
Nice to Meet You: Synthesizing Practical MLIR Abstract
Transformers
XUANYU PENG∗, University of California San Diego, USA

DOMINIC KENNEDY∗, University of Utah, USA

YUYOU FAN, University of Utah, USA

BEN GREENMAN, University of Utah, USA

JOHN REGEHR, University of Utah, USA

LORIS D’ANTONI, University of California San Diego, USA

Static analyses play a fundamental role during compilation: they discover facts that are true in all executions

of the code being compiled, and then these facts are used to justify optimizations and diagnostics. Each static

analysis is based on a collection of abstract transformers that provide abstract semantics for the concrete

instructions that make up a program. It can be challenging to implement abstract transformers that are

sound, precise, and efficient—and in fact both LLVM and GCC have suffered from miscompilations caused by

unsound abstract transformers. Moreover, even after more than 20 years of development, LLVM lacks abstract

transformers for hundreds of instructions in its intermediate representation (IR).

We developed NiceToMeetYou: a program synthesis framework for abstract transformers that are aimed at

the kinds of non-relational integer abstract domains that are heavily used by today’s production compilers. It

exploits a simple but novel technique for breaking the synthesis problem into parts: each of our transformers

is the meet of a collection of simpler, sound transformers that are synthesized such that each new piece fills a

gap in the precision of the final transformer. Our design point is bulk automation: no sketches are required.

Transformers are verified by lowering to a previously-created SMT dialect of MLIR. Each of our synthesized

transformers is provably sound and some (17 %) are more precise than those provided by LLVM.

CCS Concepts: • Software and its engineering→ Compilers; Automated static analysis; Automatic
programming; • Theory of computation→ Abstraction; Program analysis.

Additional Key Words and Phrases: Abstract Interpretation, Program Synthesis, LLVM

ACM Reference Format:
Xuanyu Peng, Dominic Kennedy, Yuyou Fan, Ben Greenman, John Regehr, and Loris D’Antoni. 2026. Nice to

Meet You: Synthesizing Practical MLIR Abstract Transformers. Proc. ACM Program. Lang. 10, POPL, Article 80
(January 2026), 32 pages. https://doi.org/10.1145/3776722

1 Introduction
A modern, highly optimizing compiler runs numerous dataflow analyses on the code that is being

compiled; the results of the analyses are used to justify optimizations and diagnostics. For example,

LLVM relies heavily on a “KnownBits” analysis that attempts to prove that individual bits of SSA

values are either zero or one in every execution of the program being compiled.

∗
Equal contribution

Authors’ Contact Information: Xuanyu Peng, University of California San Diego, USA, xup002@ucsd.edu; Dominic Kennedy,

University of Utah, USA, dominicmkennedy@gmail.com; Yuyou Fan, University of Utah, USA, yuyou.fan@utah.edu; Ben

Greenman, University of Utah, USA, benjamin.l.greenman@gmail.com; John Regehr, University of Utah, USA, regehr@cs.

utah.edu; Loris D’Antoni, University of California San Diego, USA, ldantoni@ucsd.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2026 Copyright held by the owner/author(s).

ACM 2475-1421/2026/1-ART80

https://doi.org/10.1145/3776722

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.

https://orcid.org/0000-0001-8613-3506
https://orcid.org/0000-0001-7368-4333
https://orcid.org/0009-0005-5742-0692
https://orcid.org/0000-0001-7078-9287
https://orcid.org/0000-0001-7025-4610
https://orcid.org/0000-0001-9625-4037
https://doi.org/10.1145/3776722
https://orcid.org/0000-0001-8613-3506
https://orcid.org/0000-0001-7368-4333
https://orcid.org/0009-0005-5742-0692
https://orcid.org/0000-0001-7078-9287
https://orcid.org/0000-0001-7078-9287
https://orcid.org/0000-0001-7025-4610
https://orcid.org/0000-0001-9625-4037
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776722


80:2 Xuanyu Peng, Dominic Kennedy, Yuyou Fan, Ben Greenman, John Regehr, and Loris D’Antoni

Empirically, the process of engineering a dataflow-driven compiler works as follows. First,

engineers recognize the need for dataflow results and implement the basic analysis structure within

the compiler, which is initially highly imprecise because not enough, and not-precise-enough,

abstract transformers have been written. Then, optimizations and diagnostics driven by analysis

results are added, typically alongside improvements to analysis precision that are necessary to make

the compiler operate robustly. In a compiler like LLVM, where the IR (intermediate representation)

instruction set is large (over 400 target-independent instructions and intrinsics), this process takes

an enormous amount of time and energy. Across 17 different LLVM backends, only four have any

abstract transformers at all for LLVM instructions representing target-specific intrinsics, and even

those four have poor coverage: 30 out of 1713 intrinsics for x86-64, 2 out of 726 for RISC-V, 2 out of

1286 for AMD GPUs, and 5 out of 1673 for AArch64. Operations that lack abstract transformers

must be analyzed conservatively: they return top, the unknown value. This low coverage can lead

to unpredictable compilation effects where, for example, developers who substitute intrinsics for

portable code while chasing performance can see degraded dataflow-driven optimizations in nearby

code because the portable code could be analyzed but the intrinsics cannot. Moreover, bugs in

unverified dataflow analyses have led to miscompilation errors in both GCC and LLVM [18, 26].

Our work attacks the problem of synthesizing abstract transformers from concrete instruction

semantics that are formally specified using an MLIR dialect [10]. Our goal is to develop technologies

that can rapidly provide compiler developers with reasonable initial implementations. We validate

our prototype by synthesizing transformers for three non-relational, compiler-friendly abstract

domains (KnownBits, signed and unsigned ConstantRange) for 39 instructions that are present
both in LLVM and in MLIR’s Arith dialect. These are formally verified to be sound, and in some

cases are more precise than those that are part of LLVM’s implementation, which has been tweaked

for precision by numerous compiler developers over the last 20 years.

Given a concrete operation 𝑓 and an abstract domain (e.g., KnownBits), our goal is to synthesize

a corresponding abstract transformer 𝑓 #. To be sound on a given abstract input, 𝑓 # must return

an abstract value that over-approximates the set of all possible outputs produced by applying 𝑓

to any concrete inputs described by its abstract inputs. The smaller this over-approximation, the

more precise the abstract transformer. Formally, when the power set of concrete values P(C) is
related to the set of abstract values (i.e., abstract domain) A by a Galois connection P(C)

𝛾←−−→
𝛼
A,

there is a best abstract transformer 𝑓 # that is defined as 𝑓 # = 𝛼 ◦ ˜𝑓 ◦ 𝛾 , where ˜𝑓 runs 𝑓 on a set of

concrete values and produces their corresponding concrete outputs [5]. However, this transformer

definition does not directly lead to a usable implementation: it requires taking the meet of a set of

abstract values whose size is exponential in the bitwidth of the concrete values being analyzed.

Since it does not seem generally practical to synthesize best abstract transformers, previous

research efforts have focused on finding efficient approximations of them. Some approaches, such

as Scherpelz et al. [30] and Elder et al. [9], have targeted specific abstract domains. Kalita et al.

[15] provide a synthesis framework that is applicable to arbitrary domains, but it depends on

user-provided program sketches (see Section 6.6 and Appendix A).

Our work addresses the following research questions in the context of finite, Galois-connection-

based abstract domains (c.f. [5, 7]):

• Practicality and Generality: Using existing formally specified concrete instruction semantics,

can we automatically synthesize abstract transformers for multiple domains that are used in

real-world compilers? In particular, can we generate functions that compiler developers can

adopt—i.e., ones that are free of external dependencies, performant enough for production use,

and sensitive to IR-level subtleties such as undefined behavior?

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



Nice to Meet You: Synthesizing Practical MLIR Abstract Transformers 80:3

• Soundness and Precision: How precisely can our synthesized transformers approximate the

ideal transformer, 𝑓 #, while being provably sound?

• Automation: Can our synthesis procedure navigate the search space without meaningful help

from users? In other words, can we succeed without requiring sketches?

We treat synthesis as an optimization problem, where the objective is to find a sound transformer

𝑓 # that minimizes the user-given norm



𝑓 #

 that measures the imprecision for every possible pair

of abstract inputs (note that such a function is easy to implement for given abstract domains).

