Random Testing for C and C++ Compilers with YARPGen

VSEVOLOD LIVINSKII, University of Utah and Intel Corporation, USA
DMITRY BABOKIN, Intel Corporation, USA
JOHN REGEHR, University of Utah, USA

Compilers should not crash and they should not miscompile applications. Random testing is an effective
method for finding compiler bugs that have escaped other kinds of testing. This paper presents Yet Another
Random Program Generator (YARPGen), a random test-case generator for C and C++ that we used to find
and report more than 220 bugs in GCC, LLVM, and the Intel® C++ Compiler. Our research contributions
include a method for generating expressive programs that avoid undefined behavior without using dynamic
checks, and generation policies, a mechanism for increasing diversity of generated code and for triggering
more optimizations. Generation policies decrease the testing time to find hard-to-trigger compiler bugs and,
for the kinds of scalar optimizations YARPGen was designed to stress-test, increase the number of times these
optimizations are applied by the compiler by an average of 20% for LLVM and 40% for GCC. We also created
tools for automating most of the common tasks related to compiler fuzzing; these tools are also useful for
fuzzers other than ours.

CCS Concepts: » Software and its engineering — Software testing and debugging; Source code gen-
eration.

Additional Key Words and Phrases: compiler testing, compiler defect, automated testing, random testing,
random program generation

ACM Reference Format:

Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random Testing for C and C++ Compilers with
YARPGen. Proc. ACM Program. Lang. 4, OOPSLA, Article 196 (November 2020), 25 pages. https://doi.org/10.
1145/3428264

1 INTRODUCTION

Compilers should not crash and they should not generate output that is not a faithful translation of
their inputs. These goals are challenging to meet in the real world. For one thing, compilers often
have significant code churn due to changing source languages, new target platforms to support,
and additional requirements such as providing new optimizations. For another, since it is crucial
for compilers to be as fast as possible, they use sophisticated, customized algorithms and data
structures that are more difficult to get right than straightforward ones.

Although random test-case generation is an effective way to discover compiler bugs [Eide
and Regehr 2008; Le et al. 2014, 2015; Nagai et al. 2012, 2013, 2014; Sun et al. 2016; Yang et al.
2011], experience shows that any given random test-case generator, testing a particular compiler,
will eventually reach a saturation point [Amalfitano et al. 2015] where it finds very few new
bugs. However, even after one test-case generator has reached this saturation point, the ability
of a different generator to find bugs seems to be mostly unimpeded. For example, even after

Authors’ addresses: Vsevolod Livinskii, vlivinsk@cs.utah.edu, University of Utah, Intel Corporation, USA; Dmitry Babokin,
dmitry.y.babokin@intel.com, Intel Corporation, USA; John Regehr, regehr@cs.utah.edu, University of Utah, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/11-ART196

https://doi.org/10.1145/3428264

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

https://doi.org/10.1145/3428264
https://doi.org/10.1145/3428264
https://doi.org/10.1145/3428264

196:2 Vsevolod Livinskii, Dmitry Babokin, and John Regehr

Csmith [Yang et al. 2011] had reached apparent saturation on the then-current versions of GCC
and LLVM, other techniques were able to discover large numbers of residual bugs [Le et al. 2014,
2015; Sun et al. 2016]. In other words, a test-case generator reaches a saturation point not because
the compiler is bug-free, but rather because the generator contains biases that make it incapable of
exercising specific parts of the compiler implementation.

This paper presents YARPGen, a new random test-case generator for C and C++ compilers that
we created to explore several research questions:

e What bugs have been missed by previous compiler testing methods, including random testing?
e s it possible to generate expressive random programs that are free of undefined behaviors
without resorting to the kind of heavy-handed dynamic safety checks that Csmith used?

o Is it possible to build mechanisms into a generator that help it target different parts of an

optimizer?

YARPGen is based on the idea that a generator should support generation policies: mechanisms
for systematically altering the character of the emitted code, with the goal of making it possible
for the generator to avoid, or at least delay, saturation. YARPGen’s other main contribution is
to emit code that is free of undefined behavior without resorting to the heavy-handed wrapper
approach employed by Csmith [Yang et al. 2011] or staying within a narrow subset of the language,
as generators such as Orange [Nagai et al. 2012, 2013, 2014] have done. So far, this generator has
found 83 new bugs in GCC, 62 in LLVM, and 76 in the Intel® C++ Compiler.

The remainder of the paper is structured as follows. Section 2 briefly introduces random testing
for C and C++ compilers. Section 3 describes our approach to random differential compiler testing.
Section 4 presents the results of our testing campaign. Section 5 surveys previous work, and
Section 6 concludes.

2 BACKGROUND

In this paper, we are concerned with two kinds of compiler bugs. First, the compiler might crash or
otherwise terminate without generating object code. We call this an internal compiler error, or ICE.
Second, the compiler may generate compiled object code and terminate normally, but the generated
code does not perform the right computation. We call this a wrong code bug, or a miscompilation.
Compilers can go wrong in other ways, such as looping forever, but in our experience, these failures
are less common, and in any case, the testing campaign described in this paper did not pursue them.

2.1 Random Differential Testing

Like several previous compiler testing efforts [Ofenbeck et al. 2016; Yang et al. 2011], YARPGen is
intended to be used for differential testing [McKeeman 1998]: it generates a program that follows
the rules for C and C++ programs in such a fashion that when the random program is executed,
it must produce a specific output. It turns out that YARPGen has enough information about the
generated program that it could generate totally self-contained test cases that check their own
computation against the correct result. A disadvantage of that approach is that it makes it very hard
to use an automated test case reduction using a tool such as C-Reduce [Regehr et al. 2012], since
many reduction steps would require a coordinated change to both the random computation and the
expected answer. Differential testing avoids this problem. If independent compiler implementations
often contained correlated bugs that caused them to return the same wrong answer, differential
testing would not be a good idea. Empirically, this happens very rarely, and even if two compilers
had the same bug, it would be noticed when a third compiler was added to the mix.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

Random Testing with YARPGen 196:3

2.2 Undefined Behavior, Unspecified Behavior, and Implementation-Defined
Behavior

A significant practical problem with using random testing to find miscompilation bugs is that C
and C++ are unsafe programming languages: when a program executes an erroneous action such
as touching heap storage that has been freed, the C or C++ implementation does not typically flag
the violation by throwing an exception or terminating the program. Rather, the erroneous program
may continue to execute, but with a corrupted memory state. Thus, randomly generated test cases
that are erroneous are useless for differential testing. There are several hundred kinds of untrapped
errors in C and C++ that are collectively referred to as undefined behaviors (UBs). All of these must
be avoided in randomly generated code.

A related but less serious class of program behaviors is unspecified behaviors where the C or C++
implementation is allowed to choose one of several alternatives, but there is no requirement for
consistency. An example is the order of evaluation of arguments to a function. Randomly generated
programs can include unspecified behaviors, but their final answer should not depend on which
behavior the compiler picked.

Finally, C and C++ have many implementation-defined behaviors where the compiler is allowed
to make a choice, such as the range of values that may be stored in a variable of int type, but
the behavior must be documented and consistent. Since it is impractical to avoid relying on
implementation-defined behaviors in C and C++ code, programs generated by YARPGen do the
same thing that basically all real C and C++ applications do: they rely on a subset of these behaviors
that—for a given target platform—are reliably common across all modern implementations of these
languages.

3 YARPGEN

This section describes how YARPGen can randomly generate loop-free C and C++ that is expressive
and also statically and dynamically compliant with the rules specified in the language standards.

3.1 Avoiding Undefined Behavior

Programs produced by YARPGen must never execute operations that have undefined behavior. We
can divide the undefined behaviors in C and C++ into those that are easy to avoid, and those that
are hard to avoid.

The UBs that are easy to avoid generally correspond to surface-level, static properties of generated
code. For example, the requirement that a pointer is never converted to a type other than an integer
or pointer type is easy to avoid because YARPGen’s type checker disallows code that would
violate this constraint. Similarly, we avoid using uninitialized data by construction, since variables
are initialized at their point of definition. Many undefined behaviors are avoided simply by not
generating the program constructs that would lead them to happen. For example, the requirement
that standard header files are not included while a macro with the same name as a keyword is
defined is satisfied by not using the preprocessor in generated code. Similarly, restrictions on use
of setjmp and longjmp cannot be violated because we do not generate those constructs at all.

UBs that are hard to avoid are ones such as integer overflows, that depend on dynamic charac-
teristics of the execution of generated code. There are a number of possible strategies for achieving
this goal:

e Generate tests in a fashion that is syntactically guaranteed to avoid UB, for example, by not
generating arithmetic or pointers. Quest [Lindig 2005] used this method, which we rejected
because it significantly limits the expressiveness of the generated code.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

196:4 Vsevolod Livinskii, Dmitry Babokin, and John Regehr

o Generate code without static constraints, inserting dynamic checks as needed to guard against
undefined behaviors. Csmith [Yang et al. 2011] used this method, which we believe sacrifices
expressiveness by obscuring potentially optimizable patterns behind ubiquitous safety checks.

e Generate programs without worrying about undefined behaviors, and then use a checking
tool to discard those that are undefined. This has worked well when generated programs are
quite small [Le et al. 2015], but YARPGen is intended to generate large programs to amortize
compiler startup costs. The resulting programs would almost always be undefined.

e Run static analyses to conservatively avoid undefined behaviors during generation. Csmith
used this strategy for pointer-related UBs and the Orange family of generators [Nagai et al.
2012, 2013, 2014] used it pervasively.

YARPGen uses the last strategy: it interleaves analysis and code generation in order to reliably
and efficiently generate code that is free of UB, without unnecessarily sacrificing expressiveness.
The strategy is to perform a very limited form of backtracking while generating expressions,
converting operations that trigger undefined behavior into similar operations that are safe. This is
described in detail below.

3.2 Generating Code

Creating the environment. First, YARPGen creates a collection of composite data types that will
be used by the generated code, storing them into a type table. Types are created iteratively: the first
array or struct can only contain elements with primitive types (signed and unsigned varieties of
all integer types, pointers, and—for C++—bools), but subsequent structs and arrays can contain
elements of previously generated types. Some structs contain bitfields. The rules that guide bitfield
generation are different for C and C++. Specifically, in C they can only have int or unsigned type
and their size should be less than the size of the base type. C++ lacks these limitations. YARPGen
respects each language’s rules when generating code in that language.

