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Abstract

Computer systems do not exist in isolation: they must
interact with the world through I/O devices. Our work,
which focuses on constrained embedded systems, pro-
vides a framework for verifying device driver software
at the machine code level. We created an abstract de-
vice model that can be plugged into an existing formal
semantics for an instruction set architecture. We have in-
stantiated the abstract model with a model for the serial
port for a real embedded processor, and we have verified
the full functional correctness of the transmit and receive
functions from an open-source driver for this device.

1 Introduction

Formal verification of high-level software is relatively
well understood. Interesting recent examples include
correctness proofs for a realistic compiler [20], a
LISP interpreter [25], and an operating system ker-
nel [18]. Device drivers—routines that directly interact
with peripherals—are less well understood, but they are
worth verifying since they are part of the trusted comput-
ing base for essentially all safety-critical computer sys-
tems.

Our goal is to prove full functional correctness of
bottom-level device code that directly interacts with
hardware devices through I/O registers. Our approach re-
quires substantial manual effort, but the resulting proofs
are stronger than those produced in previous work: we
guarantee not only that the hardware device is driven in
a functionally correct fashion, but also that its timing re-
quirements are met. This approach is too detail-oriented
to scale up to large driver stacks that may be thousands
of lines; we intend to integrate our manual proofs about
bottom-level routines with more automated methods for
reasoning about the rest of the driver stack.

Starting with Fox et al.’s semantics for the ARM in-
struction set architecture [14, 23], which models only

the ARM core and memory, we created a framework
for plugging in models of hardware peripherals typically
found on an ARM-based systems-on-chip (SoC), such as
communication ports, timers, and analog-to-digital con-
verters. As a proof-of-concept, we instantiated our ab-
stract device model with a UART (serial port) found on
a real ARM processor. We then took a simple open-
source driver for this UART, compiled it to ARM object
code, and verified the functional correctness of its trans-
mit and receive functions. Our results are all proved in
HOL4 [15]. So far, our work is limited to devices and
drivers that do not use interrupts or direct memory ac-
cess (DMA).

2 Timing Requirements

Peripherals are clocked independently of the processor
core. Therefore, even on a uniprocessor, device drivers
execute in parallel with the devices they manage. One
approach to verifying device drivers is to model the hard-
ware as an independent thread, permitting thread veri-
fication techniques to be leveraged. However, this ap-
proach abstracts away timing information, preventing
timing requirements from being verified. Timing con-
straints are not only important in device drivers, but also
embedded systems often have timing constraints as part
of their top-level specifications. For example, an auto-
motive brake-by-wire system might be required to begin
brake drum actuation within 50 ms of receiving a brake
pedal input.

Let’s look at a more detailed example: a hypothetical
embedded system with two peripherals. One is a device
that collects data from the environment at a fixed rate and
stores a sample into a hardware FIFO every s cycles. The
driver for this sensor copies a sample from the FIFO to
a buffer in memory, which costs sd cycles. The other
device is a transmitter that sends out of its own hard-
ware FIFO, one sample every t cycles. Its driver copies a
sample from the memory buffer into the transmit FIFO,



which costs td cycles.
Assume that the drivers are called in a synchronous

fashion from a tight loop that repeatedly reads a sample
and then transmits a sample. The loop body executes in
sd+ td+ c cycles, where c is the loop overhead.

For a simple system without added synchronization,
t ≤ sd + td + c ≤ s must hold or else samples will
be dropped. If t > sd + td + c, either the buffer in the
transmitter will be overrun or the buffer in memory will
be overrun. If sd + td + c > s, either the buffer in the
sensor will be overrun or the buffer in the memory will
be overrun.

To specify and verify properties like this, a rather low-
level model of the interaction between devices and their
drivers are needed. The rest of this paper describes such
a model.

3 Modeling a Processor with Devices

This section describes our system model, which makes
it possible to plug devices into an existing model of an
ARM processor core. Our device model, like the ARM
model, is formalized in HOL4. All theorems listed in this
paper have been proved in HOL4.

