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Week 12: Lecture A 
Software Reverse Engineering

Tuesday, November 12, 2024
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Announcements

￭ Project 3 grades are now available on Canvas

￭ Statistics:
￭ Average score: 97%
￭ Last year’s avg: 90%

￭ Fantastic job!
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Announcements

￭ Project 3 grades are now available on Canvas

￭ Think we made an error? Request a regrade!
￭ Valid regrade requests:

￭ You have verified your solution is correct
(i.e., we made an error in grading)
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Project 3 Regrade Requests (see Piazza pinned link):
Submit by 11:59 PM on Monday 11/18 via Google Form
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Announcements

￭ Project 4: NetSec released
￭ Deadline: Thursday, December 5th by 11:59PM
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Announcements

￭ I’ll be out of town rest of week 💍
￭ No office hours on Thursday   

￭ Guest lecturer this Thursday
￭ Dr. Guanhong Tao: attacking LLMs
￭ Jailbreaking and backdoor attacks

￭ No PollEverywhere… but show up!
￭ Final exam is still comprehensive 😉

6

https://tao.aisec.world/
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Announcements
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See Discord for 
meeting info!

utahsec.cs.utah.edu
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Questions?

8



Stefan Nagy

Last time on CS 4440…
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Security in Practice:
Tor—The Onion Router
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Anonymity Primitive: Onion Routing

￭ Each message is ???
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Anonymity Primitive: Onion Routing

￭ Each message is repeatedly encrypted
￭ Analogy: multiple layers of an onion

￭ Sent through multiple network nodes 
￭ These nodes are called onion routers
￭ Each node removes an encryption layer to 

uncover the message routing instructions
￭ Process repeats when sent to next router

￭ Anonymity: prevents ???

11



Stefan Nagy

Anonymity Primitive: Onion Routing

￭ Each message is repeatedly encrypted
￭ Analogy: multiple layers of an onion

￭ Sent through multiple network nodes 
￭ These nodes are called onion routers
￭ Each node removes an encryption layer to 

uncover the message routing instructions
￭ Process repeats when sent to next router

￭ Anonymity: prevents any intermediary 
nodes from knowing message origin, 
destination, and contents
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Onion Routing Visualized
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Tor: The Onion Router

￭ Tor: a distributed overlay network
￭ Anonymizes TCP-based applications

￭ Secure shell
￭ Web browsing
￭ Instant messaging 
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Tor: The Onion Router

￭ Tor: a distributed overlay network
￭ Anonymizes TCP-based applications

￭ Secure shell
￭ Web browsing
￭ Instant messaging 

￭ Clients choose ???
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Tor: The Onion Router

￭ Tor: a distributed overlay network
￭ Anonymizes TCP-based applications

￭ Secure shell
￭ Web browsing
￭ Instant messaging 

￭ Clients choose the circuit paths
￭ Messages unwrapped at each onion 

router using a symmetric key

￭ Onion routers only know ???
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Tor: The Onion Router

￭ Tor: a distributed overlay network
￭ Anonymizes TCP-based applications

￭ Secure shell
￭ Web browsing
￭ Instant messaging 

￭ Clients choose the circuit paths
￭ Messages unwrapped at each onion 

router using a symmetric key

￭ Onion routers only know their 
successor or predecessor nodes
￭ They don’t know of any other nodes
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How Tor Works
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Attacking Tor

￭ Possible attacks against Tor?

19



Stefan Nagy

Attacking Tor

￭ Possible attacks against Tor?

￭ Leak DNS requests when they aren’t transmitted via Tor

￭ Perform volume/timing analysis to characterize behavior

￭ Add malicious nodes to intercept unencrypted exit traffic
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Attacking Tor

￭ Possible attacks against Tor?

￭ Leak DNS requests when they aren’t transmitted via Tor
￭ Defense: ???

￭ Perform volume/timing analysis to characterize behavior
￭ Defense: ???

￭ Add malicious nodes to intercept unencrypted exit traffic
￭ Defense: ???
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Attacking Tor

￭ Possible attacks against Tor?