Next, YARPGen generates a set of global variables with primitive and composite types, storing
them in a symbol table. Each global variable belongs to one of these categories:

e inputs: these variables are read but never written after initialization; their value is constant
during test case execution

e outputs: these variables are written but never read by the test function

e mixed: these are both read and written

Input and output variables simplify UB-avoidance (Section 3.1). Some input variables are randomly
const-qualified. When YARPGen is used to generate C++ code, some struct members are randomly
given the static qualifier.

Creating statements. Each time YARPGen runs, it creates a set of—usually very large—functions.
During generation, these functions are stored in a custom intermediate representation that supports
static analysis and incremental construction.

The generation of each test function is top-down: a test function consists of a single top-level
block, which contains a list of statements. Each statement does one of:

e Declares a new local variable of randomly chosen integer type, assigning it an initial value
from a random arithmetic expression.

o Assigns the result of a random arithmetic expression into an existing variable.

e Begins a new conditional. Each conditional results in the generation of a random Boolean
expression and one or two new blocks of statements. Once the block nesting depth reaches a
configurable limit, generation of additional conditionals is disabled.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

Random Testing with YARPGen 196:5

Creating expressions. YARPGen’s expressions are generated top-down. They are free of side
effects such as embedded assignment operators (e.g., 5 + (y = 3)), function calls, and the ++
and -- operators. Our motivation for omitting some of these language features is that they are
lowered away early during compilation, whereas we are most interested in stress-testing middle-end
compiler optimizations, which never see these language-level operators. A more detailed discussion
of the limitations can be found in Section 3.6.

Each node in an expression is randomly one of:

a unary, binary, or ternary operator

a type cast

a common subexpression (discussed in Section 3.3)

a data element: a local or global variable, a struct member, an array element, a dereferenced
pointer, or a constant

Recursive generation sometimes self-limits, for example, when a leaf node is selected randomly.
Otherwise, when a configurable expression depth limit is reached, the generator forces a leaf to be
selected.

Table 1. When an unsafe condition holds, YARPGen avoids undefined behavior by replacing the problematic
operation. MIN and MAX are INT_MIN and INT_MAX for operations performed on int-typed values, or
LONG_MIN and LONG_MAX for operations performed on long-typed values. (Due to the “usual arithmetic
conversions” in C [International Organization for Standardization 2011] and C++ [International Organization
for Standardization 2012], mathematical operations are never performed on char- or short-typed values.)
MSB stands for Most Significant Bit. The “signed or unsigned” criteria are more complicated for shifts because
the operands to a shift are not converted to a common type.

Operation | Unsafe condition Signed or unsigned? Replacement
-a a==MIN S +a
a+b a+b>MAX| a+b<MIN S a-b
a-b a-b>MAX|a-b<MIN S a+b
axb axb>MAX| axb<MIN, where | S a/b
al!=MIN && b !=-1
axb a==MIN && b ==-1 S a-b
a/b b==0 SorU axb
a/b a==MIN &&b ==-1 S a-b
a%b b==0 SorU axb
a%b a==MIN && b ==-1 S a-b
a<<b MIN<b<0 aisU&&DbisS a << (b + ¢), where
¢ € [-b; -b + bit_width(a))
a<<b MIN<b<0 aisS&&bisS a << (b + ¢), where
¢ € [-b; -b + bit_width(a) - MSB(a))
a<<b == MIN aisUorS && bisS a
a<<b b >= bit_width(a) aisU&&bisUorS a << (b - ¢), where
¢ € (b - bit_width(a); b]
a<<b b>= bit_width(a) aisS&&bisUorS a << (b - ¢), where
¢ € (b - bit_width(a) + MSB(a); b]
a>>b MIN<b<0 aisUorS &&bis$S a >> (b + ¢), where
¢ € [-b; -b + bit_width(a))
a>>b == MIN aisUorS&&bisS a
a>>b b >= bit_width(a) aisUorS&&bisUorS | a>>(b-c)
¢ € (b - bit_width(a); b]
a>>b T MIN<a<0 aisS&&bisUor$S (a+ MAX) >> b
a>>bf a == MIN aisS&&bisUorS b

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

+ implementation-defined behavior

196:6 Vsevolod Livinskii, Dmitry Babokin, and John Regehr

Avoiding UB in expressions. An expression is a tree whose leaves are variables and constants. A
randomly-generated expression is likely to execute one or more operations with undefined behavior
when it is evaluated. YARPGen’s procedure for avoiding UB works as follows.

First, the expression is type-checked in bottom-up fashion. This is done not to satisfy the C and
C++ type checkers (every expression that we generate passes these checkers), but instead because
the type of every subexpression needs to be known before we can analyze the flow of values
through the expression. Second, again bottom-up, the values being processed by the expression are
analyzed and expressions are rewritten as necessary to avoid UB.

Input variables are easy to analyze: they always hold their initial values. Output variables are also
easy: they never appear in expressions. Mixed variables are updated by assignments, so their values
must be tracked. Values are tracked concretely: YARPGen does not use a conservative abstract
interpreter. This is possible because the generated code is loop-free (but also see Section 3.5).

When YARPGen detects an operation with undefined behavior, it performs a local fix, rewriting
the operation into a form that does not trigger UB. The rewrites are shown in Table 1. For example,
assume that the expression -x has the type long and x is a variable holding the value LONG_MIN.
Since this expression is unsafe and must not be executed by a test program, YARPGen rewrites it
as +x. We ensured that the rewrites in Table 1 eliminate UB in all cases by performing exhaustive
testing of 4-bit values, and we also formally verified a subset of the rewrites at their full widths (32
and 64 bits) using the Z3 theorem prover. The verification script is available online!.

The key invariant during this bottom-up process is that all subtrees of the node currently being
analyzed are UB-free. Thus, when generation finishes, the entire expression is UB-free. This property
can then be extended to other expressions by analyzing each expression in the order in which it will
be evaluated during program execution. Conditionals do not present a problem for our approach
because the analysis always knows which way a given conditional will go when the program
executes.

This method for avoiding UB has several advantages over a more powerful backtracking scheme
that could, for example, delete subtrees of expressions and regenerate them until UB-freedom is
achieved. We implemented such a scheme and found that it usually requires multiple iterations
before it succeeds, and that sometimes it paints itself into a corner and becomes stuck; one of the
reasons that this happens is that parameter shuffling (Section 3.3) can significantly reduce the
number of options available to YARPGen. It would be possible to extend the backtracking scheme
to get unstuck by backtracking further (and perhaps all the way back to the start of program
generation), but the implementation would be more involved. In contrast, YARPGen’s rewrite rules
are very efficient, never get stuck, and always succeed on the first try.

One might think that by generating programs whose behavior can be predicted statically, compiler
testing would suffer because the programs would end up being too simple and would be mostly
optimized away. This would only be the case if the compilers under test used link-time or whole-
program optimization techniques. In other words, YARPGen relies on separate compilation to
stop the compiler from propagating values between test initialization and test functions. If, in
the future, compilers that we want to test make it difficult to disable link-time or whole-program
optimizations, we may be forced to use a stronger optimization barrier, for example putting test
code into a dynamically loaded library. We have tested this; it is trivial and does not require any
changes to YARPGen itself, but rather only to the commands used to compile its output.

Lowering IR to the target language. When IR for the test functions is completely generated, it
is lowered to either C or C++ and stored to a file. Lowering is a top-down recursive procedure.
When lowering to C++, each array is randomly lowered to a C-style array, a std: :valarray,

https://github.com/intel/yarpgen/blob/v1/rewrites.py

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

https://github.com/intel/yarpgen/blob/v1/rewrites.py

Random Testing with YARPGen 196:7

a std::vector, or (for C++14 and newer) a std::array. There are also differences in array
initialization across different versions of the C++ standard that must be taken into account.

Generating the test harness. Besides the file containing the test functions, YARPGen generates
two additional files for each test case. First, a header containing declarations for all generated types,
for the test functions, and for all global variables. Second, a driver file that defines the main function
and defines (and optionally initializes) all global variables used by the test functions. The main
function calls the test functions, computes a checksum by hashing values found in all output and
mixed global variables (including struct fields and array elements), and then prints the checksum.

Given a particular set of implementation-defined behaviors, the C or C++ standard that is in
effect completely determines the value of the checksum. In other words, all correct compilers, at all
optimization levels, must generate executables that print the same checksum, which then serves as
the key for differential testing. Any time changing the compiler or compiler options changes the
checksum, we have found a compiler bug.

3.3 Generation Policies

When many random choices are drawn from the same distribution, randomly generated test cases
can all end up looking somewhat alike. Our hypothesis was that this phenomenon reduces diversity
in generated code and, in the long run, leads to less effective testing.

For YARPGen, we developed generation policies that systematically skew probability distributions
in ways that are intended to cause certain optimizations to fire more often. Some distribution changes
are applied in randomly chosen sub-regions of the generated code. Since different generation policies
typically compose gracefully, YARPGen allows them to overlap arbitrarily, leading to additional
diversity in code generation. Other generation policies apply to the entire test; in this case, to get
diversity in tests, we rely on the fact that YARPGen will typically be run thousands or millions of
times during a testing campaign.

These policies are drawn from our knowledge of how optimizing compilers work, and where
bugs in them are likely to be found; it is not clear to us that this kind of insight can be automated
in any meaningful fashion. We empirically evaluate the effectiveness of these generation policies
in Section 4.

Arithmetic, logical, and bitwise contexts. An expression built from operators chosen from a uniform
random distribution is less likely to contain dense clusters of, for example, bitwise operators, that
would allow an optimization pass to perform rewrites such as these:

(x | ¢1) » (x | c2) — (x & c3) * c3 where ¢c3 = c1 * c2
(x & c1) * (x & c2) — (x & (c1*c2))
(x & ~y) | (x *y) = (x "y

These examples are from comments in LLVM’s reassociate pass? and instruction simplification
analysis.> The first transformation is intended to create a situation where common subexpression
elimination can further optimize the code; the second and third are standard peephole optimizations.

