

Probabilistic Neural Kernel Tensor Decomposition

Conor Tillinghast, Shikai Fang, Kai Zhang, Shandian Zhe University of Utah, Temple University

ICDM 2020

Outline

Background on Tensor decomposition

 Our method, POND (Probabilistic Neural Kernel Tensor Decompostion)

Comparison of POND to other methods for tensor completion

Application to Click-Through-Rate (CTR) prediction

Tensor Decomposition

- Tensors are an important tool in studying multiway data
- Tensor decomposition estimates a set of latent factors that represent the nodes in each mode of the tensor

- Numerous applications such as in recommendation systems and CTR prediction
- Difficulties include sparsity of data, which makes it easy for models to overfit

- Consider a tensor (user, item, shopping site, time)
 - Four modes
- For each of the nodes in the modes associate a latent factor vector (i.e. a vector for each item, vector for a person)
 - For each of the modes, vectors can be made into a matrix
 - Rank is dimension of the vectors
- Goal is to learn the set of factor matrices that can be used to accurately reconstruct the tensor

$$\mathcal{U} = \{\mathbf{U}^1, \dots, \mathbf{U}^K\}$$

Drawbacks of Current Methods

- CP and Tucker are classical models
 - Rely on multilinear assumptions
 - Ignores all non-linear interactions

- Multilayer perceptron models severely overfit due to data sparsity
- Convolution neural networks (CostCo) achieve better performance
- Many models do not include uncertainty formation
 - Likely more confidence in nodes that are observed often

POND: Probabilistic Neural Kernel Tensor Decomposition

UNIVERSITY
OF UTAH

- POND uses GP regression with a neural network kernel
 - GP: Avoids overfitting but captures non linear relationships
 - Neural network kernel: improves expressive power compared to shallow kernels and can adapt to the complexity of the observed data
- Bayesian Approach: POND uses variational inference to approximate the posterior distribution of the latent factors
 - Useful in quantifying uncertainty of factors and confidence in predictions
- POND is learned using an efficient stochastic algorithm
 - Scalable to large datasets

GP Regression

- Non parametric form regression
 - The kernel specifies the degree of correlation between points
 - Simple kernels can make oversimplified assumptions

$$k_{\text{RBF}}(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{1}{\eta} \|\mathbf{x}_i - \mathbf{x}_j\|^2)$$

Allows for quantification of uncertainty in predictions

Gaussian Process regression

GP Tensor Decomposition

Input set of observed indices and values

$$\mathbf{i} = (\mathbf{i}_1, \dots, \mathbf{i}_K)$$
 $y_{\mathbf{i}}$

• Each index corresponds to a set of latent factors

$$\mathbf{x_i} = [(\mathbf{u}_{i_1}^1)^\top, \dots, (u_{i_K}^K)^\top]^\top$$

Assume relationship between set of latent factors and values is given by GP plus some noise

$$\mathbf{y_i} = f(\mathbf{x_i}) + \epsilon_i$$

- Add normal prior over the latent factors
 - Captures uncertainty in latent factors
 - Latent Factor GP model
- Assume covariance function is given by a neural kernel

POND: Neural Kernel

Input index: $\mathbf{i} = (\mathbf{i_1}, \mathbf{i_2}, \mathbf{i_3})$

#Modes x Rank x #Channels

POND: Neural Kernel

$$k(\mathbf{x_i}, \mathbf{x_j}) = \exp\left(-\frac{\|\operatorname{vec}(\mathcal{X}_{\mathbf{i}}^{\operatorname{conv3}}) - \operatorname{vec}(\mathcal{X}_{\mathbf{j}}^{\operatorname{conv3}})\|^2}{\eta}\right)$$

Model Estimation

- Analytically intractable with factor matrices coupled in neural kernel
- Use sparse variational inference
 - Introduce approximate posteriors

$$\mathcal{N}ig(\mathbf{u}_t^k|oldsymbol{lpha}_t^k, \mathrm{diag}(\mathbf{v}_t^k)ig)$$

- Minimize the KL divergence of the variational approximation and true posterior $\mathrm{KL}(q(\mathcal{U},\mathbf{b},\mathbf{f}_S)\|p(\mathcal{U},\mathbf{b},\mathbf{f}_S|\mathbf{y}_S))$
- ELBO decomposes over entries
 - Can use variations of stochastic gradient descent to optimize with the reparametrization trick