￭ Leak DNS requests when they aren’t transmitted via Tor
￭ Defense: enforce all DNS requests through Tor encryption

￭ Perform volume/timing analysis to characterize behavior
￭ Defense: inject noisy data to throw off analysis heuristics

￭ Add malicious nodes to intercept unencrypted exit traffic
￭ Defense: never use unencrypted protocols—use HTTPS
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Who uses Tor?
￭ ???
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Who uses Tor?
￭ Normal People

￭ Privacy-conscious folks

￭ Intelligence Agencies 
￭ Secret agents in the field

￭ Law Enforcement 
￭ Online “undercover” operations

￭ Journalists and Bloggers
￭ Citizen journalists inspiring social change

￭ Activists and Whistleblowers 
￭ Raising their voice and avoiding persecution

￭ White-hat and Black-hat Hackers
￭ And everyone in between!
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Who uses Tor?
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What services get hidden?
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Positive Tor Use Cases
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Questions?
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Recap: Project 4 Overview

￭ Focuses on network packet analysis
￭ Leveraging data contained within packets to 

achieve network defenses and attacks

￭ Scenario: helping a fictional university 
secure its enterprise campus network
￭ Detect and characterizing likely attacks
￭ Demonstrate how info can be intercepted
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￭ We provide a series of network packet traces (pcaps)
￭ Your job: write scripts to analyze them!

￭ Part 1: detecting network attacks
￭ Password cracking, port scanning, SYN floods

￭ Part 2: stealing sensitive information
￭ Unencrypted credentials, browsing history
￭ Extra credit: stealing transfered files

30

Recap: Project 4 Overview
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￭ We provide a series of network packet traces (pcaps)
￭ Your job: write scripts to analyze them!

￭ Part 1: detecting network attacks
￭ Password cracking, port scanning, SYN floods

￭ Part 2: stealing sensitive information
￭ Unencrypted credentials, browsing history
￭ Extra credit: stealing transfered files

￭ You will use Python 3’s Scapy library
￭ A huge and powerful packet analysis API… 
￭ But we’ll really only use a few parts of it

31

Recap: Project 4 Overview
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Recap: Scapy Fundamentals

￭ Python API for programmatic 
packet capture and analysis
￭ Think of it as “Wireshark in API form”

￭ We provide skeleton code template
￭ Sets-up the packet parsing workflow
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Recap: Scapy Fundamentals

￭ Python API for programmatic 
packet capture and analysis
￭ Think of it as “Wireshark in API form”

￭ We provide skeleton code template
￭ Sets-up the packet parsing workflow
￭ Your job: finish implementing the 

function parsePacket()
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Recap: Scapy Fundamentals

￭ Python API for programmatic 
packet capture and analysis
￭ Think of it as “Wireshark in API form”

￭ We provide skeleton code template
￭ Sets-up the packet parsing workflow
￭ Your job: finish implementing the 

function parsePacket()

￭ You may also add additional code
￭ E.g., global variables or data structures
￭ E.g., printing functionality in main()
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Recap: Scapy Fundamentals

￭ Only a few things you’ll need…
￭ Get a packet’s TCP flags:

￭ Get a packet’s destination port

￭ Get a packet’s source IP address

￭ Get a packet’s TCP payload:

35

packet[“IP”].src

packet[“TCP”].dport

bytes(packet["TCP"].payload).decode('utf-8','replace')

packet[“TCP”].flags
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Recap: Suggested Workflow

￭ Before you start writing a Scapy script, 
inspect the trace manually via Wireshark
￭ Super helpful for viewing a packet’s contents
￭ Use this to bootstrap your script’s approach! 
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Recap: Suggested Workflow

￭ Before you start writing a Scapy script, 
inspect the trace manually via Wireshark
￭ Super helpful for viewing a packet’s contents
￭ Use this to bootstrap your script’s approach! 