YARPGen randomly chooses regions of code, or parts of expression trees, to use restricted
subsets of mathematical operations, in order to more effectively trigger bugs in optimizations.
These contexts are:

e additive: addition, subtraction, negation
e bitwise: binary negation, and, or, xor

Zhttps://github.com/llvm/llvm-project/blob/release/10.x/llvm/lib/ Transforms/Scalar/Reassociate.cpp#L1203-L11307
Shttps://github.com/llvm/llvm-project/blob/release/10.x/llvm/lib/ Analysis/InstructionSimplify.cpp#L.2138

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

https://github.com/llvm/llvm-project/blob/release/10.x/llvm/lib/Transforms/Scalar/Reassociate.cpp#L1203-L1307
https://github.com/llvm/llvm-project/blob/release/10.x/llvm/lib/Analysis/InstructionSimplify.cpp#L2138

196:8 Vsevolod Livinskii, Dmitry Babokin, and John Regehr

e logical: and, or, not

o multiplicative: multiplication, division

e bitwise-shift: binary negation, and, or, xor, right/left shifts

o additive-multiplicative: addition, subtraction, negation, multiplication, division

An expression built using the bitwise-shift context might look like this:
a =~b & ((c | d) * (e << 4));

Policies for constants. To ensure stress-testing of constant folding and related peephole optimiza-
tions, parts of expression trees are randomly selected to have all leaves as constants, or half of the
leaves as constants. Code generated in the latter context looks like this:

a = (((-2147483647 - 1) ~ b) << (((-668224961 * 2147483647) + 1479258713) - 24)) |
(((c + 2147483647) >> 8) << 8);

We found a bug in LLVM’s bit-tracking dead code elimination pass (LLVM #33695) that we
believe would have been very difficult to trigger without combining the shift-bitwise context with
half of expression leaves being constants.

Since many peephole optimizations rely on special constants that are often small integers,
YARPGen generates constants with small magnitude, and constants near values such as INT_MAX,
more often than constants uniformly selected from the entire range. Transformations like this from
LLVM’s instcombine pass require constants of small magnitude, which would be very unlikely to
occur if, for example, YARPGen selected constant values uniformly from 0..264 — 1.

(x + =1) -y = =y +x

Other constants are generated to have contiguous blocks of zeroes and ones in their binary
representations.

Finally, YARPGen maintains a buffer of previously-used constants, and then in all but logical
context randomly reuses these constants (and also their negations and complements) in subsequent
parts of expression trees. This allows us to trigger transformations such as these more frequently:*

(x | c2) + ¢ —» (x | c2) *» c2 iff (c2 == -c¢)
((x | y) &cl) | (y & c2) —» (x & c1) | y iff c1 == ~c2
((x +y) & c1) | (x & c2) —» x +y iff ¢c2 = ~c1 and

c2 is ©---01---1, and (y & c2) ==

Common subexpression buffer. Common subexpression elimination, global value numbering, and
related optimizations contain elaborate, bug-prone logic for factoring redundant computations
out of code being compiled. To increase the chances of triggering these optimizations, YARPGen
buffers previously-generated subexpressions and reuses them:

d=c+ (128 x a > (b % 13));
e = INT_MAX - (128 % a >> (b % 13));

Code like this would be unlikely to be generated by a sequence of independent random choices.

4https://github.com/llvm/llvm-project/blob/release/10.x/llvm/lib/ Transforms/InstCombine/InstCombineAddSub.cpp#
Loo6
https://github.com/llvm/llvm-project/blob/release/10.x/1lvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp#
L2538

https://github.com/llvm/llvm-project/blob/release/10.x/llvm/lib/ Analysis/InstructionSimplify.cpp#L2208-L2211

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

https://bugs.llvm.org/show_bug.cgi?id=33695
https://github.com/llvm/llvm-project/blob/release/10.x/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp#L906
https://github.com/llvm/llvm-project/blob/release/10.x/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp#L906
https://github.com/llvm/llvm-project/blob/release/10.x/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp#L2538
https://github.com/llvm/llvm-project/blob/release/10.x/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp#L2538
https://github.com/llvm/llvm-project/blob/release/10.x/llvm/lib/Analysis/InstructionSimplify.cpp#L2208-L2211

Random Testing with YARPGen 196:9

Parameter shuffling. Each kind of random choice made by YARPGen is controlled by a distribution.
To avoid the “every test case is different, but they all look the same” phenomenon, YARPGen uses a
parameter shuffling technique where, at startup time, random distributions are themselves randomly
generated. So one test case might have 85% of its variables having char type, and the next might
end up with only 3% of these. The insight behind shuffling is the same as the one behind swarm
testing [Groce et al. 2012], but our implementation is finer-grained since it was designed into
YARPGen instead of being retrofitted using command-line options. Parameters that are shuffled
include those controlling:

e generation of compound types: base types for arrays, bit-field distribution in structs, whether
to reuse existing compound types, etc.

e choices for arithmetic leaves: constant, variable, array element, structure member or pointer
indirection

e where to put the results of assignments: local variable, mixed or output global variable, array

element, struct member, pointer indirection

array representation: C-style array, std: :valarray, std: :vector, std: :array

use of the subscript operator vs. at (i) to access array elements

arithmetic operators: unary, binary, ternary

kind of statements: variable definition, assignment, conditional

what kind of special constants to generate, how often we reuse existing constants and what

modifications to them will we apply

e how many common sub-expressions we create and how often we reuse them

o distribution of contexts

In total, there are 23 different parameters that are shuffled for each test. We believe this technique
allows YARPGen to reach corner cases more effectively.

Compiler #1 »| Execute
YARP . \ Dif
Generator »| Compiler #2 > Execute comparison
Compiler #3

Classifier

Fig. 1. Framework for differential random compiler testing

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

196:10 Vsevolod Livinskii, Dmitry Babokin, and John Regehr

3.4 Automation

Figure 1 depicts the framework we developed for automating most of the important tasks associated

with differential random compiler testing. This framework is not specific to YARPGen: we have

also used it to run Csmith. Fewer than 10 lines of code needed to be changed to make this work.
On every core, the framework executes these steps in a loop:

(1) invokes YARPGen to create a test case,

(2) compiles the test using a configurable collection of compilers and compiler options, going to
step (4) if any compiler crashes

(3) runs the resulting binaries, only continuing to the next step if behavioral differences in the
output are detected,

(4) generates an “interestingness” test script for C-Reduce [Regehr et al. 2012], reduces the
bug-triggering program, and

(5) runs a bug classifier that we developed, in an effort to cluster together all test cases that
trigger the same bug.

This framework uses a configurable number of cores and requires essentially no user intervention
in the case where no compiler bugs are found. When bugs are found, they are ready to be reported to
compiler developers because they are reduced and come with a Makefile for reproducing them. The
automation framework optionally runs generated code under UBSan, LLVM’s undefined behavior
sanitizer,” to check for bugs in the generator. It also takes care of cleaning up temporary files that
are often left over when compilers crash, and supports optionally running failing tests multiple
times, as a hedge against non-deterministic behavior (true non-determinism is rare in compilers,
but we have seen incorrect bug reports because a test machine ran out of memory or disk space).

C-Reduce’s transformations are syntactical in nature and tend to introduce undefined behavior
during reduction. We rely on static and dynamic checking tools including compiler warnings,
UBSan, ASan,’ and tis—interpreter7 to prevent undefined behaviors during test case reduction. (We
do not rely on these tools to help YARPGen generate UB-free programs in the first place: there
would be enormous overhead associated with invoking them incrementally on partially-constructed
programs.)

Classifying crashes and wrong-code bugs. The bug classifier is crucial because we observed that
the number of times bugs are triggered typically follows a power law: one bug might be triggered
by 1% of test cases, another by 0.01% of test cases, and yet another by 0.0001% of test cases. A
recent study [Bohme and Falk 2020] appears to support this observation. It is important to prevent
frequently-occurring bugs that have not been fixed yet from creating a needle-in-the-haystack
phenomenon, hiding bugs that are triggered only very rarely.

Bugs that cause the compiler to crash are relatively easy to classify because they typically emit a
characteristic error message. When a good error message is not emitted, for example, because the
compiler was terminated by the OS due to a protection violation, we could attempt to classify the
bug by looking at the compiler’s stack trace, but we have not yet done this.

Bugs that cause the compiler to emit incorrect code are more difficult to classify, and here we
require some cooperation from the compiler.® The idea, first published by Whalley [1994], is to
search over the sequence of transformations the compiler performs while optimizing a program.
If leaving out a particular transformation makes the miscompilation disappear, then either that

Shttps://clang llvm.org/docs/UndefinedBehaviorSanitizer.html
®https://clang.llvm.org/docs/AddressSanitizer.html
Thttps://trust-in-soft.com/tis-interpreter
8https://llvm.org/docs/OptBisect.html

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://trust-in-soft.com/tis-interpreter
https://llvm.org/docs/OptBisect.html

Random Testing with YARPGen 196:11

transformation is incorrect or else it ends up creating the conditions for a different, incorrect pass
to introduce the miscompilation. Either way, this transformation is a useful fingerprint for the
miscompilation, but it is not guaranteed to be a unique identifier for such errors.

3.5 Experimental Features

This section describes several features that we added to experimental versions of YARPGen. We
include them in our description because we believe them to be interesting, and we used them to
find compiler bugs. However, we wanted to describe them separately because they are, in general,
less fleshed out and complete than are the features we describe elsewhere in this paper. None of
these features were used in evaluation experiments, described in Section 4.

Floating point. Generating code that manipulates floating point (FP) values is not difficult. The
primary challenge is not in generation, but rather in interpreting the results of differential testing:
it is not uncommon for a compiler optimization to change the result of an FP computation, and
yet compiler developers do not consider this to be a bug. Our partial solution to this problem is
to limit FP values to a narrow range (0.5..1.0), to limit the number of operations in an arithmetic
chain containing FP values, and to exclude floating point values from YARPGen'’s usual checksum
mechanism. We instead dump the final values stored in FP variables to a file, and then perform
differential testing using a threshold, rather than insisting on bit-for-bit equality. YARPGen supports
the float, double, and long double types.

Vectors. The Clang C and C++ frontend for LLVM supports OpenCL vector extensions.” YARPGen
has highly preliminary support for generation of short (2-16 element) vectors of the int and
unsigned types. In order to be able to reuse YARPGen’s UB avoidance mechanisms, we forced
each vector to contain the same value in all elements, and disabled accesses to individual elements.
We also disabled logical, comparison, and ternary operators for vector-typed values because the
OpenCL semantics for these operations diverges from C and C++.

