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Tensor Data: Widely Used High-Order Data Structures 

to Represent Interactions of Multiple Objects/Entities
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Tensor Decomposition 

•Traditional methods: Oversimplified multilinear assumptions

•Hard to handle fast streaming data!

(privacy-demanding applications like Snapchat/Instagram,

Data are NOT allowed to be stored/revisited)
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Latent factors at each mode as NN input 
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Tensor Decomposition:  Learning embeddings
and the relationship f (·)
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Predicted Entry as NN output 

Problem: Overfitting Risk
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Latent factors at each mode as NN input 
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Assign spike & slab priors over each NN weights !
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Solution: Build a sparse BNN! Assign spike & slab priors over each NN weights !



Classical ADF: 

• streaming update for BNN weights & involved factors 

• integrating entries one by one via moment matching 

Online moment-match for Streaming inference
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Closed form 

Posterior update

(mean and var)

intractable

model evidence



For tractable model evidence/analytic posterior update:

• we use delta method

I. Expand the BNN output at the mean of U and W (Taylor approx.) 
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Eliminate when take expectation

Moment matching

III. Tractable model evidence & analytic form update with ADF

II.  Get approx. of first & second moments of BNN output



• Approx. in exponential family: Gaussian + Bernoulli 

• Update with standard EP : analytic form

• Refine it after processing all entries in a coming batch

to impose the sparse inducing effect
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Spike & Slab priors: repeated approx. & refinement

Select posterior prob of each NN weight 

<0.5: unselected <=> sparse



Thanks for attention

Q&A time

Presenter’s email: shikai.fang@utah.edu