￭ For each target, answer the following:
￭ What packet fields matter?
￭ How to extract relevant data?
￭ How to store and process this data?
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Recap: Suggested Workflow

￭ Before you start writing a Scapy script, 
inspect the trace manually via Wireshark
￭ Super helpful for viewing a packet’s contents
￭ Use this to bootstrap your script’s approach! 

￭ For each target, answer the following:
￭ What packet fields matter?
￭ How to extract relevant data?
￭ How to store and process this data?

￭ Finalize your high-level game plan first!
￭ Then start developing your solution scripts!
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Questions?
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This time on CS 4440…

40

Binary Reverse Engineering
Instruction Recovery
Control Flow Analysis
Structure Recovery

RE Challenges
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How Software is Built

￭ clang hello.c -o hello 
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How Software is Built

￭ clang hello.c -o hello 

42

Compiler
Source File

Executable
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How Software is Built
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How Software is Built
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How Software is Built
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How Software is Built
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How Software is Built

47



Stefan Nagy

How Software is Built

48

Today’s 
Focus
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Closed-source Software

￭ It’s everywhere!
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Closed-source Software

￭ It’s everywhere!
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Freely-distributed proprietary software

Commercialized applications and libraries

Legacy software whose source code is lost
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Auditing Open- versus Closed-source Code

52

▪ Publicly-available source codebase
▪ Achieves security by transparency

▪ Semantic richness facilitates 
high-performance, effective vetting

Open Source:
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Auditing Open- versus Closed-source Code

53

▪ Publicly-available source codebase
▪ Achieves security by transparency

▪ Semantic richness facilitates 
high-performance, effective vetting

Open Source:
▪ Distributed as a precompiled binary
▪ Opaque to everyone but its developer

▪ Upwards of 10x slower security vetting
▪ Forced to rely on crude techniques

Closed Source:
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Auditing Open- versus Closed-source Code

54

▪ Global market size over $240 billion
▪ 85% contains critical vulnerabilities
▪ 89% of the most exploited software

▪ Distributed as a precompiled binary
▪ Opaque to everyone but its developer

▪ Upwards of 10x slower security vetting 
▪ Forced to rely on crude techniques

Closed Source:
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Reverse Engineering (RE)

￭ What is RE?

55

“A process or method through which one 
attempts to understand through deductive 
reasoning how a previously made device, 
process, system, or piece of software 
accomplishes a task with very little (if any) 
insight into exactly how it does so.”
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Why do we care about RE?

￭ Discovering bugs

￭ Retrofitting fixes

￭ Malware analysis

￭ Right to repair!
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RE Tasks

￭ Disassembly
￭ ??? 
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RE Tasks

￭ Disassembly
￭ Machine code to human 

readable assembly

￭ Decompilation
￭ ???
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RE Tasks

￭ Disassembly
￭ Machine code to human 

readable assembly

￭ Decompilation
￭ Machine code to human 

readable source code

￭ Rewriting
￭ ??? 
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RE Tasks

￭ Disassembly
￭ Machine code to human 

readable assembly

￭ Decompilation
￭ Machine code to human 

readable source code

￭ Rewriting
￭ Add more functionality 

and rebuild executable 
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Three Pillars of RE

1. Instruction Recovery 
￭ Decode bytes to instructions
￭ Disambiguate code from data

2. Control Flow Recovery 
￭ Intra-procedural execution flow
￭ Inter-procedural execution flow

3. Program Structure Recovery 
￭ Identify program basic blocks
￭ Higher-level constructs (e.g., loops)
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Questions?
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Pillars of RE: 
Instruction Recovery
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Instructions

￭ What are they?
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Recap: The CPU

￭ State modified by assembly instructions
￭ ADD, SUB, XOR, CMP, CALL, JMP, RET
￭ And many more!

￭ Assembly instruction syntaxes
￭ AT&T = Instruction Source Destination
￭ Intel = Instruction Destination Source 
￭ Example: MOV SRC, DST versus MOV DST, SRC
￭ This lecture: AT&T syntax
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Instructions

￭ What are they?
￭ Operations that modify CPU state

￭ Source = ???