Loops. Extending YARPGen’s machinery for avoiding undefined behaviors to support loops was
an interesting challenge. Our solution uses a hybrid strategy. We test for the absence of undefined
behavior in the first loop iteration and then ensure that the rest of the loop iterations operate on the
same values as those seen in the first iteration. To make this happen, we disabled mixed variables
(those that are both read and written), and we ensure that each array that is accessed inside a loop
has the same value at all element positions. The loop iteration space is determined statically. Loop
induction variables are treated specially: undefined behavior on them is avoided by construction,
using the mechanism described in Section 3.1, and random accesses to induction variables from
code in loop bodies are not allowed. Loop reduction variables (special-purpose variables used to,
for example, sum up the values stored in an array) are treated in a similar fashion. Generated loops
can contain regular conditional control flow, as well as the break and continue statements.

3.6 Limitations

YARPGen has a number of limitations including lack of support for: pointer arithmetic, function
calls, enums, classes, preprocessor definitions, templates, lambdas, dynamic memory allocation,
compound assignment operations, and side-effecting operators. Additionally, support for floating
point values and loops is quite limited. Many of YARPGen’s limitations—such as not generating
code containing function calls—stem from its original goal of detecting bugs in scalar optimizations.
Other limitations, such as not generating code containing strings or dynamic memory allocation,
are implementation artifacts that we hope to lift in the future.

“https://clang llvm.org/docs/LanguageExtensions.html#vectors-and-extended-vectors

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

https://clang.llvm.org/docs/LanguageExtensions.html#vectors-and-extended-vectors

196:12 Vsevolod Livinskii, Dmitry Babokin, and John Regehr

3.7 Implementation and Deployment

YARPGen is about 8,600 lines of C++. Its testing framework (written in about 3,100 lines of Python)
is responsible for running tests across many cores, reducing programs that trigger bugs, and
classifying bugs. Our software is open source; the version described in this paper can be found at:
https://github.com/intel/yarpgen/tree/v1 and the latest version can be found at: https://github.com/
intel/yarpgen/

4 EVALUATION
4.1 Summary of a Testing Campaign

Over a two year period we used YARPGen to test the then-current versions of GCC, LLVM, and the
Intel® C++ Compiler. In all cases for our main testing campaign, the compilers were generating
code for various flavors of the x86-64 architecture. We also verified that YARPGen can be used
to test compilers for ARM, but we didn’t test it rigorously. Most of our testing was at the most
commonly used optimization levels (e.g., ~00, -03), but in some cases we also enabled non-standard
compiler elements such as GCC’s undefined behavior sanitizer'® and LLVM’s NewGVN pass.!! The
top-level results from this testing campaign are that we found:

e 83 previously-unknown bugs in GCC, 78 of which have been fixed so far. 32 were compiler
crashes and 51 were wrong code bugs. 4 were in the front-end, 50 were in the middle-end, 11
were in the backend, and 18 of them are related to GCC’s undefined behavior sanitizer. Some
of these bugs are summarized in Table 2. The full list is available online!?.

e 62 previously-unknown bugs in LLVM, 49 of which have been fixed so far. 53 bugs were

compiler crashes and 9 were wrong code bugs. One bug was in the front-end, 15 were in

the middle-end, and 43 were in the backend (we could not categorize three bugs). Some of
these bugs are summarized in Table 3. The full list is available online'®. (This table contains
one bug that the LLVM developers marked as DUPLICATE and four that were marked as

WORKSFORME. Usually, we would not count such bugs as valid, but in these five cases we

verified that these were real, previously unknown bugs first reported by us. In other words,

the compiler developers labeled these bugs incorrectly.)

76 previously-unknown bugs in the Intel® C++ Compiler, 67 of which have been fixed so far.

30 bugs were compiler crashes and 46 bugs were wrong code. 35 were in scalar optimizations,

23 were in the backend, 17 were in the high-level optimization and vectorization framework,

and one was in interprocedural optimizations.

Taken together, these results show that YARPGen is capable of finding defects in production-grade
compilers that have already been heavily targeted by random test-case generators. Furthermore,
most of these defects were deemed worth fixing by compiler developers.

Examples of reduced, bug-triggering programs. Listing 1 demonstrates the advantages of explicit
common subexpression generation and special constants, while listing 2 shows the advantage of
contexts.

Concurrently reported bugs. One way to gain confidence that a fuzzer is finding bugs that matter to
real developers is to look for cases where a bug found by the fuzzer was independently re-reported
by an application developer. About 10% of the LLVM bugs that we reported were independently

https://developers.redhat.com/blog/2014/10/16/gcc-undefined-behavior-sanitizer-ubsan/
Uhttps://lists.llvm.org/pipermail/llvm-dev/2016-November/107110.html
2https://github.com/intel/yarpgen/blob/v1/gcc-bug-summary.md
Bhttps://github.com/intel/yarpgen/blob/v1/llvm-bug-summary.md

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

https://github.com/intel/yarpgen/tree/v1
https://github.com/intel/yarpgen/
https://github.com/intel/yarpgen/
https://developers.redhat.com/blog/2014/10/16/gcc-undefined-behavior-sanitizer-ubsan/
https://lists.llvm.org/pipermail/llvm-dev/2016-November/107110.html
https://github.com/intel/yarpgen/blob/v1/gcc-bug-summary.md
https://github.com/intel/yarpgen/blob/v1/llvm-bug-summary.md

Random Testing with YARPGen

196:13

Table 2. YARPGen found 83 GCC bugs, this table shows 53 of them. An “ICE” is an internal compiler error, or
a crash. We shortened some names of components and bug descriptions.

D Status Type Component Description

83383 | fixed wrong code | tree-optimization | Wrong code with type conversions and ternary operators
83382 | unconfirmed | wrong code | sanitizer UBSAN tiggers false-positive warning

83252 | fixed wrong code | target Wrong code with "-march=skylake-avx512 -O3"

83221 | fixed ICE tree-optimization | gsort comparator not anti-commutative

82778 | fixed ICE rtl-optimization crash: insn does not satisfy its constraints

82576 | NEW ICE rtl-optimization sbitmap_vector_alloc() not ready for 64 bits

82413 | fixed ICE c -00 crash (ICE in decompose, at tree.h:5179)

82381 | fixed ICE tree-optimization | internal compiler error: gsort checking failed

82353 | fixed wrong code | sanitizer runtime ubsan crash

82192 | fixed wrong code | rtl-optimization gce produces incorrect code with -O2 and bit-field

81987 | fixed ICE tree-optimization | ICE in verify_ssa with -O3 -march=skylake-avx512
81814 | fixed wrong code | middle-end Incorrect behaviour at -O0 (conditional operator)

81705 | fixed wrong code | middle-end UBSAN: yet another false positive

81607 | fixed ICE c++ Conditional operator: "type mismatch in shift expression"
81588 | fixed wrong code | tree-optimization | Wrong code at -O2

81556 | fixed wrong code | tree-optimization | Wrong code at -O2

81555 | fixed wrong code | tree-optimization | Wrong code at -O1

81553 | fixed ICE rtl-optimization ICE in immed_wide_int_const, at emit-rtl.c:607

81546 | fixed ICE tree-optimization | ICE at -O3 during GIMPLE pass dom

81503 | fixed wrong code | tree-optimization | Wrong code at -O2

81488 | fixed wrong code | sanitizer gce goes off the limits allocating memory

81423 | fixed wrong code | rtl-optimization Wrong code at -O2

81403 | fixed wrong code | tree-optimization | wrong code at -O3

81387 | unconfirmed | wrong code | sanitizer UBSAN consumes too much memory at -O2

81281 | fixed wrong code | sanitizer UBSAN: false positive, dropped promotion to long type.
81162 | fixed wrong code | tree-optimization | UBSAN switch triggers incorrect optimization in SLSR
81148 | fixed wrong code | sanitizer UBSAN: two more false positives

81097 | fixed wrong code | sanitizer UBSAN: false positive for not existing negation operator
81088 | fixed wrong code | middle-end UBSAN: false positive as a result of reassosiation

81065 | fixed wrong code | sanitizer UBSAN: false positive as a result of distribution

80932 | fixed wrong code | sanitizer UBSAN: false positive as a result of distribution

80875 | fixed ICE sanitizer UBSAN: compile time crash in fold_binary_loc

80800 | fixed wrong code | sanitizer UBSAN: yet another false positive

80620 | fixed wrong code | tree-optimization | gcc produces wrong code with -O3

80597 | fixed ICE ipa internal compiler error: in compute_inline_parameters
80536 | fixed ICE sanitizer UBSAN: compile time segfault

80403 | fixed ICE sanitizer UBSAN: compile time crash

80386 | fixed wrong code | sanitizer UBSAN: false positive - constant folding and reassosiation
80362 | fixed wrong code | middle-end gce miscompiles arithmetic with signed char

80350 | fixed wrong code | sanitizer UBSAN changes code semantics

80349 | fixed ICE sanitizer UBSAN: compile time

80348 | fixed ICE sanitizer UBSAN: compile time crash in ubsan_instrument_division
80341 | fixed wrong code | middle-end gce miscompiles division of signed char

80297 | fixed ICE c++ Compiler time crash: type mismatch in binary expression
80072 | fixed ICE tree-optimization | ICE in gimple_build_assign_1

80067 | fixed ICE sanitizer ICE in fold_comparison with -fsanitize=undefined

80054 | fixed ICE tree-optimization | ICE in verify_ssa

79399 | fixed ICE middle-end GCC fails to compile big source at -O0

78726 | fixed wrong code | middle-end Incorrect unsigned arithmetic optimization

78720 | fixed wrong code | tree-optimization | Illegal instruction in generated code

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83383
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83382
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83252
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83221
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82778
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82576
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82413
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82381
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82353
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82192
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81987
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81814
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81705
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81607
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81588
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81556
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81555
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81553
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81546
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81503
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81488
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81423
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81403
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81387
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81281
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81162
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81148
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81097
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81088
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81065
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80932
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80875
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80800
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80620
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80597
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80536
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80403
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80386
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80362
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80350
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80349
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80348
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80341
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80297
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80072
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80067
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80054
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=79399
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=78726
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=78720

196:14

Vsevolod Livinskii, Dmitry Babokin, and John Regehr

Table 3. YARPGen found 62 LLVM bugs, this table shows 53 of them. An “ICE” is an internal compiler error,
or a crash. We shortened some names of components and bug descriptions.

