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* Background on Tensor decomposition

 Our method, POND (Probabilistic Neural Kernel Tensor
Decompostion)

* Comparison of POND to other methods for tensor completion

* Application to Click-Through-Rate (CTR) prediction



THEU

Tensor Decomposition UNIVERSITY
OF UTAH

* Tensors are an important tool in studying multiway data

* Tensor decomposition estimates a set of latent factors that represent
the nodes in each mode of the tensor

* Numerous applications such as in recommendation systems and CTR
prediction

* Difficulties include sparsity of data, which makes it easy for models to
overfit
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e Consider a tensor (user, item, shopping site, time)
* Four modes

 For each of the nodes in the modes associate a latent factor vector
(i.e. a vector for each item, vector for a person)

* For each of the modes, vectors can be made into a matrix
 Rank is dimension of the vectors

e Goal is to learn the set of factor matrices that can be used to
accurately reconstruct the tensor

U= {Uut,. .. UK}



THEU

Drawbacks of Current Methods UNTVERS [TY
OF UTAH
* CP and Tucker are classical models Yz Yy e
* Rely on multilinear assumptions ] e | e | e
* |Ignores all non-linear interactions v

* Multilayer perceptron models severely overfit due to data sparsity
e Convolution neural networks (CostCo) achieve better performance

* Many models do not include uncertainty formation
 Likely more confidence in nodes that are observed often
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* POND uses GP regression with a neural network kernel
* GP: Avoids overfitting but captures non linear relationships

* Neural network kernel: improves expressive power compared to shallow
kernels and can adapt to the complexity of the observed data

* Bayesian Approach: POND uses variational inference to approximate
the posterior distribution of the latent factors

» Useful in quantifying uncertainty of factors and confidence in predictions

* POND is learned using an efficient stochastic algorithm
* Scalable to large datasets



GP Regression

* Non parametric form regression

* The kernel specifies the degree of
correlation between points

* Simple kernels can make oversimplified
assumptions

krpr(Xi,X;) = exp(—,[xi — %)

* Allows for quantification of uncertainty
in predictions
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Gaussian Process regression
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* Input set of observed indices and values

i=(ig,...,ix) Ui
* Each index corresponds to a set of latent factors
_ 1\T K\T1T
Xj = [(uzl) g ey (u’LK) ]
* Assume relationship between set of latent factors and values is given by GP
plus some noise

yi = f(Xi) + €

* Add normal prior over the latent factors
e Captures uncertainty in latent factors
 Latent Factor GP model

* Assume covariance function is given by a neural kernel
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Input index: 1 = (11, 12, 13)
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* Analytically intractable with factor matrices coupled in neural kernel

* Use sparse variational inference
* Introduce approximate posteriors

N (uf|af, diag(vy))

* Minimize the KL divergence of the variational approximation and true
pOSterior KL(Q(u7b7fS)||p(u7b7fS|YS))
* ELBO decomposes over entries

e Can use variations of stochastic gradient descent to optimize with the
reparametrization trick
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 Competing Methods * Datasets

* DFENT * ALOG

* Uses shallow RBF kernel with a different e 200x 100 x 200

ELBO * (user, action, resource)

* Only returns point estimates e 0.66% observed
* CostCo

 Convolutional neural network * MovingMNIST

. IZacgpsvolutional layers followed by dense e 20x 100 x 64 x 64

e GPTF Y * (video, frame, row, column)

* Our method with a shallow RBF kernel * 3% and 10 % observed

P-Tucker

» A probabilistic Tucker decomposition
Two CP decompositions

* CP-ALS

e CP-WOPT

* ExtremeClimate
e 360x768 x1152x 16
* (time, lattitute, longitude, variable)
* 0.0008% Observed
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* ALOG dataset 200 x 100 x 200 0.88] Q(::

e Bayesian methods outperform 3 5 . é
CoSTco

RMSE

Rank (the number of factors)