￭ x86 asm = ???
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Instructions

￭ What are they?
￭ Operations that modify CPU state

￭ Source = high-level instructions
￭ Human-readable

￭ x86 asm = low-level instructions
￭ Somewhat human-readable

68

Key to inferring what 
the program is doing
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Recovering Instructions

￭ Goal: translate bytes into logical instructions
￭ Called instruction decoding
￭ Analogous to what CPU does
￭ General output: disassembly

69

Read bytes from input executable

Group bytes Decode instructions
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Instruction Recovery Techniques

￭ Linear Sweep
￭ Start decoding at binary entry
￭ Attempt to decode all bytes
￭ Stop at end of .TEXT section

70

Intuition: compilers lay code 
sequentially for compactness

Challenge: data within code
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Instruction Recovery Techniques

￭ Linear Sweep
￭ Start decoding at binary entry
￭ Attempt to decode all bytes
￭ Stop at end of .TEXT section

￭ Recursive Descent
￭ Follow all control-flow transfers
￭ jmp 0x100 → start decoding 

instructions at address 0x100
￭ Stop when you’ve covered all 

possible control-flow paths

71

Intuition: compilers lay code 
sequentially for compactness

Challenge: data within code

Intuition: following the logical 
flow of execution reveals a lot

Challenge: indirect branches
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Instruction Recovery Techniques

￭ Linear Sweep
￭ Start decoding at binary entry
￭ Attempt to decode all bytes
￭ Stop at end of .TEXT section

￭ Recursive Descent
￭ Follow all control-flow transfers
￭ jmp 0x100 → start decoding 

instructions at address 0x100
￭ Stop when you’ve covered all 

possible control-flow paths

72

Intuition: compilers lay code 
sequentially for compactness

Challenge: data within code

Intuition: following the logical 
flow of execution reveals a lot

Challenge: indirect branches

Most modern RE adopts a combined 
approach in addition to heuristics
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CISC Architectures

￭ Variable-length instructions
￭ E.g., x86-32, x86-64

￭ Almost any byte sequence 
can be a valid instruction!

￭ Being just one byte off can 
totally mess up decoding!
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CISC Architectures

￭ Example of byte offsets and possible decodings:

74

js     0xffffffffec840f58

0x0F 0x88 0x52 0x0F 0x84 0xEC
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CISC Architectures

￭ Example of byte offsets and possible decodings:

75

mov    BYTE PTR [rdx+0xf],dl
test   ah,ch

0x0F 0x88 0x52 0x0F 0x84 0xEC
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CISC Architectures

￭ Example of byte offsets and possible decodings:

76

0x0F 0x88 0x52 0x0F 0x84 0xEC

add    eax,0x40080f20
in     al,dx
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Instruction Decoder Bugs

￭ Results from Trail of Bits’ Mishegos fuzzer:
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Code vs. Data

￭ Some compilers tightly interweave data (e.g., bytes, values) within code 
￭ Imprecision can create trickle-down errors in instruction recovery!
￭ Example from OpenSSL (one of the most popular HTTPS libraries):

78

popfq // original
.byte 0xf3,0xc3
.size AES_cbc_encrypt
.align 64
.LAES_Te
.long 0xa56363c6

popfq // disassembled
repz retq
nop
nop
(bad)
movslq -0x5b(%rbx),%esp
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Questions?
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Pillars of RE: 
Control Flow Recovery
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Control Flow

￭ What is it?
￭ ??? 
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Control Flow

￭ What is it?
￭ How execution flows 

from one application 
component to others

￭ Why do we care?
￭ ??? 
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Control Flow

￭ What is it?
￭ How execution flows 

from one application 
component to others

￭ Why do we care?
￭ Want to understand 

the entire program!
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Recovering Control Flow

￭ Direct Edges
￭ Jump/call a function

84

jmp 0x4001AB3 Target is pre-set statically
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Recovering Control Flow

￭ Direct Edges
￭ Jump/call a function

￭ Indirect Edges
￭ Transfer to a register
￭ Function pointers
￭ Switch-case tables