ID Status Type Component Description

35583 | new ICE new bugs NewGVN indeterministic crash

35272 | fixed ICE new bugs Assertion "Invalid sext node, dst <src!"

34959 | new wrong code | new bugs Incorrect predication in SKX

34947 | fixed ICE Backend: X86 -00 crash

34934 | new ICE Backend: X86 UNREACHABLE: "Unexpected request for libcall!"
34856 | fixed ICE new bugs Assertion: "Invalid constantexpr cast!"

34855 | fixed ICE Backend: X86 Cannot select shl and srl for v2i64

34841 | fixed ICE Scalar Opt InstCombine - Assertion

34838 | fixed ICE new bugs InstCombine - Assertion

34837 | fixed ICE new bugs UNREACHABLE in DAGTypeLegalizer

34830 | new ICE new bugs "Cannot emit physreg copy instruction"

34828 | fixed ICE Register Allocator | Assertion: "index out of bounds!"

34787 | fixed ICE new bugs Assertion: "Not a tree leaf"

34782 | fixed ICE new bugs Assertion: "Deleted edge still exists in the CFG!"
34381 | fixed wrong code | new bugs Clang produces incorrect code at -O0

34377 | new wrong code | Backend: X86 Clang produces incorrect code with -O1 and higher
34137 | fixed ICE Backend: X86 clang crash in llvm::SelectionDAG::Combine on -O0
33844 | fixed ICE Backend: X86 Assertion: "loBit out of range" failed with -O1
33828 | fixed ICE Common CodeGen | Crash in X86DAGToDAGISel::RunSDNodeXForm
33765 | fixed ICE new bugs Inst. repl. in instcombine violates dominance relation
33695 | fixed wrong code | new bugs Bit-Tracking Dead Code Elimination (BDCE) fails
33560 | fixed ICE Backend: X86 "Cannot emit physreg copy instruction"

33442 | new wrong code | Frontend UBSAN: right shift by negative value missed

32894 | fixed ICE Backend: X86 ICE: "Cannot replace uses of with self"

32830 | fixed wrong code | new bugs Clang produces incorrect code with -O2 and higher
32525 | duplicate ICE Backend: X86 Assertion: "Number of nodes mismatch”

32515 | fixed ICE Common CodeGen | Assertion" "DELETED_NODE in CSEMap!"

32345 | fixed ICE Common CodeGen | Assertion: "Mask size mismatches value type size!"
32340 | fixed ICE Common CodeGen | Assertion: "Deleted Node added to Worklist"

32329 | fixed ICE new bugs Silent failure in X86 DAG->DAG Inst Selection
32316 | fixed ICE new bugs Assertion: "Binary operator types must match!"
32284 | fixed ICE new bugs Assertion: "Invalid child # of SDNode!"

32256 | fixed ICE new bugs Assertion: "Cannot move between mask and h-reg"
32241 | fixed wrong code | new bugs Incorrect result with -march=skx -O0 -m32

31306 | fixed ICE Backend: X86 Compiler crash: Cannot select

31045 | fixed ICE Backend: X86 Clang fails in insertDAGNode

31044 | new ICE Backend: X86 Assertion: "Expect to extend 32-bit registers for LEA"
30813 | fixed ICE New Bugs Assertion: "MaskBits <= Size"

30783 | fixed ICE New Bugs Assertion: "replaceAllUses of value with new value"
30777 | worksforme | ICE New Bugs Assertion: "Illegal cast to vector (wrong type or size)"
30775 | fixed ICE Backend: X86 Assertion: "NodeToMatch was removed"

30693 | fixed ICE Backend: X86 Segfault: alignment incorrect for relative addressing
30286 | fixed wrong code | new bugs KNL bug at -O0

30256 | fixed ICE new bugs Assert in llvm::ReassociatePass::OptimizeAdd

29058 | fixed ICE new bugs Assert in llvm::SelectionDAG::Legalize()

28845 | new ICE new bugs Incorrect codegen for "store <2 x i48>"

28661 | fixed wrong code | new bugs incorrect code for boolean expression at -O0

28313 | fixed ICE New Bugs Assertion: "isSCEVable(V->getType())"

28312 | fixed ICE New Bugs Assertion: "Res.getValueType() == N->getValueType(0)"
28301 | fixed ICE New Bugs Assertion: "Register is not used by this instruction!"

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

https://bugs.llvm.org/show_bug.cgi?id=35583
https://bugs.llvm.org/show_bug.cgi?id=35272
https://bugs.llvm.org/show_bug.cgi?id=34959
https://bugs.llvm.org/show_bug.cgi?id=34947
https://bugs.llvm.org/show_bug.cgi?id=34934
https://bugs.llvm.org/show_bug.cgi?id=34856
https://bugs.llvm.org/show_bug.cgi?id=34855
https://bugs.llvm.org/show_bug.cgi?id=34841
https://bugs.llvm.org/show_bug.cgi?id=34838
https://bugs.llvm.org/show_bug.cgi?id=34837
https://bugs.llvm.org/show_bug.cgi?id=34830
https://bugs.llvm.org/show_bug.cgi?id=34828
https://bugs.llvm.org/show_bug.cgi?id=34787
https://bugs.llvm.org/show_bug.cgi?id=34782
https://bugs.llvm.org/show_bug.cgi?id=34381
https://bugs.llvm.org/show_bug.cgi?id=34377
https://bugs.llvm.org/show_bug.cgi?id=34137
https://bugs.llvm.org/show_bug.cgi?id=33844
https://bugs.llvm.org/show_bug.cgi?id=33828
https://bugs.llvm.org/show_bug.cgi?id=33765
https://bugs.llvm.org/show_bug.cgi?id=33695
https://bugs.llvm.org/show_bug.cgi?id=33560
https://bugs.llvm.org/show_bug.cgi?id=33442
https://bugs.llvm.org/show_bug.cgi?id=32894
https://bugs.llvm.org/show_bug.cgi?id=32830
https://bugs.llvm.org/show_bug.cgi?id=32525
https://bugs.llvm.org/show_bug.cgi?id=32515
https://bugs.llvm.org/show_bug.cgi?id=32345
https://bugs.llvm.org/show_bug.cgi?id=32340
https://bugs.llvm.org/show_bug.cgi?id=32329
https://bugs.llvm.org/show_bug.cgi?id=32316
https://bugs.llvm.org/show_bug.cgi?id=32284
https://bugs.llvm.org/show_bug.cgi?id=32256
https://bugs.llvm.org/show_bug.cgi?id=32241
https://bugs.llvm.org/show_bug.cgi?id=31306
https://bugs.llvm.org/show_bug.cgi?id=31045
https://bugs.llvm.org/show_bug.cgi?id=31044
https://bugs.llvm.org/show_bug.cgi?id=30813
https://bugs.llvm.org/show_bug.cgi?id=30783
https://bugs.llvm.org/show_bug.cgi?id=30777
https://bugs.llvm.org/show_bug.cgi?id=30775
https://bugs.llvm.org/show_bug.cgi?id=30693
https://bugs.llvm.org/show_bug.cgi?id=30286
https://bugs.llvm.org/show_bug.cgi?id=30256
https://bugs.llvm.org/show_bug.cgi?id=29058
https://bugs.llvm.org/show_bug.cgi?id=28845
https://bugs.llvm.org/show_bug.cgi?id=28661
https://bugs.llvm.org/show_bug.cgi?id=28313
https://bugs.llvm.org/show_bug.cgi?id=28312
https://bugs.llvm.org/show_bug.cgi?id=28301

Random Testing with YARPGen 196:15

#include <stdio.h>

unsigned short a = 41461;

unsigned short b 3419;

int ¢ = 0;

void foo() {
if (a + b *x ~(0 !=5))
c = -~(b x ~(0 != 5)) + 2147483647;

int main() {
foo();
printf ("%d\n", c);
return 0;

}

Listing 1. GCC bug #81503, found on revision #250367. The correct result is 2147476810; the incorrectly
optimized version returns -2147483648.

func.c:

extern const long int a;
extern const long int b;
extern const long long int c;
extern long int d;

void foo() {
d = ((c | b) * ~c) & (a | ~c);

11717777 7777777777777777777777777777777777777771777777

main.c:
#include <stdio.h>

extern void foo ();

const long int a = 6664195969892517546L;

const long int b = 1679594420099092216L;

const long long int c¢ = 1515497576132836640LL;
long int d = -7475619439701949757L;

int main () {
foo ();
printf ("%1d\n", d);
return 0;
}
Listing 2. LLVM bug #32830, found on revision #301477. The correct result is -236191838907956185; the
incorrectly optimized version returns -5292815780869864331.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81503
https://bugs.llvm.org/show_bug.cgi?id=32830

196:16 Vsevolod Livinskii, Dmitry Babokin, and John Regehr

discovered by projects such as SQLite (LLVM #35583), Chromium (LLVM #34830 and #33560),
LibreOffice (LLVM #32830), Speex (LLVM #32515), and GROMACS (LLVM #30693). For GCC, only
one bug was independently discovered, in Python 3.5.1 (GCC #71279).

This situation usually happened in two different cases. In the first case, we and application
developers who test their product against the latest compiler version reported the same bug around
the same time (usually within a couple of days from each other). In the second case, a bug that we
had reported remained unfixed for some time (sometimes more than a year), and then, later on,
application developers rediscovered it in the released compiler.

Finding a compiler bug using a fuzzer, rather than waiting for application developers to find it,
is preferable for two important reasons. First, whereas our YARPGen-based workflow is directed
entirely towards finding compiler bugs and has significant machinery aimed at making this task
easier, finding a compiler bug that causes a large application to be miscompiled is extremely non-
trivial, even for experienced developers. Second, test-case reduction for programs generated by
YARPGen is automated and works very well. In contrast, extracting a minimal reproducer for a
compiler bug from, for example, the Chromium sources is laborious. In practice, the reduced test
cases that we report are much smaller than those reported by application developers.

Partial bug fixes. YARPGen is good at finding partial bug fixes. These occur when a compiler
developer, for one reason or another, eliminates the symptoms of a compiler bug without fully
addressing the root cause. This leads to the situation where the test case in the bug report no
longer triggers the bug, but other test cases can still trigger it. Fuzzers seem to be particularly good
at finding different ways to trigger errors, providing thorough testing of bug fixes. During our
bug-finding campaign we discovered five LLVM bugs (#34381, #33695, #32284, #32256, #30775) and
six GCC bugs (#83252, #81588, #80932, #80348, #71488, #70333) that were partially fixed.