3.1 Background: Cambridge ARM seman-
tics

Our work is based on Fox et al.’s formal model of the
ARMv4 instruction set architecture [14, 23]. It includes
banked registers including special purpose registers, ex-
ceptions, status flags, co-processors and a data bus. A
system model with no co-processors and no interrupt
handling is built by extending the core model with mem-
ory through the data bus. Its next-state operation is at
the instruction level; it takes the system state as the input
and returns the next state. There are tools to automati-
cally prove theorems about the semantics of individual
concrete ARMv4 instructions.

3.2 System model
We model an embedded system using this record:

{next : state → state, undefed : state → bool} (1)

→ is used to represent function types. state is the type of
the state of the system. next is used to encode the tran-
sition of the system, which includes fetching and pars-
ing the instruction, fetching data, computing, updating
registers, memory and the state of devices. The undefed
predicate tests if the state is erroneous. The system en-
ters an erroneous state when the processor core encoun-
ters an exceptional condition (our work does not consider

the handling of interrupts or processor exceptions), when
the processor accesses the memory addresses which are
mapped to some device which is not present in the sys-
tem, or when a device-specific error is encountered (for
example, reading a device register that is in an indeter-
minate state or writing to a read-only device register).

We require that:

∀ s. undefed s =⇒ undefed (next s) (2)

That is, the erroneous state is sticky and we are not con-
cerned with the system’s subsequent behavior. One of
our goals will be to prove that device drivers cannot put
the system into an erroneous state.

A function step describes the effect of consecutive ap-
plication of next:

step n s = if n = 0 then s

else next (step (n− 1) s) (3)

For step to describe a running system, memory values
including both instructions and data must be part of the
system state. But that is not enough. For example, the
processor can use values obtained by a sensor device
from the environment to change the memory content. For
cases like this, we require the state of the related device
contain input streams, which need to contain the infor-
mation from the future.

3.3 Specifying properties
We use the following construct to specify the properties
of a state for the system:

sys pred (P, I, Q) =
∀ s. P s ∧ ¬undefed s =⇒

∃ t. Q (step t s) ∧
(∀ n. n ≤ t =⇒

I (step n s) ∧
¬undefed (step n s)) (4)

This is a shallow embedding of Hoare logic [13, 16] with
P, I, Q as the predicates of precondition, global invariant
and postcondition with type state → bool . Note that this
is about complete correctness.

To use this construct to describe the properties of a
program, the program must be specified in terms of the
current program counter and instruction memory. The
value of the program counter and the instruction mem-
ory should be specified as part of P. We represent the
program as a set of pairs of an instruction and its ad-
dress. We use code p s to indicate a program p is part of
the memory in a system state s.

In most cases, the part of memory which holds the pro-
gram should be left unchanged at every moment. That
should be part of I.



3.4 Abstract device model

A peripheral device runs in parallel with the processor
core. Its state can change with or without interacting with
the core or with the external world. The core interacts
with devices using memory-mapped I/O: a collection of
dedicated registers that are mapped into the processor’s
address space. From the perspective of the core, these
registers are accessed like memory locations, though of
course device registers do not in general contain the last
value written to them, and both reads and writes may
have side effects.

Based on this observation, we design an abstract type
to represent a generic peripheral:

{mapped : addr → bool,

mappedRead : addr → τ → (word ∗ bool ∗ τ),
mappedWrite : addr → word→ τ → (bool ∗ τ),
transit : τ → τ, wellform : τ → bool} (5)

Here addr and word are types for memory addresses and
data. τ is the type for the state of the device, which varies
depending on the individual device. ∗ is used to construct
a tuple. mapped describes if an address is mapped to
this device. mappedRead and mappedWrite describe the
effect of read and write commands from the processor
core. Possible side effect on the device states is captured
by τ in input and return types. The flag with bool type
indicates if an error occurs during the memory-mapped
access of the device registers. transit describes the au-
tonomous transition of the device itself without the com-
mand from the processor core. wellform tells if a state of
the device is wellformed.

A concrete device such as a UART is modeled as an
instance of this abstract model. τ is instantiated with a
concrete type, and all the members are assigned func-
tions which model the concrete device.

3.5 Extended system model

An embedded SoC is a processor core plus a collection
of peripherals. We start with a processor core that is ex-
tended with a null device whose mapped function returns
false for all addresses. We can then build a realistic SoC
by adding more devices on top of this bare one, as shown
in Figure 1. Device models can be repeatedly composed
as long as they fail to share mapped registers (real de-
vices have this property, generally).