Since the functions that we wish to synthesize are (empirically) out of direct reach for enumeration

or CEGIS, and since we do not wish to rely on user-provided sketches, we use stochastic search

techniques inspired by Stoke (Schkufza et al. [31]), where candidate transformers evolve through a

sequence of random modifications guided by the cost function induced by our objective.

We have observed two implementation patterns in code produced by compiler developers writing

highly precise abstract transformers for GCC and LLVM. Both of these ended up leading to key

aspects of our approach:

Pattern 1: Splitting the input space. Practical abstract transformers often gain precision bymaking a

case split to separately handle different parts of the input space. For example, LLVM’s transformer for

bitvector truncation on integer ranges
1
begins with special cases for⊤ and⊥ and then subsequently

splits onwhether the incoming integer rangewraps around the UINT_MAX / 0 boundary.We observed

that the logic at the finest granularity was often reasonably simple, but that the overall transfer

functions that we wanted to synthesize appeared to be significantly more complicated than anything

we could reliably generate without a sketch.

The insight that allowed us to make progress here was that the meet of a collection of sound

abstract transformers is still sound. Thus, we can synthesize an abstract transformer in parts, and

then assemble the parts at the end: F⊓ = 𝑓 #
1
⊓· · ·⊓ 𝑓 #𝑛 . If we simply synthesized a pile of transformers

and glued them together, they would be likely to all cover similar parts of the input space (because,

e.g., some parts of the input space are easier to cover than others). We discourage this behavior by

dynamically adapting our fitness function: each new abstract transformer is rated by its precision

on parts of the input space not covered by transformers that have previously been synthesized. This

adaptive strategy steers the synthesis process away from inputs that are already handled precisely

and toward those that require new cases. This decomposition not only makes it easier to synthesize

precise transformers with high precision, but also allows users to control the number and size of

components in the meet—providing an easy knob for tuning efficiency vs. precision.

Pattern 2: Separate transformers for separate jobs. Beyond splitting up the input space, we noticed

that realistic transfer functions gain precision by exploiting information that is present in the IR. For

example, the LLVM compiler’s abstract transformer for integer multiply begins with a large special

case for the “nsw” or “no unsigned wrap” flag
2
—this flag can be exploited to increase analysis

precision, because signed overflows become undefined. Then, immediately inside the nsw case,

the code splits again to handle the case of computing the square of a value, which again affords

additional precision. Our observation is that it is unnecessary and even undesirable to entangle the

implementation of the 𝑦 ∗𝑦 case with the 𝑥 ∗𝑦 case and the 𝑥 ∗nsw 𝑦 case: these are actually distinct

transfer functions that need to be handled separately during testing or formal verification. They

happen to be handled by overlapping code only because LLVM’s developers decomposed their code

that way. Program synthesis, on the other hand, changes the basic software engineering economics,

1
https://github.com/llvm/llvm-project/blob/release/20.x/llvm/lib/IR/ConstantRange.cpp#L864-L915

2
https://github.com/llvm/llvm-project/blob/release/20.x/llvm/lib/Analysis/ValueTracking.cpp#L383-L437

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.

https://github.com/llvm/llvm-project/blob/release/20.x/llvm/lib/IR/ConstantRange.cpp#L864-L915
https://github.com/llvm/llvm-project/blob/release/20.x/llvm/lib/Analysis/ValueTracking.cpp#L383-L437


80:4 Xuanyu Peng, Dominic Kennedy, Yuyou Fan, Ben Greenman, John Regehr, and Loris D’Antoni

making it cheap to create a large number of abstract transformers, including a specialized version

for every IR-level condition that can be exploited to increase precision.

Implementation inMLIR. We get formal semantics for instructions from previous work on the SMT

dialect for MLIR [10], which supports lowering operations to both LLVM IR and SMT formulae.

The LLVM IR lowering, and subsequent JIT compilation, enables fast evaluation of candidate

transformers during synthesis, and allow us to leverage LLVM’s powerful optimizers to improve

the performance of the final synthesized transformers. The SMT lowering allows us to verify the

soundness and precision of the synthesized transformers, although in practice we generally measure

precision via testing rather than solving because we are interested in giving our stochastic optimizer

a hill to climb, rather than a binary result (a model counting solver would be an alternative way to

get a hill to climb, but in our experience they do not scale to jobs like this one).

Evaluation. We evaluate our approach by synthesizing abstract transformers for the abstract

domains and operations used in the LLVM IR. The results show that NiceToMeetYou complements

the precision of LLVM transformers (when measured on 8-bit and 64-bit integers) of 7/47 transform-

ers in the KnownBits domain and 19/47 in ConstantRange. With the addition of a handwritten

reduced-product operator for combining synthesized transformers across different abstract domains,

our synthesized transformers exceed LLVM’s precision on 22/47 operators.

Contributions. Our work makes the following contributions:

• We propose a framework for synthesizing abstract transformers that leverages existing formal

semantics for instructions, and is not limited to specific abstract domains and does not require

program templates (Section 2).

• We design an algorithm that incrementally synthesizes the meet of multiple abstract transformers

(Section 3), which enables an MCMC-based search procedure that can discover individual smaller

transformers that can be added to the meet (Section 4).

• We implement the algorithm in NiceToMeetYou, a tool that effectively balances MCMC-based

exploration with SMT-based verification. We apply NiceToMeetYou on the bread-and-butter

abstract domains from LLVM, namely KnownBits and ConstantRange (Section 5).

• We conduct an evaluation showing how NiceToMeetYou can synthesize abstract transformers

for real LLVM operators. Our transformers are often complementary to LLVM’s, and in some

cases exceed the precision of LLVM’s hand-tuned transformers (Section 6).

2 Problem Definition and Overview of the Approach
In this section, we define the problem addressed by our framework using a toy example (Section 2.1).

We then provide an excerpt of a real transformer from MLIR, urem over known bits, to illustrate

how our problem setting and approach leads to practical gains (Section 2.2).

2.1 The Transformer Synthesis Problem
Throughout this section, we use a running example in which the goal is to synthesize transformers

for the integer maximum function 𝑓 (𝑥,𝑦) = max(𝑥,𝑦) over the domain of intervals.

The user of our framework needs to provide a definition of a concrete domain, an abstract domain

over which they are trying to synthesize abstract transformers, and a language of programming

constructs the synthesizer can use to synthesize the abstract transformers.

Concrete Domain and Concrete Transformers. A transformer depends on a concrete domain C,
and a concrete transformer 𝑓 : C𝑘 → C. In our example, we let C be integers of bitwidth up to a

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



Nice to Meet You: Synthesizing Practical MLIR Abstract Transformers 80:5

certain number (e.g., 32), which can be represented by the APInt class in LLVM and MLIR.
3
The

concrete transformer in our example is max : C2 → C := 𝜆𝑥𝜆𝑦.ite(𝑥 > 𝑦, 𝑥,𝑦).
Abstract Domain. A lattice A serves as an abstract domain. In this subsection, A is the interval

domain. Each abstract value 𝑎 is a pair of integers representing an interval [𝑎.𝑙, 𝑎.𝑟 ].4
In particular, the user needs to provide the implementations of the following components:

• Concretization function 𝛾 : A → 2
C
. In our example, 𝛾 (𝑎) = {𝑎.𝑙, 𝑎.𝑙 + 1 · · · , 𝑎.𝑟 }.

• Meet function ⊓ : A × A → A. In our example, ⊓ is the intersection of two intervals, i.e.,

𝑎 ⊓ 𝑏 = if max(𝑎.𝑙, 𝑏.𝑙) > min(𝑎.𝑟, 𝑏.𝑟 ) then ⊥ else [max(𝑎.𝑙, 𝑏.𝑙),min(𝑎.𝑟, 𝑏.𝑟 )].
• Join function ⊔ : A × A → A. In our example, ⊔ is the union of two intervals, i.e., 𝑎 ⊔ 𝑏 =

[min(𝑎.𝑙, 𝑏.𝑙),max(𝑎.𝑟, 𝑏.𝑟 )].
• Single value abstraction function 𝛽 : C → A. In our example, 𝛽 (𝑥) = [𝑥, 𝑥].
The general abstraction function 𝛼 : 2

C → A that maps a set of concrete elements to their

abstract one is defined as 𝛼 (𝐶) := ⊔
𝑥∈𝐶 𝛽 (𝑥). The partial order ⊑∈ A × A that relates abstract

elements is defined as follows: 𝑎1 ⊑ 𝑎2 ⇐⇒ 𝑎1 ⊓ 𝑎2 = 𝑎1.

