Memory Fence
MINPD	Minimum of Packed Double-Precision Floating-Point Values
MINPS	Minimum of Packed Single-Precision Floating-Point Values
MINSD	Return Minimum Scalar Double-Precision Floating-Point Value
<u>MINSS</u>	Return Minimum Scalar Single-Precision Floating-Point Value
MONITOR	Set Up Monitor Address
MOV	Move
<u>MOV</u> (1)	Move to/from Control Registers
<u>MOV</u> (2)	Move to/from Debug Registers
MOVAPD	Move Aligned Packed Double-Precision Floating-Point Values
MOVAPS	Move Aligned Packed Single-Precision Floating-Point Values
MOVBE	Move Data After Swapping Bytes
MOVD	Move Doubleword/Move Quadword
MOVDDUP	Replicate Double FP Values
MOVDIR64B	Move 64 Bytes as Direct Store
MOVDIRI	Move Doubleword as Direct Store
MOVDQ2Q	Move Quadword from XMM to MMX Technology Register

Instructions

- What are they?
 - Operations that modify CPU state
- Source = high-level instructions
 - Human-readable
- x86 asm = low-level instructions
 - Somewhat human-readable

Key to inferring what the program is doing

MAXPS	Maximum of Packed Single-Precision Floating-Point Values
MAXSD	Return Maximum Scalar Double-Precision Floating-Point Value
MAXSS	Return Maximum Scalar Single-Precision Floating-Point Value
MFENCE	Memory Fence
MINPD	Minimum of Packed Double-Precision Floating-Point Values
<u>MINPS</u>	Minimum of Packed Single-Precision Floating-Point Values
MINSD	Return Minimum Scalar Double-Precision Floating-Point Value
MINSS	Return Minimum Scalar Single-Precision Floating-Point Value
MONITOR	Set Up Monitor Address
MOV	Move
<u>MOV</u> (1)	Move to/from Control Registers
<u>MOV</u> (2)	Move to/from Debug Registers
<u>MOVAPD</u>	Move Aligned Packed Double-Precision Floating-Point Values
MOVAPS	Move Aligned Packed Single-Precision Floating-Point Values
MOVBE	Move Data After Swapping Bytes
MOVD	Move Doubleword/Move Quadword
MOVDDUP	Replicate Double FP Values
MOVDIR64B	Move 64 Bytes as Direct Store
MOVDIRI	
MOVDIN	Move Doubleword as Direct Store
MOVDQ2Q	Move Doubleword as Direct Store Move Quadword from XMM to MMX Technology Register

Recovering Instructions

Goal: translate bytes into logical instructions

- Called instruction decoding
- Analogous to what CPU does
- General output: disassembly

Inst	truct	ion s	strea	am								
в8	22	11	00	FF	01	CA	31	F6	53	8B	5C	24
04	8D	34	48	39	C3	72	EΒ	C3				

Read bytes from input executable

Machine code bytes	Assembly language statements
<pre>B8 22 11 00 FF 01 CA 31 F6 53 8B 5C 24 04 8D 34 48 39 C3 72 EB C3</pre>	<pre>foo: movl \$0xFF001122, %eax addl %ecx, %edx xorl %esi, %esi pushl %ebx movl 4(%esp), %ebx leal (%eax,%ecx,2), %esi cmpl %eax, %ebx jnae foo retl</pre>

Group bytes

Decode instructions

Instruction Recovery Techniques

Linear Sweep

- Start decoding at binary entry
- Attempt to decode all bytes
- Stop at end of .TEXT section

Intuition: compilers lay code sequentially for compactness

Challenge: data within code

Instruction Recovery Techniques

Linear Sweep

- Start decoding at binary entry
- Attempt to decode all bytes
- Stop at end of .TEXT section

Recursive Descent

- Follow all control-flow transfers
- jmp 0x100 → start decoding instructions at address 0x100
- Stop when you've covered all possible control-flow paths