The state of a system with devices can be modeled us-
ing this record:

{regs : regnum→ word,mem : addr → word,

devSt : τ, undef : bool}. (6)
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Figure 1: System with devices

Here regnum is the type of a register, regs represents the
register store, which includes the data registers and spe-
cial purpose registers such the program counter. We use
r0 to indicate register 0, r14 to indicate register 14, etc.
pc is used to indicate the program counter. They are all
of regnum type. mem represents the memory. devSt rep-
resents the state of the devices. The system is in an erro-
neous state when undef is set.

Given a state s, undefed s = s.undef. next should im-
plement the execution of the processor core and transit
for the device in parallel. They are independent of each
other except when the instruction is a command to the
device. In this scenario, the processor core commands
the device to run mappedRead or mappedWrite and reads
data from or writes the data to the specific device regis-
ter. It may set undef based on the results of these op-
erations. At the same time, when running mappedRead
or mappedWrite the device updates its state. The device
finally updates its state again with transit.

This theorem establishes that adding a new device
does not break a system that was previously working:

Theorem 1: If a system s does not run into an erro-
neous state in a n steps running a program p, it will not
run into an erroneous state in n steps running p with de-
vice d plugged in.

Proof: It is obvious that p does not access the ad-
dresses mapped to d in these n steps. Otherwise it would
have run into an erroneous state. So there is no chance
for d to introduce errors to p in these n steps, since s and
d are independent of each other in these n steps.

Also, if we can verify a property of a program in a
system with only some set of peripherals, the property
still holds when more devices are added:

Theorem 2: For any system s with device deva , if
sys pred (P, I, Q) holds on it, then it holds for the system
with one more device devb added, considering only the
state components which resembles the state of s.

Proof: sys pred (P, I, Q) actually specifies a se-



quence of transitions of the system. Similar to Theorem
1, in the new system, those components resembling s and
devb are independent of each other in the sequence. So
the sequence specified by sys pred (P, I, Q) is still same.

4 A Realistic UART Model

We instantiate the abstract device (5) with a model of
the UART0 from an NXP LPC2129 chip [17]. This is a
popular embedded processor based on the ARM7TDMI
architecture. It targets industrial control applications.

4.1 UART model
Our UART model is conservative: while it does not
model all behaviors of the real device, it should be the
case that any code that is verified against the model will
also work when running on the hardware. Table 1 sum-
marizes our model’s coverage of the UART’s register set,
where dlab stands for divisor latch access bit which con-
trols if registers DLL and DLM are accessible. It is the
7th bit in the LCR register. Our model omits interrupts
and modem functionality. The model has an internal
buffer with size of one for receiving and transmitting.
It does not model line errors or wire encoding since it is
assumed that whole characters are transmitted. It does
not model the break function.

In our model, a register access can lead the system into
undefined states in the following scenarios:

1. When the register is not modeled. For example, ac-
cess of the addresses reserved for the modem func-
tion is undefined.

2. When a write-only register is read, or when a read-
only register is written.

3. When a reserved bit is accessed.

4. When data corruption may occur. For example the
receiving buffer register is read when its value is
indeterminate.

The state of such a UART model is represented with a
record:

{RBR : byte, THR : byte, SCR : byte,
DLL : byte, DLM : byte,
dlab : bool , rdr : bool , oe : bool ,
thre : bool , temt : bool , clk : num,
in : num → byte option,
out : num → byte option}; (7)

Here byte is the type for 8-bit byte. num is the type
for the natural number. Note that registers LCR and LSR

are broken down into boolean flags. Access of FCR is
modeled as side effect only. THR and out form the output
queue, and RBR and in form the input queue.

One important feature is that its speed is parameter-
ized relative to the core speed. We are not modeling
the exact baud rate. But in a similar fashion we use the
16-bit word value from DLM and DLL as a slow-down
factor b unless its value is 0, in which case we set b to
be 1. For a UART state ps, slowFac ps returns b. The
UART only performs meaningful state transition every b
cycles. To do so, clk is incremented for each instruction
cycle. But it will be reset to 0 when it reaches b. Only at
that moment the device performs transmitting and receiv-
ing function, updates its registers and shifts its input and
output streams. At other moments when clk < b − 1 ,
the UART only updates clk for book-keeping purpose.
However, The memory-mapped access from the proces-
sor core however can occur at any clk value.