Language. In our setting, a domain-specific language (DSL) L is a context-free grammar of

the form 𝐸 := 𝑎 | 𝑐 | 𝑜𝑝 (𝐸1, · · · , 𝐸𝑘 ), where 𝑎 ranges over abstract input variables, 𝑐 de-

notes constants drawn from a fixed set 𝐶 , and 𝑜𝑝 is an operator drawn from a predefined set

of function symbols L𝑜𝑝 supported by the DSL. In our example, L𝑜𝑝 ∪ 𝐶 consists of the set

{+,−,&, |,min,max, [·, ·], ·.𝑙, ·.𝑟 , Zero, AllOnes}, where [·, ·] denotes interval construction, and ·.𝑙
and ·.𝑟 access the left and right endpoints of an interval, respectively. The Zero and AllOnes
constants return all zeros and all ones at the given bitwidth. For instance, the function 𝑓 # (𝑎, 𝑏) :=
[min(𝑎.𝑙, AllOnes), max(𝑎.𝑟, Zero)] is a valid program in the language L.
Soundness and Precision. Our goal is to synthesize a set of sound (i.e., valid overapproximations

of the function behavior) and precise (tight) abstract transformers F = {𝑓 #
1
, 𝑓 #

2
, · · · , 𝑓 #𝑛 } expressed

using DSL operators. Because the user of the framework provides the meet operation for the

abstract domain as input, we can then compute the meet of all such transformers F⊓ as follows:

Definition 2.1 (Meet of Transformers). Given two abstract transformers 𝑓 #
1
, 𝑓 #

2
: A𝑘 → A, their

meet is defined as the transformer 𝑓 #
1
⊓ 𝑓 #

2
: A𝑘 → A such that, for all 𝑎1, . . . , 𝑎𝑘 ∈ A: (𝑓 #

1
⊓

𝑓 #
2
) (𝑎1, . . . , 𝑎𝑘 ) = 𝑓 #

1
(𝑎1, . . . , 𝑎𝑘 ) ⊓ 𝑓 #

2
(𝑎1, . . . , 𝑎𝑘 ). We define the meet of a set of transformers

F ⊆ (A𝑘 → A) as F⊓ =
d

𝑓 #∈F 𝑓
#.

Intuitively, the meet of two transformers is their pointwise meet in the abstract domain, which is

both sound and represents the most precise possible combination of the synthesized transformers.
5

One can check that a transformer is sound using the concretization function 𝛾 as follows:

3
Note that the set of integers of bitwidths up to 𝑤 is not equivalent to the set of integers in the range [0, 2𝑤 − 1]. Instead,
it is the union of sets of bitvectors with lengths from 1 to 𝑤. In other words, C = C1 ∪ C2 ∪ · · · ∪ C𝑤 , where each C𝑖 is
a concrete subdomain representing integers with bitwidth 𝑤, and these subdomains are disjoint. We always assume the

concrete transformer is only defined on inputs within the same subdomain C𝑖 .
4
As we only consider bounded integers of specific bitwidths, the abstract domain is restricted to closed intervals and is

therefore finite. Readers may also notice that 𝑎.𝑙 and 𝑎.𝑟 should have the same bitwidth as the concrete values included by

that interval. Strictly speaking, given the full concrete domain C = C1 ∪ C2 ∪ · · · ∪ C𝑤 , each concrete subdomain C𝑖 has
its own abstract domain A𝑖 , each equipped with its own top and bottom elements. The full abstract domain A is likewise

the disjoint union of all abstract subdomains A𝑖 . The top element of A will only be reached when joining two abstract

values from two different A𝑖 , and the bottom element will only be reached when meeting two abstract values from two

different A𝑖 . However, in practice, the abstract transformers only need to be defined on inputs from the same A𝑖 .

5
Ideally, the set of abstract transformers would be a singleton { 𝑓 #}. However, the theoretical best transformer 𝑓 # might not

be expressible in the DSL, or may be too complex and thus computationally expensive for static analysis.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



80:6 Xuanyu Peng, Dominic Kennedy, Yuyou Fan, Ben Greenman, John Regehr, and Loris D’Antoni

Definition 2.2 (Soundness of Transformers). A transformer 𝑓 # : A𝑘 → A is sound with respect to
a concrete function 𝑓 : C𝑘 → C, denoted by sound(𝑓 #), if it is sound on all abstract inputs, i.e.,

sound(𝑓 #) def= ∀𝑎1, . . . , 𝑎𝑘 ∈ A . {𝑓 (𝑐1, . . . , 𝑐𝑘 ) | 𝑐𝑖 ∈ 𝛾 (𝑎𝑖 )} ⊆ 𝛾 (𝑓 # (𝑎1, . . . , 𝑎𝑘 )) .
For precision, there is no easy way to check that a transformer is the most precise possible among

those expressible in a given language (a problem as hard as checking unrealizability in program

synthesis [14]). We address this practical problem by introducing a precision measure; namely, we

ask the user to provide a norm function ∥·∥ : (A𝑘 → A) → N that quantifies the imprecision of a

transformer. The objective of our problem is to minimize the norm of the synthesized transformer

F⊓. While a norm function over transformers can be hard to define, in our implementation, we

ask the user to provide a size function |·| : A → N on abstract values, and derive the norm via

the size function as



𝑓 #

 = ∑
𝑎∈A

��𝑓 # (𝑎)��. In practice, the size |𝑎 | can be set as any function that is

monotonic with respect to the actual size of the concretization set 𝛾 (𝑎). For the interval domain,

we define the size as the log
2
of its length, e.g., | [0, 7] | = log

2
(8) = 3.

Because computing the sum of norms over the entire abstract domain can be expensive, we

will often approximate the size by evaluating it over a representative subset A′ ⊆ A. We use

𝑓 #

A′ = ∑
𝑎∈A′

��𝑓 # (𝑎)�� to denote the approximate norm over the subdomain A′. In our example,

the subset A′ can be all abstract values represented by integers up to a smaller bitwidth, or some

sampled abstract values represented by integers at a large bitwidth.

Norms vs. Metrics. Initially, we formalized precision using distance metrics rather than norms.

This approach turned out to be problematic because one would need to compute the distance

between a synthesized transformer 𝑓
♯

𝑠𝑦𝑛𝑡ℎ
and the theoretically best transformer 𝑓 # by enumerating

all abstract values and their concretizations, and computing the join of 𝛽 (𝑓 (𝑐)) for each concrete

value. This is feasible only at small bitwidths. That being said, prior works use metrics [2, 3, 20]

and may provide a way to explore non-integer or infinite abstract domains in the future.

2.1.1 Problem Definition. We are now ready to define the problem solved in this paper:

Definition 2.3 (Transformer Synthesis Problem). Given a concrete transformer 𝑓 : C𝑘 → C,
an abstract domain (A,⊤, 𝛾,⊓,⊔, 𝛽), a norm function ∥·∥ : (A𝑘 → A) → N, and a DSL L, the
transformer synthesis problem is to find a set of transformers F = {𝑓 #

1
, 𝑓 #

2
, · · · , 𝑓 #𝑛 } in L such that

• Their meet F⊓ is sound: sound(F⊓).
• The norm of F⊓ is minimal, i.e., there is no sound set of transformers G such that ∥G⊓∥ < ∥F⊓∥.
• No 𝑓 #𝑖 ∈ F is redundant: ∀𝑓 #𝑖 ∈ F , ∃®𝑎 ∈ A𝑘 ,