Intuition: compilers lay code sequentially for compactness

Challenge: data within code

Intuition: following the logical flow of execution reveals a lot

Challenge: indirect branches

Instruction Recovery Techniques

Linear Sweep

- Start decoding at binary entry
- Attempt to decode all bytes
- Stop at e

Intuition: compilers lay code sequentially for compactness

Most modern RE adopts a **combined** approach in addition to **heuristics**

thin code

Recursive D

- Follow all
- jmp 0x100 → start decoding instructions at address 0x100
- Stop when you've covered all possible control-flow paths

flow of execution reveals a lot

Challenge: indirect branches

- Variable-length instructions
 - E.g., x86-32, x86-64
- Almost any byte sequence can be a valid instruction!

 Being just one byte off can totally mess up decoding!

• Example of byte offsets and possible decodings:

0x0F 0x88 0x52 0x0F 0x84 0xEC

js 0xfffffffec840f58

• Example of byte offsets and possible decodings:

0x0F 0x88 0x52 0x0F 0x84 0xEC

mov BYTE PTR [rdx+0xf],dl
test ah,ch

• Example of byte offsets and possible decodings:

0x0F 0x88 0x52 0x0F 0x84 0xEC

add eax,0x40080f20 in al,dx

Instruction Decoder Bugs

Results from Trail of Bits' Mishegos fuzzer:

input	worker					
	./src/worker/bfd/bfd.so	./src/worker/capstone/capstone.so	./src/worker/xed/xed.so	./src/worker/zydis/zydis.so		
6567f2f39cb2a58654	gs addr32 repnz repz pushf (5 / 28)	pushfq (5 / 8)	addr32 pushfq (5 / 14)	pushfq (5 / 6)		
26f267664d0f3817314aecdf9d	es addr32 data16 rex.WRB (bad) (8 / 32)	ptest xmm14, xmmword ptr es:[r9d] (9 / 34)	(0 / 0)	(0 / 0)		
656636f26f0f3a6f959066b1fd8c52	gs repnz outs dx,WORD PTR ss:[rsi] (5 / 35)	repne outsd dx, dword ptr ss:[rsi] (5 / 35)	repne data16 outsw gs (5 / 21)	repne outsw (5 / 11)		
67f03ef0460f1104fe	lock lock movups XMMWORD PTR ds:[esi+r15d*8],xmm8 (9 / 50)	(0 / 0)	(0 / 0)	(0 / 0)		
652e26520ffda71fd5bc9e3090235f	gs cs es push rdx (4 / 18)	push rdx (4 / 9)	push rdx (4 / 8)	push rdx (4 / 8)		
64652e26520ffda71fd5bc9e309023	fs gs cs es push rdx (5 / 21)	push rdx (5 / 9)	push rdx (5 / 8)	push rdx (5 / 8)		
6636f26f0f3a6f959066b1fd8c523e	repnz outs dx,WORD PTR ss:[rsi] (4 / 32)	repne outsd dx, dword ptr ss:[rsi] (4 / 35)	repne data16 outsw (4 / 19)	repne outsw (4 / 11)		
2e26520ffda71fd5bc9e3090235f0d	cs es push rdx (3 / 15)	push rdx (3 / 9)	push rdx (3 / 8)	push rdx (3 / 8)		
36f2f3f00f3a6315cd	ss repnz lock (bad) (7 / 21)		(0 / 0)	(0 / 0)		
262ef0f00f3ada4eb5bae8	es cs lock lock (bad) (7 / 23)	(0 / 0)	(0 / 0)	(0 / 0)		
f365f33e9559dd95a732b088057275	repz gs repz ds xchg ebp,eax (5 / 29)	xchg eax, ebp (5 / 14)	xchg ebp, eax (5 / 13)	xchg ebp, eax (5 / 13)		
65f33e9559dd95a732b08805727509	gs repz ds xchg ebp,eax (4 / 24)	xchg eax, ebp (4 / 14)	xchg ebp, eax (4 / 13)	xchg ebp, eax (4 / 13)		
f33e9559dd95a732b08805727509f3	repz ds xchg ebp,eax (3 / 21)	xchg eax, ebp (3 / 14)	xchg ebp, eax (3 / 13)	xchg ebp, eax (3 / 13)		
3e9559dd95a732b08805727509f395	ds xchg ebp,eax (2 / 16)	xchg eax, ebp (2 / 14)	xchg ebp, eax (2 / 13)	xchg ebp, eax (2 / 13)		
6765676547be4b69	addr32 (1 / 7)	(0 / 0)	(0 / 0)	(0 / 0)		
59dd95a732b08805727509f39507d0	pop rcx (1 / 11)	pop rcx (1 / 8)	pop rcx (1 / 7)	pop rcx (1 / 7)		
3e3e2e265ddf3b	ds ds cs es pop rbp (5 / 20)	pop rbp (5 / 8)	pop rbp (5 / 7)	pop rbp (5 / 7)		
9559dd95a732b08805727509f39507	xchg ebp,eax (1 / 15)	xchg eax, ebp (1 / 14)	xchg ebp, eax (1 / 13)	xchg ebp, eax (1 / 13)		
646526f04991a85e	fs gs es lock xchg r9,rax (6 / 26)	(0 / 0)	(0 / 0)	(0 / 0)		
f26426644a0f38d5fbbe	repnz fs es fs rex.WX (bad) (8 / 29)	(0 / 0)	(0 / 0)	(0 / 0)		
64666566950f3a13f9f6	fs data16 gs xchg bp,ax (5 / 24)	xchg ax, bp (5 / 12)	xchg bp, ax (5 / 11)	xchg bp, ax (5 / 11)		
f02ef065440f5a52e209f49611d758	lock cs lock cvtps2pd xmm10,QWORD PTR gs:[rdx-0x1e] (9 / 52)	(0 / 0)	(0 / 0)	(0 / 0)		
36266467470f3875ae022de4a1517e	ss es fs addr32 rex.RXB (bad) (8 / 31)	(0 / 0)	(0 / 0)	(0 / 0)		
266467470f3875ae022de4a1517e90	es fs addr32 rex.RXB (bad) (7 / 28)	(0 / 0)	(0 / 0)	(0 / 0)		
6467470f3875ae022de4a1517e90b4	fs addr32 rex.RXB (bad) (6 / 25)	(0 / 0)	(0 / 0)	(0 / 0)		
f3f32666cd0f38b0c9a1ef83f720	repz repz es data16 int 0xf (6 / 28)	int 0xf (6 / 8)	int 0xf (6 / 7)	int 0x0F (6 / 8)		
2ef066f0480f3a2904b7	cs lock data16 lock rex.W (bad) (8 / 33)	(0 / 0)	(0 / 0)	(0 / 0)		
67470f3875ae022de4a1517e90b4cb	addr32 rex.RXB (bad) (5 / 22)	(0 / 0)	(0 / 0)	(0 / 0)		
3664970f7a50db978a650a8288bee1	ss fs xchg edi,eax (3 / 19)	xchg eax, edi (3 / 14)	xchg edi, eax (3 / 13)	xchg edi, eax (3 / 13)		
f226f236458a49fb848d28	repnz es repnz mov r9b,BYTE PTR ss:[r9-0x5] (8 / 44)	mov r9b, byte ptr ss:[r9 - 5] (8 / 30)	mov r9b, byte ptr [r9-0x5] (8 / 26)	mov r9b, ss:[r9-0x05] (8 / 21)		

Code vs. Data

- Some compilers tightly interweave data (e.g., bytes, values) within code
 - Imprecision can create trickle-down errors in instruction recovery!
 - Example from OpenSSL (one of the most popular HTTPS libraries):

<pre>popfq // original</pre>	<pre>popfq // disassembled</pre>
.byte 0xf3,0xc3	repz retq
<pre>.size AES_cbc_encrypt</pre>	nop
.align 64	nop
.LAES_Te	(bad)
.long 0xa56363c6	<pre>movslq -0x5b(%rbx),%esp</pre>

Questions?