The incoming and outing data streams are modeled as
functions in and out from natural numbers to byte op-
tion. An option type has two constructors, THE and
NONE. THE x wraps x into the particular option type,
while NONE indicates nothing is wrapped, which is suit-
able to describe that at some moments the input or output
stream are idle with no characters transmitted. With ev-
ery b cycles of instruction execution, the two streams will
shift. The new value for in is

λt. in (t+ 1) (8)

the new value for out is

λt. if t = 0 then d else out (t− 1) (9)

where d is the character just sent out.

4.2 Describing the property of UART
We describe the property of the UART device in terms of
strings extracted from the output queue and input queue.
Only non-empty strings are considered. The predicates
are defined in Figure 2. Suppose hd, tl return the first
character and the tail of a string respectively, and TRUE
stands for boolean value true. UART states which are not
well-defined are excluded by the wellform function. An
input stream can be shifted by cutStrm. For the transmit
function, outStr s os describes that s is the most recent
string in the output stream os. And sentStr s ps describes
that s is the most recent string sent out by the processor
in the UART state ps. For the receive function, inStr s is
describes that s is the string in the input stream is. And
inpStr s ps describes that s is the next string to be re-
ceived by the processor in the UART state ps. inInp m c
ps describes that a character c is at most at slot m in the
input stream of ps. shifted ps2 ps1 is a weak invariant for



Register Address
offset

Function Access When is read
undefined?

When is write
undefined?

Side-effect
of read

Side-effect of write

RBR 0 receiver buffer when
¬dlab

R no data received never reset data
ready flag

none

THR 0 transmit holding when
¬dlab

W never no room for
transmission

none reset empty transmis-
sion queue flags

DLL 0 divisor latch LSB
when dlab

RW never never none none

DLM 4 divisor latch MSB
when dlab

RW never never none none

FCR 8 FIFO control W always overwrite re-
served bits or
disable FIFOs

none reset transmission or
receiving queue and
flags

LCR 12 line control RW never never none assign dlab flag
LSR 20 line status R never always reset overrun

flag
none

SCR 28 scratch pad RW never never none none

Table 1: UART model coverage. R indicates read only registers; W indicates write only. RW indicates no restriction
on access. The first four columns are from the LPC2129 manual.

wellform ps = (¬ps.temt ∨ ps.thre) ∧ (¬(ps.clk = 0 ) ∨ ps.thre) ∧ ps.clk < slowFac ps

cutStrm n s = λx .s (n + x )

outStr s os = ∃n.(os n = SOME (hd s)) ∧ (∀l .l < n =⇒ (os l = NONE)) ∧ outStr (tl s)(cutStrm (n + 1 ) os)

sentStr s ps = if ¬ps.thre then (ps.THR = h) ∧ outStr (tl s) ps.out else outStr s ps.out

inStr s is = ∃n.(is n = SOME h) ∧ (∀l.l < n =⇒ (is l = NONE)) ∧ inStr (tl s) (cutStrm (n + 1 ) is)

inpStr s ps = if ps.rdr then (ps.RBR = h) ∧ inStr (tl s) ps.in else inStr s ps.in

inInp m c ps = ps.rdr ∧ (c = ps.RBR) ∨ ∃n.n < m ∧ (ps.in n = SOME c)

shifted ps2 ps1 = ∃n.(ps2 .in = cutStrm n ps1 .in) ∧ if ps2 .rdr then inInp n ps2 .RBR ps1 else TRUE (10)

Figure 2: Definitions used to describe the property of the UART device

the receive function. It describes that the input queue in
ps2 results from the one in ps1 after some time.

5 Correctness of a UART Driver

We started with a freely available driver for the
LPC2129’s UART0 that is implemented in C, and com-
piled it to ARM assembly using GCC 4.1.1. We made
one change to the compiler’s output, which was to
change the “bx” instruction that implements a return-
from-function to a “mov” instruction. We did this be-
cause “bx” is not modeled in our current ARM tool
which does not support the THUMB mode. We proved
full correctness for three functions which interact with
device registers: the putch function transmits a charac-
ter, the getch function which attempts to read a character
from RBR, and the getchW function which performs a
blocking read from RBR. The code is shown in Figure 3.