(d
𝑓 #∈F\{ 𝑓 #

𝑖
} 𝑓

# ( ®𝑎)
)
@ 𝑓 #𝑖 ( ®𝑎).

The first requirement, that the meet of the𝑛 transformers is sound, is satisfied if all𝑛 transformers

are sound. The second requirement asks that the final meet be as precise as possible, rather than

requiring each individual transformer to be. The last requirement ensures every transformer in the

final solution contributes to improving the precision.
6

Returning to our running example 𝑓 (𝑥,𝑦) = max(𝑥,𝑦), Figure 1 shows the problem inputs and

one possible set of output transformers. Smart readers may observe that the best transformer has a

succinct representation: 𝑓 # (𝑎, 𝑏) = [max(𝑎.𝑙, 𝑏.𝑙),max(𝑎.𝑟, 𝑏.𝑟 )]. However, the meet of the four out-

put transformers in Figure 1 is also equivalent to this best transformer—since the maximum of their

left endpoints equals max(𝑎.𝑙, 𝑏.𝑙) and the minimum of their right endpoints equals max(𝑎.𝑟, 𝑏.𝑟 ).
6
Kalita et al. [15] propose a similar definition for the problem of synthesizing one most precise abstract transformer in a

given DSL. In their setting, precision is defined in absolute terms with respect to the ⊑ partial order. In our setting, precision

is defined in terms of a size function over the abstract domain. Furthermore, our definition extends to the set of synthesizing

multiple incomparable transformers. We further discuss these implications in Section 7.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



Nice to Meet You: Synthesizing Practical MLIR Abstract Transformers 80:7

Input

Concretization: 𝛾 ( [𝑎.𝑙, 𝑎.𝑟 ]) = {𝑎.𝑙, · · · , 𝑎.𝑟 }
Meet: 𝑎 ⊓ 𝑏 = [max(𝑎.𝑙, 𝑏.𝑙),min(𝑎.𝑟, 𝑏.𝑟 )]
Join: 𝑎 ⊔ 𝑏 = [min(𝑎.𝑙, 𝑏.𝑙),max(𝑎.𝑟, 𝑏.𝑟 )]

Abstraction: 𝛽 (𝑥) = [𝑥, 𝑥]
Concrete op: 𝑓 (𝑥,𝑦) = max(𝑥,𝑦)

DSL ops: {+,−,&, |,min,max, · · · }
Size: |𝑎 | = ⌊log

2
( |𝑎.𝑙 − 𝑎.𝑟 |)⌋

Output (NiceToMeetYou)

𝑓 #
1
(𝑎, 𝑏) = [Zero,max(𝑎.𝑟, 𝑏.𝑟 )]

𝑓 #
2
(𝑎, 𝑏) = [𝑎.𝑙 & 𝑏.𝑙, AllOnes]

𝑓 #
3
(𝑎, 𝑏) = [𝑎.𝑙, 𝑎.𝑙 | 𝑏.𝑙]

𝑓 #
4
(𝑎, 𝑏) = [𝑏.𝑙, AllOnes]

Fig. 1. Input and output for the transformer synthesis problem on a toy example.

KnownBits urem(KnownBits L, KnownBits R) {

// Part 1:

unsigned RTrailingZeros = R.Zero.countTrailingZero ();

APInt Mask = setLowBits (0, RTrailingZero );

APInt knownZero = L.Zero & Mask;

APInt knownOne = L.One & Mask;

// Part 2:

if (R.isConstant () && R.getConstant (). isPowerOf2 ()) { ... }

// Part 3:

unsigned Leaders = max(L.Zero.countLeadingZero (), R.Zero.countLeadingZero ());

knownZero = setHighBits(knownZero , Leaders );

return {knownZero , knownOne };

}

Fig. 2. The KnownBits transformers for urem operator in LLVM

Although some individual transformers contain “unnecessary fragments” such as 𝑎.𝑙&𝑏.𝑟 , each

transformer still has a smaller size than the best transformer as a single monolithic expression.

2.2 Case Study: Synthesizing a Precise Transformer for urem
To illustrate the practical capabilities of NiceToMeetYou, we present a detailed case study drawn

from our evaluation: synthesizing a KnownBits transformer for the urem (unsigned remainder)

operation. This example demonstrates how NiceToMeetYou synthesizes precise and non-trivial

transformers that both match and exceed hand-written implementations in LLVM.

2.2.1 Background: The KnownBitsDomain and the uremOperator. The KnownBits abstract domain

models partial bit-level knowledge of integer values using two disjoint bitvectors: Zero and One. A
bit is definitely zero if set in Zero, definitely one if set in One, and unknown if unset in both. This

domain is widely used in compiler optimization passes such as those in LLVM.

We focus on the unsigned remainder operation urem, which computes 𝐿 mod 𝑅 for unsigned

integers 𝐿 (dividend) and 𝑅 (divisor). Optimizing the transformer for urem is challenging due to its

non-linear behavior and the many edge cases involving known bits.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



80:8 Xuanyu Peng, Dominic Kennedy, Yuyou Fan, Ben Greenman, John Regehr, and Loris D’Antoni

2.2.2 Reference Implementation: LLVM’s Hand-Written Transformer. LLVM includes a hand-written

KnownBits transformer for urem, shown in Figure 2. It is implemented using utility functions from

the APInt library, such as: (i) countTrailingZero(x) and countLeadingZero(x): compute the

number of trailing or leading zeros, and (ii) setHighBits(x, k) and setLowBits(x, k): construct
bitvectors with the highest or lowest 𝑘 bits set to 1.

This transformer “applies” three heuristics: (i) If the divisor 𝑅 is a multiple of 2
𝑘
(i.e., it has 𝑘

trailing zeroes), then the lowest 𝑘 bits of the result are equal to those of 𝐿. (ii) If the divisor R is

known to be a constant, some special-case handling is applied. (iii) Since 𝐿 mod 𝑅 < min(𝐿, 𝑅), the
number of leading zeros in the result must be at least as large as in both 𝐿 and 𝑅.

2.2.3 Synthesized Transformer in MLIR: Matching and Extending LLVM. Figure 3 shows the trans-
former synthesized by NiceToMeetYou in MLIR form. The solution @solution computes the meet

of nine independently synthesized transformer candidates @f1 through @f9.
Upon manual inspection, we find that 8/9 synthesized components recover key heuristics from

the LLVM implementation. The remaining one is a new heuristic.

Recovering Existing Heuristics. As an example, transformer @f1 matches LLVM’s third heuristic.

It computes the number of leading zeros in the dividend %L, uses that to set the highest bits in a

bitvector, and constructs a KnownBits value accordingly. This sound heuristic (also used by LLVM)

encodes the fact that the result of urem must have at least as many leading zeros as the dividend.

Discovering New Heuristics. Transformer @f2 illustrates synthesis that eludes human intuition. It

defines a condition @f2_cond and a guarded body @f2_body, returning ite(@f2_cond, @f2_body,
%top) so the body applies only when the condition holds. The body @f2_body returns the dividend
as the result. This is unsound in general, however, the synthesizer simultaneously generates a guard

@f2_cond that ensures soundness: the transformer is only used when the dividend’s maximum

possible value is less than the divisor’s minimum possible value. In that case, the remainder equals

the dividend, and the transformer is sound.

This heuristic—“if the dividend is provably less than the divisor, then urem(L, R) equals L”—is
absent from the LLVM transformer, highlighting the power of synthesis in discovering useful but

overlooked cases. That synthesis outputs the code realizing this case is the cherry on top.

Our synthesized transformer is more precise than the LLVM implementation—according to our

precision metric—but also complementary. That is, the LLVM and synthesized transformers are

incomparable: neither subsumes the other. Their meet yields a strictly more precise transformer.

This case study highlights three key outcomes:

(1) NiceToMeetYou recovers hand-crafted compiler heuristics automatically.

(2) NiceToMeetYou discovers new, sound heuristics that are absent in existing implementations.

(3) The transformers synthesized by NiceToMeetYou can offer strictly better precision when

combined with human-crafted ones.

This example demonstrates how NiceToMeetYou can serve as a practical, drop-in synthesis

engine for compiler frameworks such as MLIR, producing transformers that are not only correct

and efficient but also competitive with and complementary to those written by domain experts.

3 An Ideal Algorithm for the Transformer Synthesis Problem
In this section, we present an idealized synthesis algorithm for solving the transformer synthesis

problem (Definition 2.3). We will provide a practical instantiation using MCMC search in Section 4.