85

Target is pre-set statically

Target found at runtime

jmp 0x4001AB3

call %eax; where?
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Recovering Control Flow

￭ Direct Edges
￭ Jump/call a function

￭ Indirect Edges
￭ Transfer to a register
￭ Function pointers
￭ Switch-case tables

￭ “Pseudo” Edges
￭ Post-call returns

86

Target is pre-set statically

Target found at runtime

Necessary to recover all paths

jmp 0x4001AB3

call %eax; where?

ret; goes where?
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Recovering Control Flow

￭ Direct Edges
￭ Jump/call a function

￭ Indirect Edges
￭ Transfer to a register
￭ Function pointers
￭ Switch-case tables

￭ “Pseudo” Edges
￭ Post-call returns

￭ Tail Calls
￭ Call at function’s end

87

Target is pre-set statically

Target found at runtime

Necessary to recover all paths

Expressed as jumps, not calls

jmp 0x4001AB3

call %eax; where?

ret; goes where?

jmp &foo; call?
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Symbol Stripping

￭ Debugging symbols: maps instructions in the compiled binary program to 
their corresponding variable, function, or line in the source code.

88

int addition(int num1, int num2){
     return num1+num2;
}

int main(){
     int var1, var2;
     printf("Enter number 1: ");
     scanf("%d",&var1);
     printf("Enter number 2: ");
     scanf("%d",&var2);
     int res = addition(var1, var2);
     printf ("Output: %d", res);
     return 0;
}
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Symbol Stripping

￭ Debugging symbols: maps instructions in the compiled binary program to 
their corresponding variable, function, or line in the source code.
￭ Makes RE easy if you have symbols… 

89

int addition(int num1, int num2){
     return num1+num2;
}

int main(){
     int var1, var2;
     printf("Enter number 1: ");
     scanf("%d",&var1);
     printf("Enter number 2: ");
     scanf("%d",&var2);
     int res = addition(var1, var2);
     printf ("Output: %d", res);
     return 0;
}

$ objdump --syms example | grep .text
0000000000001090 l F .text 0000000000000000 deregister_tm_clones
00000000000010c0 l F .text 0000000000000000 register_tm_clones
0000000000001100 l F .text 0000000000000000 __do_global_dtors_aux
0000000000001140 l F .text 0000000000000000 frame_dummy
0000000000001150 g F .text 0000000000000018 addition
0000000000001060 g F .text 0000000000000026 _start
0000000000001170 g F .text 0000000000000085 main
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Symbol Stripping

￭ Debugging symbols: maps instructions in the compiled binary program to 
their corresponding variable, function, or line in the source code.
￭ Makes RE easy if you have symbols… but often stripped from the binary!

90

int addition(int num1, int num2){
     return num1+num2;
}

int main(){
     int var1, var2;
     printf("Enter number 1: ");
     scanf("%d",&var1);
     printf("Enter number 2: ");
     scanf("%d",&var2);
     int res = addition(var1, var2);
     printf ("Output: %d", res);
     return 0;
}

$ objdump --syms example

example:     file format elf64-x86-64

SYMBOL TABLE:
no symbols



Stefan Nagy

Obfuscation

￭ Obfuscation: techniques designed to make third-party analysis difficult
￭ ??? 
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Obfuscation

￭ Obfuscation: techniques designed to make third-party analysis difficult
￭ Developers want to keep their intellectual property secret to just themselves!