Pillars of RE: Control Flow Recovery

Control Flow

- What is it?
 - ???

Control Flow

What is it?

 How execution flows from one application component to others

Why do we care????

Control Flow

What is it?

 How execution flows from one application component to others

Why do we care?

 Want to understand the entire program!

- Direct Edges
 - Jump/call a function

jmp 0x4001AB3

Target is pre-set **statically**

- Direct Edges
 - Jump/call a function

Indirect Edges

- Transfer to a register
- Function pointers
- Switch-case tables

- Direct Edges
 - Jump/call a function

Indirect Edges

- Transfer to a register
- Function pointers
- Switch-case tables

"Pseudo" Edges

Post-call returns

- Direct Edges
 - Jump/call a function

Indirect Edges

- Transfer to a register
- Function pointers
- Switch-case tables

"Pseudo" Edges

Post-call returns

Tail Calls

Call at function's end

Symbol Stripping

 Debugging symbols: maps instructions in the compiled binary program to their corresponding variable, function, or line in the source code.

```
int addition(int num1, int num2){
    return num1+num2;
}
int main(){
    int var1, var2;
    printf("Enter number 1: ");
    scanf("%d",&var1);
    printf("Enter number 2: ");
    scanf("%d",&var2);
    int res = addition(var1, var2);
    printf ("Output: %d", res);
    return 0;
}
```

Symbol Stripping

- Debugging symbols: maps instructions in the compiled binary program to their corresponding variable, function, or line in the source code.
 - Makes **RE easy** if you have symbols...

<pre>int main(){ int var1, var2; printf("Enter number 1: "); scanf("%d",&var1); printf("Enter number 2: "); scanf("%d",&var2);</pre>
<pre>int res = addition(var1, var2); printf ("Output: %d", res); return 0;</pre>

\$ objdumpsyms	example	grep .text	
00000000000001090	lF .text	000000000000000000000000000000000000000	deregister_tm_clones
000000000000010c0	lF .text	00000000000000000	register_tm_clones
00000000000001100	lF .text	00000000000000000	do_global_dtors_aux
0000000000001140	lF .text	00000000000000000	frame_dummy
0000000000001150	gF .text	0000000000000018	addition
00000000000001060	gF .text	0000000000000026	_start
0000000000001170	gF .text	000000000000085	main

Symbol Stripping

- Debugging symbols: maps instructions in the compiled binary program to their corresponding variable, function, or line in the source code.
 - Makes RE easy if you have symbols... but often stripped from the binary!

```
int addition(int num1, int num2){
    return num1+num2;
}
int main(){
    int var1, var2;
    printf("Enter number 1: ");
    scanf("%d",&var1);
    printf("Enter number 2: ");
    scanf("%d",&var2);
    int res = addition(var1, var2);
    printf ("Output: %d", res);
    return 0;
}
```


- **Obfuscation:** techniques designed to make third-party analysis **difficult**
 - ???

- **Obfuscation:** techniques designed to make third-party analysis **difficult**
 - Developers want to keep their intellectual property secret to just themselves!

- Obfuscation: techniques designed to make third-party analysis difficult
 - Developers want to keep their intellectual property secret to just themselves!
 - **Example: opaque predicates** → introduces "fake" control-flow that is confusing!

• **Obfuscation:** techniques designed to make third-party analysis **difficult**

- Developers want to keep their intellectual property secret to just themselves!
- Example: control-flow flattening → removes any recognizable flow ordering

Questions?

Pillars of RE: Structure Recovery

Program Structure

- Why do we care?
 - ???

Program Structure

Why do we care?

 Know how the code's parts work together

dec edi
push byte +0x1e
mov bh,0xb5
or al,0x12
push byte +0x4
jmp dword 0xb12b:0x7ba58ea0
mov cl,0x14

Program Structure

Why do we care?