Our algorithm draws inspiration from recent approaches for synthesizing the most precise

conjunctive specifications [23, 24]. Rather than generating an entire conjunction in one step, these

methods iteratively synthesize individual conjuncts, ensuring that each new conjunct strictly

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



Nice to Meet You: Synthesizing Practical MLIR Abstract Transformers 80:9

func.func @f1(%L : KnownBits , %R : KnownBits) -> KnownBits {

%1 = countLeadingZero (%L.zero)

%knownZero = setHighBits (0, %1)

return makeKnownBits (%knownZero , 0)

}

func.func @f2_cond (%L: KnownBits , %R: KnownBits) -> bool {

%Lmax = negate (%L.zero)

%Rmin = %R.one

%cond = unsignedLessThan (%Lmax , %Rmin)

return %cond

}

func.func @f2_body (%L : KnownBits , %R : KnownBits) -> KnownBits {

return %L

}

func.func @f2(%L : KnownBits , %R : KnownBits) -> KnownBits {

return ite(@f2_cond (%L, %R), @f2_body (%L, %R), %top)

}

...

func.func @solution (%L : KnownBits , %R : KnownBits) -> KnownBits {

return meet(@f1(%L, %R), ... , @f9(%L, %R))

}

Fig. 3. Our synthesized KnownBits transformers for urem, written in MLIR.

improves the overall precision. We adopt a similar strategy, tailored to the transformer setting, by

incrementally synthesizing individual transformers that refine precision.

3.1 Synthesizing One Transformer at a Time
In our setting, meet operations over transformers play the role of conjunctions, and individual trans-

formers correspond to conjuncts. Algorithm 1 maintains a set of sound, incomparable transformers

F 𝑠
, initialized to the empty set, representing the most imprecise transformer ⊤. The algorithm

iteratively synthesizes new transformers that, when combined via meet, minimize the imprecision

measured by the norm function. It loops as long as it can find a precision improvement:

Algorithm 1: IdealSynthesizeTransformers(prob)

1 Input: 𝑝𝑟𝑜𝑏 — An instance of the Transformer Synthesis Problem.
2 Output: F𝑠 — A set of synthesized transformers solving 𝑝𝑟𝑜𝑏.
3 F𝑠 ← ∅ // Initialize to most imprecise transformer set

4 while true do
5 𝑓 ← SynthesizeTransformer(F𝑠 , 𝑝𝑟𝑜𝑏 ) // Synthesize transformer maximizing precision gain

6 if


𝑓 ⊓ F𝑠⊓

 = 

F𝑠⊓

 then

7 return RemoveRedundant(F𝑠 ) // Termination: remove transformers, preserving norm

// (compute a set greedily; it may not be unique)

8 F𝑠 ← F𝑠 ∪ { 𝑓 } // update set of synthesized transformers

A key advantage of this iterative approach is the reduction of the synthesis problem to repeatedly

generating individual transformers. Specifically, rather than directly synthesizing a full set F 𝑠

minimizing the norm



F 𝑠
⊓



, each iteration seeks a transformer 𝑓 that minimizes the norm when

added to the set of transformers F 𝑠
we already have synthesized:

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



80:10 Xuanyu Peng, Dominic Kennedy, Yuyou Fan, Ben Greenman, John Regehr, and Loris D’Antoni

minimize

𝑓 ∈L, sound(𝑓 )



𝑓 ⊓ F 𝑠
⊓


 . (1)

This structure simplifies the search space and modularizes synthesis, as each

SynthesizeTransformer(F 𝑠 , 𝑝𝑟𝑜𝑏) call focuses solely on the next incremental improvement.

Theorem 3.1 (Soundness). If SynthesizeTransformer synthesizes a single sound transformer
that is a solution to Equation (1) and there exists a finite solution to the transformer synthesis problem,
then Algorithm 1 returns a solution to the transformer synthesis problem.

Proof. Let F be a solution to the synthesis problem such that for every ∥F ∥ = 𝑘 . Because every

call to SynthesizeTransformer reduces the norm (and the norm is an integer), the algorithm

terminates. Furthermore, the final set satisfies all three conditions: all transformers are sound, the

precision cannot be improved further, and no transformer is redundant. □

Note that any intermediate result of the algorithm is a valid transformer, though (probably)

sub-optimal. This property is important for our MCMC-based approach in Section 4.

3.2 Focusing Precision on Relevant Inputs
A further benefit of this approach is the ability to focus synthesis efforts on the inputs that matter,

that is, inputs where the current transformer set F 𝑠
is still imprecise.

While soundness requires that synthesized transformers behave correctly on all inputs, preci-

sion only needs to improve where existing transformers leave room for refinement. Thus, each

SynthesizeTransformer call can restrict its optimization to the subset of “imprecise” inputs:

Aimprecise = A \ {𝑎 | F 𝑠
⊓ (𝑎) = 𝑓 # (𝑎))}. (2)

We can equivalently rewrite the objective for the next transformer 𝑓 as:

minimize

𝑓 ∈L



𝑓 ⊓ F 𝑠
⊓



Aimprecise

(3)

Here, ∥·∥Aimprecise

computes norm considering only inputs inAimprecise. This refinement preserves

correctness while avoiding wasted effort on already-precise regions of the input space. Formally,

minimize

𝑓 ∈L



𝑓 ⊓ F 𝑠
⊓


 ⇐⇒ minimize

𝑓 ∈L



𝑓 ⊓ F 𝑠
⊓



Aimprecise

.

This selective focus is efficient (it allowing us to compute the norm on fewer inputs) and also

aligns with standard optimization principles: prioritize areas of maximum potential gain.

4 Randomly Searching for Abstract Transformers using MCMC
The ideal algorithm presented in Section 3 incrementally synthesizes abstract transformers that

collectively form the solution to the transformer synthesis problem (Definition 2.3). To make

this process practical, we implement the core routine SynthesizeTransformer(F 𝑠 , 𝑝𝑟𝑜𝑏) using
a stochastic search procedure MCMCSynthesizeTransformer(F 𝑠 , 𝑝𝑟𝑜𝑏) based on Markov Chain

Monte Carlo (MCMC). Our approach is inspired by Stoke [31] and contributes a novel cost function

and abductive refinement strategy.

The goal of this random search, presented in Algorithm 2, is to synthesize a transformer that

minimizes the cost function defined in Line 3. The cost combines two objectives: maximizing

soundness and minimizing norm. Soundness(𝑓 ) returns a number between 0 and 1 representing

the fraction of inputs on which the transformer 𝑓 is sound. Improvement(𝑓 , 𝑔) returns a number

between 0 and 1 representing how much 𝑓 ⊓ 𝑔 improves the precision of 𝑔. Formally, we define

a predicate soundAt(𝑓 , 𝑎) := 𝑓 # (𝑎) ⊑ 𝑓 (𝑎) indicating transformer 𝑓 is sound at an abstract input

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



Nice to Meet You: Synthesizing Practical MLIR Abstract Transformers 80:11

Algorithm 2: MCMCSynthesizeTransformer(F 𝑠 , 𝑝𝑟𝑜𝑏)
1 Input: F𝑠 — Current set of synthesized transformers;
2 Output: A new sound transformer 𝑓 ∈ L that (in the limit) minimizes precision.
3 fun Cost(𝑓 # ) :
4 return 𝜆 (1−Soundness(𝑓 # ) ) + 𝜅 (1−Improvement(𝑓 #, F𝑠 ) ) // reward soundness, precision improv.

5 𝑓 ← initialize( ) // random initial program

6 for 𝑖 ← 1 to 𝑁step do
7 𝑓 ′ ← mutate(𝑓 ) // mutate current candidate

8 𝑝 ∼ U(0, 1) // sample acceptance threshold

9 if Cost(𝑓 ) − Cost(𝑓 ′ ) > 𝑇 · log(𝑝 ) then
10 𝑓 ← 𝑓 ′ // accept proposed candidate

11 if Soundness(𝑓 ) < 1 then
12 return ⊤ // return trivial top transformer if no sound one found

13 return 𝑓 // return the lowest cost sound transformer found

𝑎. As we target only finite abstract domains, Soundness and Improvement can be defined as in

Equation (4) and Equation (5), respectively:

Soundness(𝑓 ) :=
(∑︁
𝑎∈A

1[soundAt(𝑓 , 𝑎)]
)
/|A| (4)

Improvement(𝑓 , 𝑔) :=
(∑︁
𝑎∈A

1[soundAt(𝑓 , 𝑎)] · ( |𝑔(𝑎) | − |𝑓 (𝑎) ⊓ 𝑔(𝑎) |)
)
/∥𝑔∥A (5)

Note that Improvement counts precision gain only on sound inputs. If 𝑓 is sound over the entire

abstract domain, we have Improvement(𝑓 , 𝑔) = 1 − ∥ 𝑓 ⊓ 𝑔∥A /∥𝑔∥A because Σ𝑎∈A |𝑔(𝑎) | = ∥𝑔∥A .
The algorithm begins by sampling a random candidate program 𝑓 from the DSLL (Line 5). It then

performs 𝑁step iterations of local search, where in each iteration a syntactic mutation produces a

new candidate 𝑓 ′ (Line 7). If 𝑓 ′ has a lower cost than the current candidate, it is accepted; otherwise,

it is accepted with a probability determined by the difference in cost and temperature parameter 𝑇 ,

following the standard Metropolis-Hastings acceptance rule (Line 9).