0.51
e POND is able to learn the

compexity, does not overfit as
much as CostCo

MAE

* On simple data the shallow —+-POND )45
kernel is sufficient —+—GPTF

—$-CoSTco 3 5 7 9

Rank (the number of factors)
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—$-POND
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—+-CoSTco
—4-P-Tucker
—-CP-WOPT
CP-ALS
—4-DFNT
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metric | method/rank 3 5 10 20
CP-ALS 0.7904 £ 0.0022 0.7904 + 0.0022 0.7904 + 0.0022 0.7904 £ 0.0022
CP-WOPT 2.3604 £+ 0.1462 3.3917 £+ 0.1670 6.0489 + 0.2027 1.8680 4+ 0.0179
P-Tucker 0.1038 = 0.0046 0.1496 + 0.0147 0.1731 £ 0.0029 0.2632 £+ 0.0049

RMSE | DENT 0.1412 4+ 0.0014 0.4534 + 0.0042 0.7900 £ 0.0021 0.7900 £ 0.0021
CoSTco 0.0842 + 0.0009 0.0849 + 0.0009 0.0839 £ 0.0009 0.0833 + 0.0011
GPTF 0.0916 £ 0.0016 0.0969 + 0.0015 0.969 £+ 0.0014 0.0938 £ 0.0016
POND 0.0829 + 0.0012 0.0827 +0.0012 0.0837 + 0.0013 0.0847 £+ 0.0012
CP-ALS 0.7369 £+ 0.0026 0.7369 £ 0.0026 0.7369 £+ 0.0025 0.7369 £ 0.0025
CP-WOPT 1.0552 £ 0.0136 1.3527 £ 0.0117 2.4118 + 0.0225 1.3271 £+ 0.0091
P-Tucker 0.0601 £+ 0.0014 0.0831 £ 0.0066 0.1116 £+ 0.0023 0.1961 £ 0.0035

MAE DFNT 0.0974 £+ 0.0019 0.3865 £ 0.0048 0.7369 £+ 0.0023 0.7369 £+ 0.0023
CoSTco 0.0508 £ 0.0006 0.0514 + 0.0006 0.0505 £ 0.0006 0.0498 4+ 0.0006
GPTF 0.0581 £ 0.0012 0.0621 £+ 0.0010 0.0621 £ 0.0014 0.0597 £ 0.0011
POND 0.0491 + 0.0007 0.0492 + 0.0006 0.0495 + 0.0007 0.0497 4+ 0.0007
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* Avazu data available on Kaggle
* Records 10 days of ad impressions and clicks

* Extract 4-mode tensor (banner position, site, app, device)
« 7x2854x4114 x 6061

* Binary tensor, 17.4% clicks

e Use POND with Probit likelihood



Log, 0[ # Observations]

CTR Latent Factors UIETEvgsiTY

_ OF UTAH
6 C 6 ) @
s S S 6 5 i
g E g 44
4 o 4 S 4] o
% Q s .
o ¢ [ ) 8 8 L ,.
2| . % 2 O, Qe
e -3
o = — 5
o + ] g +
0 0.5 1 154 0 0.5 194 0 0.5 - 0 0.5 1
Posterior Variance Posterior Variance Posterior Variance Posterior Variance
Banner Position Site App Device

* As number of observations increases, variance decreases
* Less uncertain about active nodes
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* Plot of mean probability
of a click

 Most ads are not clicked
so more confident about
prediction of O (no
clicks)

Posterior STD

Posterior Mean
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* POND is a scalable Bayesian approach to tensor decomposition

* Gaussian process regression with neural kernel captures nonlinearities
without overfitting

e Captures uncertainty information

* Experiments demonstrates POND’s excellent performance

* Non-linear methods greatly outperform multilinear CP and Tucker
decompositions

* POND performs as well as or better than CostCo but also incorporates
uncertainty information
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Thank You!