92



Stefan Nagy

Obfuscation

￭ Obfuscation: techniques designed to make third-party analysis difficult
￭ Developers want to keep their intellectual property secret to just themselves!
￭ Example: opaque predicates → introduces “fake” control-flow that is confusing!
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Obfuscation

￭ Obfuscation: techniques designed to make third-party analysis difficult
￭ Developers want to keep their intellectual property secret to just themselves!
￭ Example: control-flow flattening → removes any recognizable flow ordering
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Questions?
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Pillars of RE: 
Structure Recovery

96
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Program Structure

￭ Why do we care?
￭ ??? 
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Program Structure

￭ Why do we care?
￭ Know how the code’s 

parts work together
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Program Structure

￭ Why do we care?
￭ Know how the code’s 

parts work together

￭ Examples:
￭ Basic Blocks
￭ Loop Types
￭ Recursion
￭ Jump Tables
￭ Functions

99
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Structure Recovery

￭ Largely heuristic-based
￭ Construct-specific rules
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Structure Recovery

￭ Largely heuristic-based
￭ Construct-specific rules

￭ Basic Blocks:
￭ Start:  

￭ Target of a jmp
￭ Target of a call
￭ Target of a ret

￭ End: 
￭ Ends in a jmp
￭ Ends in a call
￭ Ends in a ret
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Structure Recovery

￭ Largely heuristic-based
￭ Construct-specific rules

￭ Functions: 
￭ Start: 

￭ Target of a call 
￭ Target of a tail call
￭ A known prologue
￭ A dispatch table entry

￭ End:  
￭ Location of a ret 
￭ Location of a tail call
￭ A known epilogue

102

Prologue

Epilogue

C-level Switch Table
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Questions?
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RE Tasks: Decompilation

104
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Decompilation

￭ Goal: ??? 
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Decompilation

￭ Goal: obtain semantically-equivalent source code from a compiled binary

106

Control 
Flow 

Analysis

Data Flow 
analysis

Structure 
Recovery

Structure 
Analysis

C Code 
Generation

Instruction 
Recovery
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Decompilation

￭ Goal: obtain semantically-equivalent source code from a compiled binary
￭ In practice: really difficult with little guarantee of success (compilable or correct code)

107

Control 
Flow 

Analysis

Data Flow 
analysis

Structure 
Recovery

Structure 
Analysis

C Code 
Generation

Instruction 
Recovery

Will it re-compile?
Will it run correctly?

Is it human readable?



Stefan Nagy

Try it yourself!

108

112d: push %ebp
112e: mov %esp,%ebp   // mov src,dst
1131: mov %edi,$0x14(%ebp)
1134: mov $0x0,$0x4(%ebp)
113b: cmp $0x1,$0x14(%ebp)
113f: jne 1148
1141: add 0x1337,$0x4(%ebp)
1148: mov $0x0,%eax
114d: pop %ebp
114e: ret
114f: nop

https://rev.fish/files/bar2022_keynote.pdf
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Try it yourself!

109

112d: push %ebp
112e: mov %esp,%ebp   // mov src,dst
1131: mov %edi,$0x14(%ebp)
1134: mov $0x0,$0x4(%ebp)
113b: cmp $0x1,$0x14(%ebp)
113f: jne 1148
1141: add 0x1337,$0x4(%ebp)
1148: mov $0x0,%eax
114d: pop %ebp
114e: ret
114f: nop

https://rev.fish/files/bar2022_keynote.pdf

112d

1148

1141

foo = 0; // 1134
if (bar == 1) { // 113b

// 1141
foo = foo + 0x1337;

}
return 0; // 1148

Variables:
ebp-0x4: foo
ebp-0x14: bar
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Popular Decompilers 

￭ Many decompilers available today (both commercial and open-source)
￭ Can lift binaries to different languages (e.g., C/C++, LLVM IR, custom IRs, etc.)

110

angr IDA Pro Binary Ninja Ghidra
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Different Decompilers = Different Outputs

￭ Example: HelloWorld (ARM version) on DogBolt.org 
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Challenges to Binary Decompilation

114

Accurate Decompilation →

Source Code
Optimizations

Binary Formats
Obfuscations

↓



Stefan Nagy

Supplemental Content: Domain-specific RE

￭ Dr. Zhiqiang Lin’s 
keynote at BAR’23

￭ Lots of cool bugs!
￭ Tesla Infotainment
￭ “Super Apps”
￭ And more!

￭ Check it out!
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Next time on CS 4440…

125

Attacking Large Language Models (guest lecture)