If no sound transformer is found after the search, the algorithm returns the trivial transformer

⊤, representing the most imprecise but sound abstraction (Line 11). Otherwise, the most precise

sound transformer discovered is returned.

The use of MCMC for synthesizing transformers provides important asymptotic guarantees’

assuming ergodicity (discussed below). In the limit, the search procedure samples transformers

according to a distribution biased toward lower-cost candidates. As the number of iterations tends

to infinity, the probability of synthesizing a sound transformer that is sound and minimizes norm

approaches one. The following corollary of the standard convergence guarantees for Metropolis-

Hastings MCMC [12] captures this result:

Corollary 4.1 (Asymptotic Optimality of MCMC Search). Assume the proposal distribution
used by mutate(·) is ergodic over the space of programs expressible in L. Then, as 𝑁step →∞, with
probability approaching 1, MCMCSynthesizeTransformer(F 𝑠 , 𝑝𝑟𝑜𝑏) returns 𝑓 satisfying:

𝑓 ⊓ F 𝑠

⊓


 = min

𝑓 ′∈L
Soundness(𝑓 ′ )=1



𝑓 ′ ⊓ F 𝑠
⊓


 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



80:12 Xuanyu Peng, Dominic Kennedy, Yuyou Fan, Ben Greenman, John Regehr, and Loris D’Antoni

Algorithm 3: randomly initializing and randomly mutating transformer operations

1 fun initializeNormal( ) :
2 𝑙 ← maximum number of lines
3 for 𝑖 ← 1 to 𝑙 do
4 𝑜𝑝 ← sample(operator in L)
5 𝑎 ← sample(0, 𝑖 − 1) // only use earlier variable indices or the input variable 𝑥0

6 𝑏 ← sample(0, 𝑖 − 1)
7 𝑠 [𝑖 ] ← (𝑥𝑖 = 𝑜𝑝 (𝑥𝑎, 𝑥𝑏 ) )
8 return 𝑠 [1] · · · 𝑠 [𝑙 ]
9 fun mutateNormal(𝑓 ) :
10 𝑥𝑖 = 𝑜𝑝 (𝑥𝑎, 𝑥𝑏 ) ← sample(line in 𝑓 ) // sample a line of the program to mutate

11 𝑜𝑝′ ← sample(operator in L)
12 𝑎′ ← sample(0, 𝑖 − 1)
13 𝑏′ ← sample(0, 𝑖 − 1)
14 return 𝑓 [𝑥𝑖 = 𝑜𝑝 (𝑥𝑎, 𝑥𝑏 )/𝑥𝑖 = 𝑜𝑝′ (𝑥𝑎′ , 𝑥𝑏′ ) ] // replace 𝑖-th line with randomly sampled one

In short, repeated or sufficiently long runs of MCMCSynthesizeTransformer should yield trans-

formers that are sound and highly precise in terms of the norm function. Though each invocation

of the algorithm is approximate, in expectation the overall result tends to maximum precision.

On Ergodicity. Our setup is designed to provide an ergodic search space. First, the space is

in a simple format parameterized by the operation set, and further constrained by the program

representation: each operation takes two abstract inputs, consists of a sequence of SSA instructions,

and produces one abstract output. Only the instructions in the middle are subject to mutation.

Second, our mutation strategy ensures the ergodicity of the Markov chain because the two possible

mutations are invertible. Thus, there is a positive probability of transitioning from any program to

any other. Overall, our strategy is similar to the one employed by Stoke [31].

4.1 Two Strategies for Randomly Sampling Programs
We now describe two complementary strategies that we can use in Algorithm 2 to synthesize

transformers via random search. The strategies correspond to different implementations of the

initialize and mutate procedures in Algorithm 2 (Lines 5 and 7).

4.1.1 Randomly Mutating Transformer Operations. The first strategy performs random syntactic

mutations to the current transformer by altering its operations or structure (Algorithm 3). This

corresponds to traditional MCMC-based synthesis, which operates directly over the DSL L [31].

For simplicity, the formalization assumes all operations are binary and that 𝑥0 is the input variable

to the transformer. In practice there are more possible inputs as well as constants that can be used

in the transformer. Algorithm 3 defines two core functions: initializeNormal and mutateNormal,
which build and mutate transformers as sequences of statements. The initialization function creates

a transformer with 𝑙 statements (this is a parameter in our implementation). Each statement 𝑠 [𝑖]
assigns a variable 𝑥𝑖 by applying a randomly selected operator from L to two variables previously

defined variables at lower indices. This ensures well-formed data dependencies.

The mutation function (mutateNormal) selects a random statement, sampled using a user-given

probability distribution, and replaces it with a newly sampled statement, again selecting operator

and operands consistent with variable dependencies.

This setup supports incremental local modifications during MCMC sampling, enabling the search

to explore transformer candidates efficiently and effectively.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



Nice to Meet You: Synthesizing Practical MLIR Abstract Transformers 80:13

Algorithm 4: initialize and mutate for condition abduction

1 fun initializeAbd( ) :
2 𝐶𝑝 ← history of precise but unsound transformers encountered so far
3 𝑓𝑢 ← random element from𝐶𝑝 // select unsound but precise transformer

4 𝑐 ← initializeNormal( ) // sample a random condition expressible in L using Algorithm 3

5 return ite(𝑐, 𝑓𝑢, ⊤)
6 fun mutateAbd(ite(𝑐, 𝑓𝑢, ⊤)) :
7 𝑐′ ← mutateNormal(𝑐 ) // randomly mutate 𝑐 using DSL operators in L using Algorithm 3

8 return ite(𝑐′, 𝑓𝑢, ⊤)

For example, the following transformer from Figure 3 is a valid initial transformer (we avoid

using variable indices for readability and instead use actual variable names):

func.func @f1(%L : KnownBits , %R : KnownBits) -> KnownBits {

%1 = countLeadingZero (%L.zero)

%knownZero = setHighBits (0, %1)

return makeKnownBits (%knownZero , 0)

}

That same transformer could be mutated into the following one by replacing the argument of

countLeadingZero with a different input:

func.func @f1(%L : KnownBits , %R : KnownBits) -> KnownBits {

%1 = countLeadingZero (%R.zero) // mutated

%knownZero = setHighBits (0, %1)

return makeKnownBits (%knownZero , 0)

}

4.1.2 Randomly Adding Conditions to Unsound but Precise Transformers. Throughout a typical
random search in which Algorithm 2 uses the mutation strategy from Section 4.1.1, the algorithm

discovers transformers that significantly improve precision but are not sound. Such transformers

potentially contain valuable information, but cannot be used directly. To address this issue, we

use our MCMC approach to implement abductive synthesis, which constructs guards that identify

subsets of the input space. Given an unsound transformer 𝑓 #, we aim to synthesize a guard 𝑐

(written in the DSL L) and thereby construct a sound transformer 𝑓 #𝑐 (𝑎) := ite(𝑐, 𝑓 # (𝑎), ⊤).
We denote a conditional transformer as a term ite(𝑐, 𝑓 #, ⊤).