 Know how the code's parts work together

Examples:

- Basic Blocks
- Loop Types
- Recursion
- Jump Tables
- Functions

Structure Recovery

- Largely **heuristic**-based
 - Construct-specific rules

Structure Recovery

- Largely **heuristic**-based
 - Construct-specific rules
- Basic Blocks:
 - Start:
 - Target of a jmp
 - Target of a call
 - Target of a ret
 - End:
 - Ends in a jmp
 - Ends in a call
 - Ends in a ret

Structure Recovery

- Largely **heuristic**-based
 - Construct-specific rules

Functions:

- Start:
 - Target of a call
 - Target of a tail call
 - A known prologue
 - A dispatch table entry
- **End:**
 - Location of a ret
 - Location of a tail call
 - A known epilogue

switch(choice) {
 case 0 :
 result = add(first, second);
 break;
 case 1 :
 result = sub(first, second);
 break;
 case 2 :
 result = mult(first, second);
 break;
 case 3 :
 result = divide(first, second);
 break;
}

C-level Switch Table

Questions?

RE Tasks: Decompilation

Decompilation

Goal: ???

Decompilation

• **Goal:** obtain **semantically-equivalent** source code from a compiled binary

Decompilation

- **Goal:** obtain **semantically-equivalent** source code from a compiled binary
 - In practice: really difficult with little guarantee of success (compilable or correct code)

Try it yourself!

```
112d: push %ebp
112e: mov %esp,%ebp // mov src,dst
1131: mov %edi, $0x14(%ebp)
1134: mov $0x0,$0x4(%ebp)
113b: cmp $0x1,$0x14(%ebp)
113f: jne 1148
1141: add 0x1337, $0x4(%ebp)
1148: mov $0x0,%eax
114d: pop %ebp
114e: ret
114f: nop
```


Try it yourself!

```
112d: push %ebp
112e: mov %esp,%ebp // mov src,dst
1131: mov %edi, $0x14(%ebp)
1134: mov $0x0,$0x4(%ebp)
113b: cmp $0x1,$0x14(%ebp)
113f: jne 1148
1141: add 0x1337,$0x4(%ebp)
1148: mov $0x0,%eax
114d: pop %ebp
114e: ret
114f: nop
```



```
Variables:
ebp-0x4: foo
ebp-0x14: bar
```

https://rev.fish/files/bar2022_keynote.pdf

Popular Decompilers

- Many decompilers available today (both commercial and open-source)
 - Can lift binaries to **different languages** (e.g., C/C++, LLVM IR, custom IRs, etc.)