Sanitizer bugs. YARPGen’s testing system optionally uses the undefined behavior sanitizer
supported by GCC and LLVM to ensure that generated tests are free from undefined behavior.
Because YARPGen was designed to avoid all undefined behaviors, every alarm signaled by a sanitizer
either indicates an error in YARPGen or in the sanitizer. We found two bugs in LLVM and 22 bugs in
GCC that were in the undefined behavior sanitizer, or else were exposed due to using the sanitizer.

4.2 Evaluating the Direct Impact of Generation Policies

A major hypothesis behind YARPGen was that generation policies would make it more effective at
finding compiler bugs. We conducted an experiment with the goal of confirming or rejecting this
hypothesis. Our starting point was the set of LLVM crash bugs found by YARPGen which could be
reliably identified by a specific error message printed by LLVM as it terminated. 22 bugs met this
criterion; the rest of them had non-specific signatures, such as segmentation faults. We did not
look at miscompilation bugs in this experiment because it is difficult to reliably determine that a
particular miscompilation bug has been triggered (our bug classifier is useful, but not foolproof).
All of the experimental features described in Section 3.5 were disabled for this experiment.

Out of the 22 bugs, we could not trigger 13 of them within 72 hours when using all threads on a
16-core (32 thread) Intel® Xeon® machine, using the latest version of YARPGen. We dropped these
from the experiment—we deemed them impractical for our experiment due to their low probability
of being triggered. For the remaining nine bugs, we ran YARPGen for 72 hours (on the same kind
of Intel® Xeon® machine) in its standard configuration—where it uses generation policies—and
also for 72 hours in a configuration where it does not use generation policies.

The results of this experiment are summarized in Table 4. Four of the bugs were not triggered
at all without generation policies. Out of the remaining five bugs, two were triggered more often
without generation policies and three were triggered more often with generation policies. We also

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

https://bugs.llvm.org/show_bug.cgi?id=35583
https://bugs.llvm.org/show_bug.cgi?id=34830
https://bugs.llvm.org/show_bug.cgi?id=33560
https://bugs.llvm.org/show_bug.cgi?id=32830
https://bugs.llvm.org/show_bug.cgi?id=32515
https://bugs.llvm.org/show_bug.cgi?id=30693
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=71279
https://bugs.llvm.org/show_bug.cgi?id=34381
https://bugs.llvm.org/show_bug.cgi?id=33695
https://bugs.llvm.org/show_bug.cgi?id=32284
https://bugs.llvm.org/show_bug.cgi?id=32256
https://bugs.llvm.org/show_bug.cgi?id=30775
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83252
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81588
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80932
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80348
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=71488
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70333

Random Testing with YARPGen 196:17

Table 4. Number of times nine selected LLVM crash bugs were found in 72 hours on a 32-thread machine,
with and without generation policies (GP)

Bug ID GP | No GP | GP found the bug more times? | GP is better at 95%?
27638 | 57029 | 67976 no no
27873 23 2 yes yes
29058 9 0 yes yes
30256 21 0 yes yes
30775 1 0 yes no
32284 153 21 yes yes
32316 5843 | 27922 no no
32525 1 0 yes no
33560 1853 1720 yes yes

used a zero-mean test to see if the data support rejecting the null hypothesis “generation policies
do not improve YARPGen’s ability to trigger each bug” with 95% confidence. In summary, in four
cases generation policies allowed a bug to be found that could not be found otherwise, whereas
the reverse situation (a bug could be found without generation policies, but not with them) never
occurred.

4.3 Evaluating an Indirect Impact of Generation Policies

Getting good statistical evidence about real compiler bugs is difficult, so we also investigated a less
direct metric: the impact of generation policies on the number of times different optimizations were
triggered, as measured using optimization counters supported by LLVM and GCC. An optimization
counter simply records the number of times a particular optimization, such as common subexpres-
sion elimination, is used during a compilation. The basis for this experiment is that we believe (but
have not experimentally confirmed) that triggering an optimization more times is better, because
this will be more likely to uncover incorrect corner cases in the optimization. Optimization counters
can be viewed as a kind of domain-specific code coverage metric: they are incremented at locations
in the compiler code where experts believe the resulting information will be interesting or useful.
For example, they are incremented when analysis can draw some conclusion or when optimization
transformation is successfully applied. All of the experimental features described in Section 3.5
were disabled for this experiment.

We conducted an experiment where we ran YARPGen, with and without generation policies,
for 30 repetitions of 48 minutes each (for 24 hours of total testing time) on a 32 core (64 thread)
AMD Ryzen™ Threadripper machine. We performed this experiment separately for GCC and for
LLVM, monitoring a collection of optimization counters that we had identified ahead of time as
being the kind that we intend YARPGen to trigger often. (Other optimization counters, such as
those that measure loop or floating point optimizations, would not have been relevant to this
experiment.) We then used a zero-mean test to put each counter into one of three categories. First,
those where we can be 95% confident that generation policies trigger the counter more times
(i.e., generation policies improve testing capability). Second, those where we can be 95% confident
that generation policies trigger the counter fewer times (i.e., generation policies worsen testing
capability). Finally, a default category where neither of these conditions is true, corresponding to
a null hypothesis where generation policies do not decisively make testing better or worse. The
results are summarized in Table 5.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

https://bugs.llvm.org/show_bug.cgi?id=27638
https://bugs.llvm.org/show_bug.cgi?id=27873
https://bugs.llvm.org/show_bug.cgi?id=29058
https://bugs.llvm.org/show_bug.cgi?id=30256
https://bugs.llvm.org/show_bug.cgi?id=30775
https://bugs.llvm.org/show_bug.cgi?id=32284
https://bugs.llvm.org/show_bug.cgi?id=32316
https://bugs.llvm.org/show_bug.cgi?id=32525
https://bugs.llvm.org/show_bug.cgi?id=33560

196:18 Vsevolod Livinskii, Dmitry Babokin, and John Regehr

Table 5. Effect of generation policies (GP) on optimization counters

Number of Number of

LLVM counters | GCC counters

GP is better 94 67
GP is worse 108 27
Comparable 20 11
Total 222 105

For testing GCC, generation policies have a clear advantage (the benefit of using them outweighs
disadvantages), whereas the LLVM results are mixed. We took a closer look at the counters in
instcombine (LLVM’s large collection of peephole optimizations). Many of these showed an
increase, and those that decreased did not do so catastrophically. These results are shown in Table 6.

Table 6. Effect of generation policies on values of several LLVM optimization counters. “GP is better” means
that a 95% confidence test was passed.

Counter GP is better | Ratio of GP to no GP
instcombine.NumCombined yes 1.04
instcombine.NumConstProp no 0.78
instcombine.NumDeadInst no 0.97
instcombine.NumDeadStore yes 1.2
instcombine. NumExpand yes 7.4
instcombine.NumFactor yes 1.8
instcombine.NumReassoc yes 1.8
instcombine.NumSel yes 155.0
instcombine NumSunkInst no 0.95
instsimplify.NumExpand yes 3.7
instsimplify.NumReassoc yes 2.4
instsimplify.NumSimplified no 0.76

Finally, for every optimization counter, we computed the ratio between the counter values with
and without generation policies. The geometric mean of the resulting ratios is 1.2 for LLVM and
1.4 for GCC. This shows that overall, generation policies increase the number of optimizations
triggered. The important thing, however, isn’t a uniform increase but rather diversity across a large
number of test cases. Therefore, even though generation policies decrease the number of times
some optimizations are triggered, our goals can be met by simply turning off generation policies
for some fraction of YARPGen’s runs, ensuring that optimizations that end up being suppressed by
generation policies get triggered enough times.

4.4 Performance of YARPGen

Figure 7 shows where CPU time is spent during a differential testing run. For this experiment we
spent 24 hours testing GCC and LLVM, each at their -00 and -03 optimization levels, on a machine
with two 28-core (56-thread) Intel® Xeon® Platinum 8180 processors. We used YARPGen in its
standard, out-of-the-box configuration, with the experimental features described in Section 3.5
disabled. We measured CPU consumption from our Python test harness and consequently we did
not measure how much CPU time the harness itself used. However, since it performs almost no
real computation, we do not believe that it contributed significantly. Overall, YARPGen accounted

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

Random Testing with YARPGen 196:19

Table 7. Distribution of CPU time used during 24 hours of differential testing of GCC and LLVM, each at two
optimization levels, on a large multicore system

tool step % of total CPU time
YARPGen | generation 4.98%
gec -O0 compilation 19.54%
execution 0.03%
gee -03 compilation 28.96%
execution 0.03%
clang -O0 | compilation 14.95%
execution 0.03%
clang -O3 | compilation 31.43%
execution 0.03%

for less than 5% of the total CPU time; almost all of the rest of the CPU time was consumed by the
compilers, which are particularly CPU-hungry when they are asked to optimize heavily.

4.5 YARPGen and Code Coverage

The last experiment we performed was to investigate what effect compiling programs generated
by YARPGen had on code coverage of the open-source compilers. For both GCC and LLVM, we
collected code coverage information from all combinations of:

(1) the suite of unit tests that come with the compiler,
(2) the C and C++ programs from SPEC CPU 2017, compiled at -03, and
(3) random testing using YARPGen in its default configuration, invoking the compiler at -03.

For both compilers, we got coverage information using a configure-time option provided by
the compilers’ respective build systems. All of the experimental YARPGen features described in
Section 3.5 were disabled for this experiment.