The initializeAbd and mutateAbd operations in Algorithm 4 implement this abductive syn-

thesis by reusing the initialization and mutation operations in Algorithm 3 to explore the space

of possible conditions 𝑐 starting from an unsound transformer. The remaining structure of Algo-

rithm 2 is untouched as the cost function and overall structure of the algorithm are exactly the

same regardless of what type of transformer we decide to synthesize. For example, the following

transformer f_2 from Figure 3 is a valid initial transformer for Algorithm 4, assuming again proper

renaming of variables and that the last variable is being returned:

func.func @f2_cond (%L: KnownBits , %R: KnownBits) -> bool {

%Lmax = negate (%L.zero)

%Rmin = %R.one

%cond = unsignedLessThan (%Lmax , %Rmin)

return %cond

}

func.func @f2_body (%L : KnownBits , %R : KnownBits) -> KnownBits { return %L }

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



80:14 Xuanyu Peng, Dominic Kennedy, Yuyou Fan, Ben Greenman, John Regehr, and Loris D’Antoni

func.func @f2(%L : KnownBits , %R : KnownBits) -> KnownBits {

return ite(@f2_cond (%L, %R), @f2_body (%L, %R), %top)

}

That same transformer could be mutated by modifying f2_cond, e.g., by changing the second

argument of unsignedLessThan, but the body f2_body would remain unchanged:

func.func @f2_cond (%L : KnownBits , %R : KnownBits) -> KnownBits {

%Lmax = negate (%L.zero)

%Rmin = %R.one

%cond = unsignedLessThan (%Lmax , %R.zero) // mutated

return %cond

}

5 Implementation
We have implemented NiceToMeetYou as a modular and extensible synthesis framework that

supports several finite non-relational integer abstract domains and concrete operations. Figure 4

presents a high-level overview of the system architecture. This section first describes how we

instantiate the core synthesis algorithm to support different domains and instruction semantics

(Section 5.1), and then outlines key engineering optimizations that enable efficient large-scale

synthesis (Section 5.2). The implementation is publicly available [13].

5.1 The Basic Ingredients

Synthesis of an approximation of the ideal transformer 𝑓 # takes place through a two-loop process:

(i) A slow outer loop performs bounded model checking (via z3) to validate soundness, and (ii) A
fast inner loop generates new candidates and aggressively tests their soundness and precision by

sampling the space of abstract values. In practice, we run 1,000 inner-loop iterations per outer-loop

iteration. After each outer iteration, the framework discards provably unsound candidates, adds

sound candidates to the solution set F 𝑠
, and updates weights in the probability distribution used

to sample MCMC mutations.

While the ultimate goal is to produce a set of sound abstract transformers F 𝑠
, our implementation

also maintains a set of unsound-but-precise functions, F 𝑝
, as well. The purpose of F 𝑝

, as outlined

in Section 4.1.2, is to discover sound functions in a bottom-up way from a precise function 𝑓 # ∈ F 𝑝

by synthesizing a condition 𝑐 that narrows the input space to a subset on which 𝑓 # is sound.

Concretely, the goal is to find 𝑐 such that 𝑓 #𝑐 (𝑥) := ite(𝑐 (𝑥), 𝑓 # (𝑥), ⊤) is sound.

Accordingly, the system performs two interleaved forms of MCMC-guided synthesis. In each

round of the inner loop:

• When discovering new sound transformers starting from a transformer 𝑓 #, synthesis mutates 𝑓 #

itself.

• When discovering guard conditions for existing transformers 𝑓 # ∈ F 𝑝
, synthesis keeps 𝑓 # fixed

and mutates 𝑐 in 𝑓 #𝑐 (𝑥) := ite(𝑐 (𝑥), 𝑓 # (𝑥), ⊤).
When the process converges or time runs out, we return the meet of all sound candidates F 𝑠

⊓ .
The precise set F 𝑝

is discarded.

5.1.1 Input Language. Our target DSL L for synthesis is the MLIR dialect xdsl-smt [4]. This

language has several important characteristics: (1) it includes basic numeric operations (+, /, ite),
making it suitable to express a variety of transformers; (2) it uses SSA form, which narrows the

scope of possible mutations; (3) it implements SMT-Lib [1] and has a direct mapping to z3; and (4)

it has a straightforward mapping to C++, enabling fast testing of transformers in the inner loop.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



Nice to Meet You: Synthesizing Practical MLIR Abstract Transformers 80:15

To instantiate our framework, users must provide the semantics of the concrete operation for

which a transformer is to be synthesized, and the definition of the abstract domain over which the

transformer operates. NiceToMeetYou targets one concrete operation at a time in its outer loop

(hence the multi-arrow in Figure 4). Multiple loops can of course run in parallel.

For each concrete operation, the user provides both a z3 implementation (for verification in

the outer loop) and a corresponding C++ implementation (for fast evaluation in the inner loop).

Users must ensure these are in agreement. Operations may additionally specify input constraints

prohibiting abstract values—e.g., integer division excludes zero denominators. For each abstract

domain, the user supplies a top element, a meet operation, a concretization function (technically,

only a membership test: the function is given a concrete value 𝑣 and an abstract value 𝐴, and must

determine whether 𝑣 ∈ 𝛾 (𝐴)), a size function to guide precision, and an optional well-formedness

constraint to rule out syntactically valid but semantically invalid abstract values (e.g., for KnownBits,
the two bitvectors representing known-zero and known-one must not overlap). Information about

concrete operations can be reused across abstract domains. Information about abstract domains

can potentially be reused across different sets of concrete operations.

Turning back to our toy example from Section 2, the following elements suffice to instan-

tiate NiceToMeetYou for max on the interval domain. Each piece must be defined in MLIR:

• Concrete op: 𝑓 (𝑥,𝑦) = max(𝑥,𝑦)
• Input constraint: None

• Top element: [0, UINT_MAX]
• Meet: 𝑎 ⊓ 𝑏 = [max(𝑎.𝑙, 𝑏.𝑙),min(𝑎.𝑟, 𝑏.𝑟 )]

• Concretization: 𝛾 ( [𝑎.𝑙, 𝑎.𝑟 ]) = {𝑎.𝑙, · · · , 𝑎.𝑟 }
• Size function: |𝑎 | = ⌊log

2
( |𝑎.𝑙 − 𝑎.𝑟 |)⌋

• Well-formedness constraint: ∀ 𝑎. 𝑎.𝑙 ≤ 𝑎.𝑟

5.1.2 Initializing MCMC in the Inner Loop. Each iteration of the inner MCMC synthesis loop begins

by generating a fresh pool of candidate transformer functions and candidate guard conditions.

Candidate functions are initialized with approximately 30 randomly generated instructions, drawn

from the DSL described in Section 5.1.1. These functions are intended to represent full transformer

logic. Candidate conditions, which are used for condition abduction (Section 4.1.2), are initialized

with around 6 instructions, reflecting their role as lightweight guards. In both cases, mutation

attempts to morph these placeholder candidates into codes that outperform the current members

of F 𝑠
. We chose the constants 30 and 6 empirically; similar values work as well.

The scoring function used to evaluate candidates balances two objectives: soundness and preci-

sion. Two tunable parameters, 𝜅 and 𝜆 (from Algorithm 2), govern this tradeoff. During the early

stages of synthesis, we prioritize exploratory behavior by assigning a higher weight to precision

for functions (𝜆) and to soundness for conditions (𝜅). These weights encourage exploration; later

on, the verifier prunes unsound functions and the scoring function de-emphasizes overly precise

conditions. The relative value of these parameters is important; the exact value is not so much.

5.1.3 Mutation. Mutation is the simplest component of the implementation. It operates directly on

MLIR programs expressed in the xdsl-smt dialect. Each candidate is a sequence of SSA assignments

of the form 𝑥𝑖 = 𝑜𝑝 (𝑥𝑎, . . .) where 𝑜𝑝 is an xdsl-smt operator, 𝑖 is the current line number, and 𝑎

is some index preceding 𝑖 . There are two possible mutations: replace one variable reference 𝑥𝑎 with

another, or replace the operator with another 𝑜𝑝′ (with randomly selected arguments). Our DSL

consists of 29 operators in total, each of which corresponds to a function in APInt library.
Variables are always selected uniformly at random. Each index in the range [0, 𝑖) has equal

probability. Operators are initially chosen uniformly at random, but their weights get adjusted

after each update to the sound set F 𝑠
. The operators that are most common across the sound

functions have the highest chance of selection. Concretely, weight(𝑜𝑝) := 1 + frequency(𝑜𝑝, F 𝑠 ),
where frequency(𝑜𝑝, 𝐹 ) is the total number of 𝑜𝑝 appearances in all transformers in 𝐹 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



80:16 Xuanyu Peng, Dominic Kennedy, Yuyou Fan, Ben Greenman, John Regehr, and Loris D’Antoni

MLIR

xdsl-smt [4]

Abstract Domains,

Concrete Ops︸                     ︷︷                     ︸
MCMC

Synthesis

Candidate

Functions

Candidate

Conditions

Verifier

z3

F 𝑠

F 𝑝
Halt? F 𝑠

⊓

Mutate Evaluate

∥·∥

Fig. 4. Implementation overview. The outer loop (above) checks the soundness of promising candidates. The
inner loop (below) generates new candidates via mutation and evaluates candidates’ soundness and precision.