Tensor Completion Experiments

- Competing Methods
 - DFNT
 - Uses shallow RBF kernel with a different ELBO
 - Only returns point estimates
 - CostCo
 - Convolutional neural network
 - 2 convolutional layers followed by dense layers
 - GPTF
 - Our method with a shallow RBF kernel
 - P-Tucker
 - A probabilistic Tucker decomposition
 - Two CP decompositions
 - CP-ALS
 - CP-WOPT

Datasets

- ALOG
 - 200 x 100 x 200
 - (user, action, resource)
 - 0.66% observed
- MovingMNIST
 - 20 x 100 x 64 x 64
 - (video, frame, row, column)
 - 3% and 10 % observed
- ExtremeClimate
 - 360 × 768 × 1152 x 16
 - (time, lattitute, longitude, variable)
 - 0.0008% Observed

POND on Small Data

- ALOG dataset 200 x 100 x 200
- Bayesian methods outperform CoSTco
- POND is able to learn the compexity, does not overfit as much as CostCo
- On simple data the shallow kernel is sufficient

3% Observed

10% Observed

metric	method/rank	3	5	10	20
RMSE	CP-ALS	0.7904 ± 0.0022	0.7904 ± 0.0022	0.7904 ± 0.0022	0.7904 ± 0.0022
	CP-WOPT	2.3604 ± 0.1462	3.3917 ± 0.1670	6.0489 ± 0.2027	1.8680 ± 0.0179
	P-Tucker	0.1038 ± 0.0046	0.1496 ± 0.0147	0.1731 ± 0.0029	0.2632 ± 0.0049
	DFNT	0.1412 ± 0.0014	0.4534 ± 0.0042	0.7900 ± 0.0021	0.7900 ± 0.0021
	CoSTco	0.0842 ± 0.0009	0.0849 ± 0.0009	0.0839 ± 0.0009	0.0833 ± 0.0011
	GPTF	0.0916 ± 0.0016	0.0969 ± 0.0015	0.969 ± 0.0014	0.0938 ± 0.0016
	POND	0.0829 ± 0.0012	0.0827 ± 0.0012	0.0837 ± 0.0013	0.0847 ± 0.0012
MAE	CP-ALS	0.7369 ± 0.0026	0.7369 ± 0.0026	0.7369 ± 0.0025	0.7369 ± 0.0025
	CP-WOPT	1.0552 ± 0.0136	1.3527 ± 0.0117	2.4118 ± 0.0225	1.3271 ± 0.0091
	P-Tucker	0.0601 ± 0.0014	0.0831 ± 0.0066	0.1116 ± 0.0023	0.1961 ± 0.0035
	DFNT	0.0974 ± 0.0019	0.3865 ± 0.0048	0.7369 ± 0.0023	0.7369 ± 0.0023
	CoSTco	0.0508 ± 0.0006	0.0514 ± 0.0006	0.0505 ± 0.0006	0.0498 ± 0.0006
	GPTF	0.0581 ± 0.0012	0.0621 ± 0.0010	0.0621 ± 0.0014	0.0597 ± 0.0011
	POND	0.0491 ± 0.0007	0.0492 ± 0.0006	0.0495 ± 0.0007	0.0497 ± 0.0007

POND for CTR prediction

- Avazu data available on Kaggle
 - Records 10 days of ad impressions and clicks
 - Extract 4-mode tensor (banner position, site, app, device)
 - 7 x 2854 x 4114 x 6061
 - Binary tensor, 17.4% clicks

Use POND with Probit likelihood

- As number of observations increases, variance decreases
 - Less uncertain about active nodes

CTR Click Probabilities

- Plot of mean probability of a click
- Most ads are not clicked so more confident about prediction of 0 (no clicks)

Summary

- POND is a scalable Bayesian approach to tensor decomposition
 - Gaussian process regression with neural kernel captures nonlinearities without overfitting
 - Captures uncertainty information
- Experiments demonstrates POND's excellent performance
 - Non-linear methods greatly outperform multilinear CP and Tucker decompositions
 - POND performs as well as or better than CostCo but also incorporates uncertainty information

Thank You!