5.1 UART model soundness
Our correctness claim is based on the correctness claims
of other components. We assume that the ARM model in

HOL4 is correct (this ARM model has been used in sev-
eral projects, and an earlier version was verified against
a specific instance of the ARM hardware). Then we de-
pend on the fact that the abstract device model attached
to the ARM model is sound as shown in Section 3.5. The
soundness of the UART model is proved in the process.
For example, We have proved the following properties
regarding the transmitting function, among others:

Theorem 3: No character will be appended to the out-
put under any following conditions:

1. no memory-mapped read or write occurs,

2. a read occurs,

3. a write occurs but the THR register is not accessible
or not written, and the FCR register is not written
(to reset the transmission queue).

In fact, the only scenario in which a character is ap-
pended to the output is when the THR register is written
with thre set.



<Putch>: <Getch>: <GetchW>:
ldr r2, #0xe000c000 ldr r2, #0xe000c000 ldr r2, #0xe000c000
ldrb r3, [r2, #20] ldrb r3, [r2, #20] ldrb r3, [r2, #20]
tst r3, #32 tst r3, #1 tst r3, #1
beq <Putch> ldrneb r3, [r2] beq <GetchW>
and r0, r0, #255 mvn r0, #0 ldrb r0, [r2]
strb r0, [r2] andne r0, r3, #255 mov pc, lr
mov pc, lr mov pc, lr

Figure 3: The ARM assembly code for putch, getch and getchW

5.2 Memory safety and control flow in-
tegrity

To prove the full correctness we need to prove memory
safety and control flow integrity of the driver code. They
are a useful part of the safety properties from the cor-
rectness specification, and also they are important for
proof management. Memory safety requires that only
a given range of registers in the ARM core and memory
is accessed. This implies compliance to the calling con-
vention. So it is useful when proving the callers of the
driver functions. It also implies the separation of instruc-
tion memory, which is essential to prove control flow in-
tegrity.

Ideally, we could know what addresses or registers are
accessed in an ARM instruction when it is decoded. Here
we use a different approach by examining the change of
content in the memory and registers. Since the access
which could cause side effects is limited to access of
memory-mapped device registers, of which we already
take care, this approach serves our purpose well. Func-
tion sepMem accSet s1 s2 just does this. It checks two
system states s1 and s2 to see if any address not in the
set addrSet have the same content. sepReg regSet s1 s2
does the same thing for the registers across two states.
These two predicates are rather naive, an embedding of
separation logic here would be nice.

Control flow integrity specifies that only some cer-
tain sequences of PC values can occur in the execution.
For example, when putch is busy waiting, it just strictly
follows the loop. Control flow integrity is necessary to
prove the loop invariant, or generally any data flow, and
thus helps us to sequentially compose the theorems about
segments of the execution together to prove the final the-
orem. In the final theorem we did not include the step-
wise specification of the control flow.

5.3 Correctness of the UART driver
We proved the full correctness theorems of three func-
tions: putch, getch, and getchW. putch first waits for thre
being set. It will then copy the byte from register r0 to
THR. getch copies the byte from RBR to register r0 if rdr

is set. Otherwise it returns 0xff. getchW first waits for
rdr being set. It will then copy the byte from RBR to reg-
ister r0. Note that if getchW is used to receive a string,
character may be dropped if the UART is too fast.

The correctness property includes both liveness and
safety properties. For all three functions, the basic live-
ness property states that the function will return to its
caller. And the basic safety property states that mem-
ory safety is observed, the operating configuration of the
UART device is not changed in terms of its speed (de-
scribed by the slow-down factor) and the controlling bit
dlab, and the system does not run into any erroneous
state. The following three theorems states the correct-
ness of the three functions.

Theorem 4: putch will successfully appended the
character from r0 to the string already sent out in the
output queue. The basic safety and liveness properties
hold in the process.

Theorem 5: getch will successfully read a character
from the input queue or return 0xff. The basic safety and
liveness properties hold in the process.