Different Decompilers = Different Outputs

Example: HelloWorld (ARM version) on DogBolt.org

angr	BinaryNinja	Ghidra	Hex-Rays	
9.2.38	3.3.3996 (e34a955e)	10.2.2 (9813cde2)	8.2.0.221215	
1 int _init()	<pre>1 int32_t _init(int32_t arg1, int32_t arg2)</pre>	1 #include "out.h"	1 - /* This file was generated by the Hex-Rays decompile	
2×1 3 unsigned int v0: // [bn=0x8]	2 t	2	2 Copyright (c) 2007-2021 Hex-Rays <info@nex-rays.c< td=""></info@nex-rays.c<>	
4 unsigned int v1; // [bp-0x4]	4 }	4	4 Detected compiler: GNU C++	
5 unsigned int v2; // lr	5	<pre>5 int _init(EVP_PKEY_CTX *ctx)</pre>	5 */	
6 unsigned int v3; // r3	6 int32_t sub_10308()	6	6	
7	7 - {	7 - {	7 #include <defs.h></defs.h>	
8 $v1 = v2;$	8 /* jump -> 0 */	8 int iVar1;	8	
9 $V0 = V3;$	9 }	10 iVan1 anll work fr():	9 #include <stdarg.n></stdarg.n>	
11 3	11 - void libe start main(11 return iVar1:	10	
12	12 int32 t (* main)(int32 t arac, char** aray, char	12 3	12 //	
13 int _start(unsigned int a0)	13 char** ubp_av, void (* init)(), void (* fini)(),	13	13 // Function declarations	
14 - {	14 void* stack_end)noreturn	14	14	
<pre>15 unsigned int v0; // [bp-0x8]</pre>	15 - {	15	<pre>15 int init_proc();</pre>	
<pre>16 unsigned int v1; // [bp-0x4]</pre>	16 /* tailcall */	<pre>16 voidlibc_start_main(void)</pre>	16 void sub_10308();	
<pre>17 unsigned int v2; // [bp+0x0]</pre>	<pre>17 returnlibc_start_main(main, argc, ubp_av, ini</pre>	17	<pre>17 // intfastcall _libc_start_main(int (fastcall *)</pre>	
18	18 }	18 - {	18 // int getchar(void);	
$\frac{19}{20} \forall 2 = \text{stack} \text{base} + 4;$	19 30 int22 t astabar()	19libc_start_main();	19 // int puts(const char *s);	
20 VI = d0;	20 ints2_t getchar()	20 return;	20 // int _gmon_start(void); weak	
22 libc start main(): $/*$ do not return */	21 1 22 /* tailcall */	22	22 void porturn start(void (*al)(void) int a2 int v	
23 }	23 return getchgr():	23	23 int call weak fn():	
24	24 }	24	24 char *deregister_tm_clones();	
25 int sub_10390()	25	25 // WARNING: Unknown calling convention yet parame	<pre>25int64 register_tm_clones();</pre>	
26 - {	<pre>26 int32_t puts(char const* str)</pre>	26	<pre>26 char *_do_global_dtors_aux();</pre>	
<pre>27 abort(); /* do not return */</pre>	27 - {	27 int getchar(void)	27 intcdecl main(int argc, const char **argv, const	
28 }	28 /* tailcall */	28	<pre>28 void term_proc();</pre>	
29	29 return puts(str);	29 - {	29	
30 int call_weak_fn()	30 }	30 int iVarl;	30 //	
31 1 22 notum:	$\frac{31}{32}$ int $\frac{32}{12}$ t amon stant ()	$\frac{31}{22}$ $\frac{1}{2}$ $$	31 // Data declarations	
33 amon start ():	33 + {	33 return iVar1:	33 char has start: // weak	
34 return:	34 /* tailcall */	34 }	34 // extern _UNKNOWN _ amon_start _; weak	
35 }	<pre>35 returngmon_start();</pre>	35	35	
36	36 }	36	36	
<pre>37 int dereaister_tm_clones()</pre>	37	37	37 // (000102FC)	

Challenges to Binary Decompilation

Source Code Optimizations Binary Formats Obfuscations

Accurate Decompilation \rightarrow

Supplemental Content: Domain-specific RE

 Dr. Zhiqiang Lin's keynote at BAR'23

Lots of cool bugs!

- Tesla Infotainment
- "Super Apps"
- And more!

Check it out!

ERSITY OF UTAH

Motivations 0000	QtRE 00000000	FirmXRay 0000000	AutoMap 0000000	Takeaway 000	References O
Application:	Egg Hunt i	n Tesla Infota	ainment		
CUMATE CONTROLS		Tesla Back to the Future Easter Egg December 1, 2020 To activate this easter egg the vehicle needs to be at exactly 121 miles (or 121 km) of range. Then simply touch the ba Model of the simply touch the ba Tesla: Mario Kart's Rainbow Road / SNL Easter Egg December 1, 2020 The on screen animation of your car's environment will change. The computer		security concerns? natically identify the e-based fuzzing (em) lidation analysis on (m? Ilation Qt binaries
Easter Easter BAR 2023 Keynote #1 - Unlo Star Symposium 2.87K subscribers	vision generated road eggs in Tesla veh cking the Potential of cribe	icles of Domain Aware Binary	Analysis in the Era of IoT 凸 1	n ► cc t	Clip , Save

Next time on CS 4440...

Attacking Large Language Models (guest lecture)