Tables 8 and 9 summarize the results. A “region” is a unit of coverage that is similar to a basic
block: multiple lines of C or C++ that do not contain control flow can belong to the same region.
However, it is also possible for a single line of code containing internal control flow, such as return
x || y && z, to contain multiple regions.'*

Table 8. Coverage of LLVM source code

Functions | Lines | Regions
YARPGen 28.53% | 33.71% | 24.78%
SPEC CPU 2017 36.14% | 41.90% | 33.68%
SPEC + YARPGen 36.57% | 42.48% 34.34%
% change +0.43% | +0.58% | +0.66%
unit test suite 84.33% | 87.61% | 78.87%
unit tests + YARPGen 84.34% | 87.72% | 79.04%
% change +0.01% | +0.11% | +0.17%
unit tests + SPEC 84.36% | 87.79% | 79.15%
unit tests + SPEC + YARPGen 84.37% | 87.83% | 79.21%
% change +0.01% | +0.04% | +0.06%

4https://clang llvm.org/docs/SourceBasedCodeCoverage html#interpreting-reports

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

https://clang.llvm.org/docs/SourceBasedCodeCoverage.html#interpreting-reports

196:20 Vsevolod Livinskii, Dmitry Babokin, and John Regehr

Table 9. Coverage of GCC source code

Functions | Lines | Branches
YARPGen 40.70% | 34.41% 26.20%
SPEC CPU 2017 52.15% | 45.18% 34.23%
SPEC + YARPGen 52.82% | 47.39% 37.06%
% change +0.67% | +2.21% +2.83%
unit test suite 80.22% | 78.28% 62.82%
unit tests + YARPGen 80.38% | 79.31% 64.41%
% change +0.16% | +1.03% +1.59%
unit tests + SPEC 80.31% | 78.59% 63.28%
unit tests + SPEC + YARPGen 80.44% | 79.46% 64.65%
% change +0.13% | +0.87% +1.37%

Regardless of the coverage metric, it is clear that random testing using YARPGen does not
improve coverage very much. (Our finding is compatible with numbers reported in Table 3 of
the Csmith paper [Yang et al. 2011]). Similarly, the compilers are covered somewhat poorly by
compiling SPEC CPU 2017. We believe that a reasonable takeaway from these results is that none
of function, line, or region coverage is very good at capturing the kind of stress testing that is
generated by a random program generator. It seems possible that a path-based coverage metric
would capture this better.

5 RELATED WORK

Random testing has being used for almost 60 years [Sauder 1962]. A recent survey of compiler
testing by Chen et al. [2020] contains a good summary of this field, and some interesting context is
given by Marcozzi et al. [2019], who studied the character of miscompilation bugs found by fuzzers
vs. those reported by compiler users.

In this section, we focus on the previous tools that are most closely related to YARPGen: ran-
domized program generators. Another random testing technology, based on mutating existing test
cases, less relevant.

5.1 Generative Fuzzers for C and C++ Compilers

McKeeman [1998] coined the term “differential testing” and created a family of generators called
DDT that was extremely expressive—they could generate all valid C programs—but at the expense
of including undefined behaviors. His work had a limited mechanism for avoiding some kinds
of undefined behavior during test-case reduction. However, overall, it would not be suitable for
finding miscompilation errors in modern compilers: the undefined operations would raise too many
false positives.

Quest [Lindig 2005] was specifically designed to test calling conventions, and generated a
great variety of interesting function call signatures. It avoided undefined behavior by simply not
generating potentially dangerous constructs such as arithmetic expressions. Quest did not use
differential testing, but rather generated self-checking programs using assertions. YARPGen and
Quest are almost completely disjoint in terms of bug-finding power.

Eide and Regehr’s improved version of the existing Randprog tool used differential testing to
look for miscompilation of volatile-qualified variables [Eide and Regehr 2008]. Their testing method
relied on the invariant that the number of loads from or stores to a memory location corresponding
to a volatile-qualified variable in C should not change across compilers or optimization levels.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

Random Testing with YARPGen 196:21

The Csmith [Yang et al. 2011] program generator avoided some undefined behaviors using
static analysis, but used wrapper functions to prevent unsafe arithmetic operations. The goal of
entirely avoiding wrapper functions sets YARPGen apart from Csmith. However, Csmith was more
expressive than YARPGen in certain respects; it supported reasonably expressive pointer arithmetic,
for example.

The Orange [Nagai et al. 2012, 2013, 2014] family of random code generators was initially focused
on finding compiler bugs, but their subsequent work shifted its focus towards missed optimization
opportunities and other fuzzing techniques [Hashimoto and Ishiura 2016; Nakamura and Ishiura
2016]. The first Orange test case generator simply discarded expressions that contained undefined
behavior [Nagai et al. 2012]; the second version added constants to shift expressions away from
being undefined [Nagai et al. 2013]; and the third one added operation flipping [Nagai et al. 2014]:
a scheme for replacing operations that lead to undefined behavior with a related operation that
avoids the problem. YARPGen builds directly upon this previous work, but support many additional
language features (control flow, structures, arrays, pointers, etc.). Orange tracked all of the values
in the test during the generation, so at the end of the test it is able to create direct comparisons
with expected value. This would make automated test case reduction difficult; YARPGen avoids
this problem using differential testing.

Ldrgen [Barany 2018a,b] was designed to search for missed optimization opportunities. A
motivating observation for this work was that test cases generated by Csmith often contain a lot
of dead code that is eliminated by compiler, leading to a relatively small amount of machine code
being emitted at the end. Ldrgen creates tests that are guaranteed to contain only live code using
the Frama-C [Cuoq et al. 2012] static analyzer as a starting point. This generator does not avoid
undefined behavior (except for limited attempts to avoid division by zero and oversized shifts).
However, the generator does have good expressiveness and it generates code that is guaranteed to
not be eliminated by the compiler.

A relatively recent trend is machine-learning-based test-case generation for compilers. Deep-
Fuzz [Liu et al. 2019] targets C compilers; 82% of its outputs can be compiled and optimized. This
effort was aimed at finding compiler crash bugs, and did not attempt to avoid undefined behaviors.
A second effort, DeepSmith [Cummins et al. 2018], mainly targets OpenCL compilers. It generates
tests that contain undefined and non-deterministic behavior, and then relies on third-party tools to
filter out undesirable test cases that would have raised false positives.

The promise of machine-learning-based test-case generation is that by inferring the structure of
the language to be generated, elaborate engineering efforts, of the kind that we did for YARPGen,
can be avoided. However, it remains to be seen if the power of machine learning can be extended
to deep semantic properties such as freedom from undefined behavior.

5.2 Generative Fuzzers for Other Languages

TreeFuzz [Patra and Pradel 2016] is based on probabilistic, generative models. It uses a set of
examples to capture properties of the input language. The authors used this fuzzer to test JavaScript
and HTML. Glade [Bastani et al. 2017] infers a target grammar from a set of examples and black-box
access to a grammar parser. It was used to test Python, Ruby, and JavaScript. Dewey et al. [2015]
used Constraint Logic Programming to test the Rust typechecker. To increase expressiveness, they
used an idea that is related to swarm testing [Groce et al. 2012]: instead of creating one generator
that uses all of the language features, they created different generators for selected subsets of the
language.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

196:22 Vsevolod Livinskii, Dmitry Babokin, and John Regehr

5.3 Towards Diversity in Randomly Generated Test Cases

An early compiler fuzzer by Burgess and Saidi [1996] was designed with the goal of maximizing
the number of optimization opportunities. Their Fortran generator explicitly generated common
sub-expressions, linear induction variables, which are subject to strength reduction, and predefined
patterns of arithmetic expressions. Other optimizations, such as copy propagation, constant folding,
algebraic optimizations, code motion, and dead code elimination, were assumed to happen due
to random nature of the generation process. This paper describes an idea that our generation
policies build upon; they manually tuned probabilities in their generator in such a way that
certain optimizations, such as constant folding and algebraic transformations, were triggered more
frequently. YARPGen significantly extends this idea by supporting many more policies and by
applying them automatically during the generation process (Section 3.3). The only shared feature
between this previous work and YARPGen is the explicit generation of common subexpressions.

Swarm testing is an inexpensive way to improve test case diversity [Groce et al. 2012]. The idea
is to randomly flip options in a generator that already exist for the purpose of disabling language
features in generated test cases. In its original implementation, Swarm was designed as a stand-alone
project that used Csmith command-line interface to alter probabilities of random decisions of each
generated test. It could only alter global properties that were exposed by the developers externally.
YARPGen has a similar built-in mechanism: parameter shuffling (Section 3.3). The motivation is
the same: we want to increase diversity in generated tests by limiting or altering random choice
decisions. Our implementation is significantly finer grained since we built generation policies into
YARPGen from the start.

Adaptive Random Testing [Chen et al. 2010; Huang et al. 2019] is a technique for explicitly
generating diverse test cases. The idea is that, to maximize test diversity, each new test case should
be as dissimilar as possible to those that were already generated. This requires an explicit distance
metric to be defined so that each new test can be chosen via distance maximization [Biagiola et al.
2019]. It was not clear to us whether there exists a sensible distance metric for the high-dimensional
space occupied by C and C++ programs, and we did not pursue this direction in YARPGen.

5.4 Mutation-Based Compiler Fuzzing

Metamorphic testing is based on the idea that certain transformations, applied to a test case, should
not change the behavior of that test case. Equivalence modulo inputs (EMI) is a family of techniques
that exploited this idea to find (as far as we know) more compiler bugs than any other single
technique. Orion [Le et al. 2014] pruned dead code from test cases and Athena [Le et al. 2015] had
the capability of adding dead code. Hermes [Sun et al. 2016] extended this technique by adding the
ability to modify live code in a way that did not change the result of the test case.

Mutation-based techniques have advantages and disadvantages with respect to the generation-
based approach. The primary advantage of mutation is that since it builds on existing test cases,
the expressiveness of the generated code is limited only by the expressiveness of the test cases that
are used as the basis for mutation. The main disadvantage is that the generator is not stand-alone
(for example, various EMI efforts used programs generated by Csmith as a starting point) and
cannot easily guarantee the absence of undefined behavior in test cases. Our view is that the
mutation-based and generation-based approaches to fuzzing are sufficiently different that they
cannot be compared directly. Moreover, neither approach is likely to subsume the other: in practice,
we need to employ both kinds of fuzzing.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

Random Testing with YARPGen 196:23

6 CONCLUSION

YARPGen is effective at finding bugs in modern C and C++ compilers, even when they have been
heavily tested by other random test-case generators. Over a two-year period, we found and reported
83 previously unreported bugs in GCC, 62 in LLVM, and 76 in the Intel® C++ Compiler. Many
of these bugs have been fixed. Some of the bugs we found were independently rediscovered by
the developers of large software projects, confirming that at least some of the bugs triggered by
YARPGen also affect application code. Moreover, in cases where we reported a bug that was also
reported by application developers, the reduced test cases in our bug reports were considerably
smaller.

Our first main research contribution is generation policies: a mechanism for improving diversity
in random programs. Generation policies also increase the number of times targeted optimizations
are performed by LLVM by 20%, and by 40% for GCC, during a given amount of time devoted
to random testing, increasing the likelihood that optimization bugs will be triggered. Another
contribution is a mechanism for avoiding undefined behavior for relatively complex code including
control flow, pointers, and arrays. Finally, YARPGen comes with a testing framework that automates
essentially all tasks related to random compiler testing except for actually reporting the bugs.