Theorem 6: If there is a string in the input queue, and
the UART is slow enough, function getchW will success-
fully read the next character from the input stream. In the
process, no overrun error occurs to the UART, and the
basic safety and liveness properties hold.

The correctness of getchW depends on the speed of the
UART device relative to the ARM core, and the latency
caused by the driver code. The driver code must be effi-
cient enough and the UART must be slow enough so that
no buffer overrun error can occur. Our approach allows
such constraint to be expressed, while the previous work
is rather awkward at this [1].

The tight timing properties in Theorem 6 will be help-
ful when proving the string level receiving function,
which calls getchW repetitively. The string can be re-
trieved completely without overrun, as long as the inter-
val between the consecutive return and entry of getchW
is bounded by delay, which is bounded by the difference
between the slow-down factor of the UART and the la-
tency introduced in getchW, which is 9 instruction cycles.
This guarantees that oe is not set when getchW is entered



putch getch getchW
A ¬(length str = 0 ) ∧

9 + delay < (slowFac s0 )

P λs. (code p s) ∧ λs. (code p s) ∧ λs. (code p s) ∧
(s.regs pc = 0x28c) ∧ (s.regs pc = 0x314 ) ∧ (s.regs pc = 0x334 ) ∧
(s.regs r14 = reAddr) ∧ (s.regs r14 = reAddr) ∧ (s.regs r14 = reAddr) ∧
(wellform s.devSt) ∧ (wellform s.devSt) ∧ (wellform s.devSt) ∧
¬s.devSt .dlab ∧ ¬s.devSt .dlab ∧ ¬s.devSt .dlab ∧
(LSB (s.regs r0 ) = c) ∧ ¬s.devSt .rdr (inpStr str s.devSt) ∧
(sentStr str s.devSt) ¬s.devSt .oe

I λs. (sepMem lpcMapped s0 s) ∧ λs. (sepMem lpcMapped s0 s) ∧ λs. (sepMem lpcMapped s0 s) ∧
(sepReg putchReg s0 s) ∧ (sepReg getchReg s0 s) ∧ (sepReg getchWReg s0 s) ∧
¬s.devSt .dlab ∧ ¬s.devSt .dlab ∧ ¬s.devSt .dlab ∧ ¬s.devSt .oe ∧
(wellform s.devSt) ∧ (wellform s.devSt) ∧ (wellform s.devSt) ∧
(slowFac s = slowFac s0 ) (slowFac s = slowFac s0 ) (slowFac s = slowFac s0 )

Q λs. (s.regs pc = reAddr) ∧ λs. (s.regs pc = reAddr) ∧ λs. (s.regs pc = reAddr) ∧
(sentStr (c :: str) s.devSt) ((LSB (s.regs r0 ) = 0xff ) ∨ (LSB (s.regs r0 ) = el 0 str) ∧

∃m. inInput m (s.regs r0 ) (inpStr (tl str) s.devSt) ∧
s.devSt) ¬s.devSt .rdr ∧

s.devSt .clk + delay + 1 < (slowFac s)

Table 2: The assumption A, precondition P, invariant I and postcondition Q for UART driver functions putch, getch
and getchW. They are intended to be used in A =⇒ sys pred (P , I ,Q). s0 indicates the initial state at the entry of
the respective functions. p indicates the respective function body. reAddr indicates the return address.

next time, thus the precondition of getchW is met.

5.4 Proof method
All the theorems about the execution we proved are in
the form of sys pred (P, I, Q). The details are listed in
Table 2. We use LSB to extract the least significant byte
from a register, which is 32 bits wide in the ARM model
that we use. c::str appends a character c to the head of
a string str. The modifiable register sets are defined in
putchReg = getchWReg = {R0, R2, R3, pc} for putch and
getchW, and getchReg = {R0, pc} for putch respectively.
Set lpcMapped indicates all the memory addresses which
are mapped to devices in a LPC2129 SoC.

putch and getchW work in the polling mode by testing
for certain conditions with a busy-waiting loop. Termi-
nation of the loop depends on the state of the device, and
needs to be proved. One difficulty in proving loop ter-
mination is that the device is not synchronized with the
ARM core at a known rate. In the proof, we provide the
witness for the existentially qualified t, then use induc-
tion on time n as in definition (4).

Use putch as an example. We break the execution se-
quence into three parts. With each part we prove a cor-
rectness lemma in the form of sys pred (P, I, Q). The con-
trol flow and data flow assertions are encoded in I. The
first part is the busy waiting until thre is set in the UART.
The length of this waiting depends on the speed of the
UART and the UART state at the point of entry of putch.

When thre is set, the program counter could be at any
instruction of the loop. The second part is the break of
the loop from the point where thre is set to the exit of the
loop. The third part is the sequential execution to copy
the character to the register THR and return. In classic
cases when no devices are concerned, the first two parts
are treated as one, since it is at a static instruction point
that the condition triggering the break of the loop is met.

putch, getch and getchW are used to implement string
level transmitting and receiving functions. Proving the
correctness of these functions do not need to work at the
level of device details. Sophisticated program logic [11,
23, 24, 32] may be needed to deal with scaling and more
complicated control flow. The state of device can be triv-
ially plugged in the proof based on Section 3.5. Our the-
orems already imply the calling convention. It should not
be difficult to translate them into appropriate format and
integrate them into high level proof.

6 Related Work

Device drivers are typically written in unsafe program-
ming languages and live in the kernel’s address space.
Driver bugs can corrupt or drop data, cause peripherals
to malfunction or become wedged, and crash the OS [6].

Device driver verification: In previous work on ver-
ifying functional correctness of device drivers [1, 2, 22],
parallelism is modeled as concurrency between the driver



code and device transitions, and the cases of interleaving
were reduced by considering the net effect of the inter-
leaving on the state of the system. This approach allows
one to take advantage of methodologies used in verify-
ing concurrent programs [5, 10, 12, 19, 26]. However, it
has difficulty dealing with some timing constraints on the
driver code [1]. In contrast, we modeled the speed of the
serial device so that some timing properties can be rea-
soned about; the accuracy depends on the details of the
instruction set architecture model that is used.

Device driver synthesis: One approach to improve
the reliability of device drivers is to mechanically gen-
erate “correct by construction” drivers from a high-level
formal specification of a device and its environment [7,
21, 28, 31, 33]. By avoiding languages like C and by
checking some properties, bugs can be avoided. This ap-
proach has advantages, such as making it easier to gen-
erate drivers for multiple platforms. However, the result-
ing driver is not verified (the code generator and compiler
are trusted) and synthesis of high-performance drivers re-
mains challenging.

Property checking: Using model checking to verify
temporal properties of device drivers for commodity op-
erating systems is well studied [3, 4, 27]. Most of these
works are at the source code level and focus on the in-
terface between the drivers and the kernel, as opposed
to focusing on correct interaction with the device. The
main goal of most of these works are to keep drivers from
crashing or hanging the OS. Source-level model check-
ing can be difficult to use in the context of embedded
systems [30]. Model checking of embedded C code [9]
and assembly code [8, 29] has been done. In these works,
specific hardware details are considered. However, the
works are largely limited to bug hunting instead of pro-
viding correctness guarantees.

7 Conclusion and Future Work

Our goal is to prove full correctness, including timing
properties, of device drivers for an embedded system in
terms of a model of a CPU plus its peripheral devices.
We introduced an abstract device model that can be in-
tegrated with a formal model of a processor core and we
instantiated it with a realistic model of the UART from
a commonly-used ARM processor. We then proved full
correctness of the transmit and receive functions from an
open-source driver for that device.

Our work is intended to provide a platform for veri-
fying embedded systems in a modular way with regard
to its hardware devices. It allows us to prove the cor-
rectness of the driver for one device at a time, and claim
validity for a system containing multiple devices. For
the existing proof about ARM code in HOL4 which does
not consider devices, this allows the support for devices

being added without repeating most of the proof.
We have three things planned for the future. The first

is to finish the proof of the full correctness of the UART
driver for the receiving and transmitting function and in-
tegrate it with an existing proof. The second one is to
design a program logic on top of the existing work to
support the devices in a modular way, which will make
the reasoning of large programs more scalable. The logic
should have separation logic support for the main mem-
ory. The third one is to design a framework to support
the reasoning about drivers that handle interrupts.
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