ACKNOWLEDGMENTS

This material is based on work supported by a grant from the Intel® Corporation. The authors
would like to thank GCC, LLVM, and Intel ® C++ Compiler development teams for their help and
cooperation.

REFERENCES

Domenico Amalfitano, Nicola Amatucci, Anna Rita Fasolino, Porfirio Tramontana, Emily Kowalczyk, and Atif M. Memon.
2015. Exploiting the Saturation Effect in Automatic Random Testing of Android Applications. In Proceedings of the Second
ACM International Conference on Mobile Software Engineering and Systems (Florence, Italy) (MOBILESoft ’15). IEEE Press,
33—43.

Gergd Barany. 2018a. Finding Missed Compiler Optimizations by Differential Testing. In Proceedings of the 27th International
Conference on Compiler Construction (Vienna, Austria) (CC 2018). Association for Computing Machinery, New York, NY,
USA, 82—92. https://doi.org/10.1145/3178372.3179521

Gergd Barany. 2018b. Liveness-Driven Random Program Generation. In Logic-Based Program Synthesis and Transformation,
Fabio Fioravanti and John P. Gallagher (Eds.). Springer International Publishing, Cham, 112-127.

Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017. Synthesizing Program Input Grammars. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017).
Association for Computing Machinery, New York, NY, USA, 95—110. https://doi.org/10.1145/3062341.3062349

Matteo Biagiola, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2019. Diversity-Based Web Test Generation. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,
142—153. https://doi.org/10.1145/3338906.3338970

Marcel B6hme and Brandon Falk. 2020. Fuzzing: On the Exponential Cost of Vulnerability Discovery. In Proceedings of the
2020 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software.
11.

Colin] Burgess and M Saidi. 1996. The automatic generation of test cases for optimizing Fortran compilers. Information and
Software Technology 38, 2 (1996), 111-119.

Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao, and Lu Zhang. 2020. A Survey of
Compiler Testing. ACM Comput. Surv. 53, 1, Article 4 (Feb. 2020), 36 pages. https://doi.org/10.1145/3363562

Tsong Yueh Chen, Fei-Ching Kuo, Robert G. Merkel, and T. H. Tse. 2010. Adaptive Random Testing: The ART of Test Case
Diversity. 7. Syst. Softw. 83, 1 (Jan. 2010), 60—66. https://doi.org/10.1016/j.jss.2009.02.022

Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. 2018. Compiler Fuzzing through Deep Learning. In
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis (Amsterdam, Netherlands)
(ISSTA 2018). Association for Computing Machinery, New York, NY, USA, 95—105. https://doi.org/10.1145/3213846.
3213848

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

https://doi.org/10.1145/3178372.3179521
https://doi.org/10.1145/3062341.3062349
https://doi.org/10.1145/3338906.3338970
https://doi.org/10.1145/3363562
https://doi.org/10.1016/j.jss.2009.02.022
https://doi.org/10.1145/3213846.3213848
https://doi.org/10.1145/3213846.3213848

196:24 Vsevolod Livinskii, Dmitry Babokin, and John Regehr

Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. 2012. Frama-C: A
Software Analysis Perspective. In Proceedings of the 10th International Conference on Software Engineering and Formal
Methods (Thessaloniki, Greece) (SEFM’12). Springer-Verlag, Berlin, Heidelberg, 233—247. https://doi.org/10.1007/978-3-
642-33826-7_16

K. Dewey, J. Roesch, and B. Hardekopf. 2015. Fuzzing the Rust Typechecker Using CLP (T). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 482—493.

Eric Eide and John Regehr. 2008. Volatiles are miscompiled, and what to do about it. In Proceedings of the 8th ACM
international conference on Embedded software. 255-264.

Alex Groce, Chaogiang Zhang, Eric Eide, Yang Chen, and John Regehr. 2012. Swarm Testing. In Proceedings of the
2012 International Symposium on Software Testing and Analysis (Minneapolis, MN, USA) (ISSTA 2012). Association for
Computing Machinery, New York, NY, USA, 78—88. https://doi.org/10.1145/2338965.2336763

Atsushi Hashimoto and Nagisa Ishiura. 2016. Detecting arithmetic optimization opportunities for C compilers by randomly
generated equivalent programs. IPST Transactions on System LSI Design Methodology 9 (2016), 21-29.

R. Huang, W. Sun, Y. Xu, H. Chen, D. Towey, and X. Xia. 2019. A Survey on Adaptive Random Testing. IEEE Transactions on
Software Engineering (2019).

International Organization for Standardization 2011. ISO/IEC 9899:201x: Programming Languages—C. International Organi-
zation for Standardization. http://www.open-std.org/jtc1/sc22/wgl4/www/docs/n1570.pdf.

International Organization for Standardization 2012. ISO/IEC N3337: Working Draft, Standard for Programming Language C++.
International Organization for Standardization. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf.

Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation via Equivalence modulo Inputs. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and Implementation (Edinburgh, United Kingdom)
(PLDI ’14). Association for Computing Machinery, New York, NY, USA, 216—226. https://doi.org/10.1145/2594291.2594334

Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding Deep Compiler Bugs via Guided Stochastic Program Mutation. In
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and
Applications (Pittsburgh, PA, USA) (OOPSLA 2015). Association for Computing Machinery, New York, NY, USA, 386—399.
https://doi.org/10.1145/2814270.2814319

Christian Lindig. 2005. Random Testing of C Calling Conventions. In Proceedings of the Sixth International Symposium
on Automated Analysis-Driven Debugging (Monterey, California, USA) (AADEBUG’05). Association for Computing
Machinery, New York, NY, USA, 3—12. https://doi.org/10.1145/1085130.1085132

Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao Wu. 2019. Deepfuzz: Automatic generation of syntax valid ¢ programs
for fuzz testing. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 1044-1051.

Michaél Marcozzi, Qiyi Tang, Alastair Donaldson, and Cristian Cadar. 2019. A Systematic Impact Study for Fuzzer-Found
Compiler Bugs. arXiv preprint arXiv:1902.09334 (2019).

William M. McKeeman. 1998. Differential Testing for Software. Digital Technical Journal 10, 1 (Dec. 1998), 100-107.

Eriko Nagai, Hironobu Awazu, Nagisa Ishiura, and Naoya Takeda. 2012. Random testing of C compilers targeting arithmetic
optimization. In Workshop on Synthesis And System Integration of Mixed Information Technologies (SASIMI 2012). 48-53.

Eriko Nagai, Atsushi Hashimoto, and Nagisa Ishiura. 2013. Scaling up size and number of expressions in random testing of
arithmetic optimization of C compilers. In Workshop on Synthesis And System Integration of Mixed Information Technologies
(SASIMI 2013). 88-93.

Eriko Nagai, Atsushi Hashimoto, and Nagisa Ishiura. 2014. Reinforcing random testing of arithmetic optimization of C
compilers by scaling up size and number of expressions. IPST Transactions on System LSI Design Methodology 7 (2014),
91-100.

K. Nakamura and N. Ishiura. 2016. Random testing of C compilers based on test program generation by equivalence
transformation. In 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). 676—679.

Georg Ofenbeck, Tiark Rompf, and Markus Piischel. 2016. RandIR: Differential Testing for Embedded Compilers. In
Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala (Amsterdam, Netherlands) (SCALA 2016). Association for
Computing Machinery, New York, NY, USA, 21—30. https://doi.org/10.1145/2998392.2998397

Jibesh Patra and Michael Pradel. 2016. Learning to fuzz: Application-independent fuzz testing with probabilistic, generative
models of input data. TU Darmstadt, Department of Computer Science, Tech. Rep. TUD-CS-2016-14664 (2016).

John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. 2012. Test-Case Reduction for C Compiler
Bugs. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation (Beijing,
China) (PLDI ’12). Association for Computing Machinery, New York, NY, USA, 335—346. https://doi.org/10.1145/2254064.
2254104

Richard L. Sauder. 1962. A General Test Data Generator for COBOL. In Proceedings of the May 1-3, 1962, Spring Joint
Computer Conference (San Francisco, California) (AIEE-IRE ’62 (Spring)). Association for Computing Machinery, New
York, NY, USA, 317—323. https://doi.org/10.1145/1460833.1460869

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1145/2338965.2336763
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1145/1085130.1085132
https://doi.org/10.1145/2998392.2998397
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/1460833.1460869

Random Testing with YARPGen 196:25

Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding Compiler Bugs via Live Code Mutation. In Proceedings of the
2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications
(Amsterdam, Netherlands) (OOPSLA 2016). Association for Computing Machinery, New York, NY, USA, 849—863.
https://doi.org/10.1145/2983990.2984038

David B. Whalley. 1994. Automatic Isolation of Compiler Errors. ACM Trans. Program. Lang. Syst. 16, 5 (Sept. 1994),
1648—1659. https://doi.org/10.1145/186025.186103

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Understanding Bugs in C Compilers. In Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation (San Jose, California, USA)
(PLDI ’11). Association for Computing Machinery, New York, NY, USA, 283—294. https://doi.org/10.1145/1993498.1993532

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 196. Publication date: November 2020.

https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/186025.186103
https://doi.org/10.1145/1993498.1993532

	Abstract
	1 Introduction
	2 Background
	2.1 Random Differential Testing
	2.2 Undefined Behavior, Unspecified Behavior, and Implementation-Defined Behavior

	3 YARPGen
	3.1 Avoiding Undefined Behavior
	3.2 Generating Code
	3.3 Generation Policies
	3.4 Automation
	3.5 Experimental Features
	3.6 Limitations
	3.7 Implementation and Deployment

	4 Evaluation
	4.1 Summary of a Testing Campaign
	4.2 Evaluating the Direct Impact of Generation Policies
	4.3 Evaluating an Indirect Impact of Generation Policies
	4.4 Performance of YARPGen
	4.5 YARPGen and Code Coverage

	5 Related Work
	5.1 Generative Fuzzers for C and C++ Compilers
	5.2 Generative Fuzzers for Other Languages
	5.3 Towards Diversity in Randomly Generated Test Cases
	5.4 Mutation-Based Compiler Fuzzing

	6 Conclusion
	Acknowledgments
	References