Weights never decrease below a positive minimum, ensuring all operators maintain a nonzero

probability of selection and preserving exploration diversity throughout synthesis.

5.1.4 Evaluation Engine. After mutation generates candidate functions and conditions, a fast eval-

uation engine implemented in C++ tests their soundness and precision by executing the semantics

of the candidates. This engine implements the core procedure outlined in Algorithm 2. We choose

C++ for its fast performance and good integration with LLVM infrastructure—most notably, with

LLVM’s type APInt for arbitrary-precision integers.

Since our transformers operate over integer domains, the evaluation engine is tailored to effi-

ciently test integer values in several ways:

• Bitvector representation: The bitvectors that we use for static analysis are not faithfully

represented by standard C++ datatypes such as uint64_t. We use LLVM’s APInt numbers

instead. Crucially, an APInt can be instantiated at any bitwidth and comes with numerous helper

functions, e.g., for overflow checking.

• Test generation by bitwidth: Integers can be enumerated in a straightforward way. This

property guides test generation:

– For small bitwidths (range [1, 4]), evaluation tests all possible abstract values and concrete

inputs. Candidate functions are thus guaranteed to be sound on small bitwidths. Examples: For
KnownBits, there are 120 small abstract values. For ConstantRange, there are 185 abstract
values. To test a transformer 𝑓 ♯, we compute 𝑎 = 𝑓 ♯ (𝑎0, 𝑎1) for all pairs of abstract values
𝑎0, 𝑎1, and, unless 𝑎 is bottom, we check that 𝑓 (𝑛0, 𝑛1) ∈ 𝑎 for all pairs of concrete numbers.

– For mid-size bitwidths ([5, 8]), evaluation samples abstract values 𝑎 and exhaustively tests the

concretization of 𝑎. Candidate functions are sound over sampled tests, but may be unsound

over the entire abstract domain; z3 verification is there to catch mistakes.

– For large bitwidths ([9, 64]), evaluation samples abstract values 𝑎 and samples elements

𝑐 ∈ 𝛾 (𝑎). Due to this incomplete concretization, candidate functions could be unsound even

on sampled abstract values at this stage.

The extraction of an MLIR candidate to C++ requires some care beyond the use of APInt values.

Operations that can lead to undefined behavior in C++, such as division, must be guarded with a

check for invalid input and must return a default value that matches the behavior of the z3 verifier.

For division, invalid input is a zero denominator and the z3 default is to return zero. Our goal here

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



Nice to Meet You: Synthesizing Practical MLIR Abstract Transformers 80:17

is simply to keep the evaluation engine and the verifier in sync. If static analysis discovers that a

program definitely divides by zero, other passes in LLVM will take appropriate action.

5.1.5 Size Functions. Each abstract domain has a size function |·| to quantify precision:

• For the KnownBits domain, the size measures the number of unknown bits. For example, the

KnownBits abstract value 01?1?00? has size 3.

• For the ConstantRange domain, the size is computed as the ⌊log
2
⌋ of the absolute difference

between the lower and upper bounds of the abstract intervals. For example a ConstantRange
abstract value of [15, 45] has a size of ⌊log

2
(30)⌋ = 4

5.1.6 Integrating MCMC Results in the Outer Loop. At each outer-loop iteration, the inner MCMC

loop generates a collection of candidate transformers and guard conditions, ranked by their size.

These candidates are then filtered and integrated as follows:

• Sound candidates that are not subsumed by any existing member of the solution set F 𝑠
are added

to it. Subsumption is determined using the abstract domain’s ordering (e.g., inclusion).

• Precise but unsound candidates are selectively retained in F 𝑝
, the pool used for condition

abduction (Section 4.1.2). To control memory and evaluation cost, F 𝑝
is capped at a fixed size

(15 in our implementation), and retains only the top-scoring elements.

This strategy ensures that F 𝑠
grows monotonically with respect to both soundness and variety,

while F 𝑝
remains a focused source of potentially useful components for future synthesis.

5.1.7 Verifier. Soundness is established via z3. For each candidate produced by the inner loop, we

check it across all possible inputs for bitwidths ranging from 1 to 64. This validation ensures that

the candidate respects the transformer specification over the full concrete input space. If z3 times

out, we simply assume the transformer is unsound and discard it. To perform this check, we use

the lowering to z3 that is provided by the xdsl-smt dialect. We use this lowering directly, though

we did fix several bugs in it along the way [21, 22]. Candidates that pass verification are admitted

to F 𝑠
and considered sound in subsequent synthesis and scoring phases.

5.2 Gotta Go Fast
NiceToMeetYou can find promising transformers only because it can quickly explore a huge number

of candidates. Most candidates are garbage. Sifting through the trash in a reasonable time is possible

thanks to details of its engineering, described below.

Parallel MCMC. The MCMC synthesis in our inner loop is a slow, step-by-step process. To

accelerate converge and improve the likelihood of high coverage, we run this inner loop in parallel

(currently, 100 times). Operationally, each time we enter the inner loop with a set of candidate

functions, we spawn several copies of MCMC that independently mutate and evaluate transformers.

At the end of the inner loop, the highest-scoring candidates from each process are selected as

candidates for the outer loop to verify. MCMC splits its focus between sound candidates (F 𝑠
) and

precise candidates (F 𝑝
) on a 70/30 basis: 70 % of the parallel searches explore sound candidates,

and 30 % of the searches perform condition abduction.

LLVM JIT. Our evaluation engine uses the LLVM JIT, LLJIT [19], to quickly compile and test

candidate functions. We create a pre-compiled binary that packages the abstract domain, the APInt
API, our scoring function, and LLJIT, and use it to lower candidates written in MLIR to executable

code. Compared to our initial approach of invoking clang, linking with LLVM, and compiling the

candidates, JIT-ing improves performance by roughly two orders of magnitude. Testing a batch of

roughly 100 candidates dropped from seconds to milliseconds with LLJIT.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



80:18 Xuanyu Peng, Dominic Kennedy, Yuyou Fan, Ben Greenman, John Regehr, and Loris D’Antoni

5.3 Generalizability of the Approach
We have focused on KnownBits and ConstantRange domains because these are the main abstract

domains employed by LLVM. There are no fundamental limitations to adapting NiceToMeetYou to

other abstract domains:

• Non-relational abstract domains: NiceToMeetYou can be directly applied to non-relational do-

mains where each abstract value consists of a finite number of integers, as in KnownBits or

non-wrapping interval domains. Users must provide the components described above (Sec-

tion 5.1.1) and a soundness verifier. Reuse is made simple because the template of mutated

programs begins by deconstructing each input abstract value into integers and ends by recon-

structing the output abstract value from several integers, and only the operations in the middle

are mutated. To support non-relational abstract domains that are not composed of integers,

significant engineering is needed to define suitable templates and mutation strategies.

• Relational abstract domains: We conjecture that NiceToMeetYou can synthesize transformers for

relational domains, such as octagons and polyhedra. We have deferred investigation because

we suspect these domains will lead to prohibitively high compilation overhead. In contrast to

a non-relational domain, where program variables can be tracked independently, a relational

domain requires all variables to be tracked simultaneously. A transformer must operate over

entire program states rather than individual variables, which complicates reuse across operators.

• Non-Galois abstract domains: Our abstract domains are characterized by a Galois connection.

This means there is a unique most precise abstraction for each concrete set of integers, a fact

that our inner MCMC loop leverages to speed up evaluation. To adapt NiceToMeetYou to a non-

Galois-connection-based abstract domain, the framework would need a method for choosing

among multiple sound abstract values. Take the wrapped interval domain as an example [11].

There is no most precise abstraction for integers in a circle; any number can be the left endpoint.

NiceToMeetYou targets MLIR, but there is nothing fundamental about our choice to use it. MLIR

is convenient because it has an SMT dialect [10], a dataflow analysis framework with pluggable

transfer functions, and a clear relation with LLVM to facilitate comparisons.

6 Evaluation
Our evaluation consists of several parts: a direct comparison between LLVM’s KnownBits and

ConstantRange transformers and ours (Section 6.1); an evaluation of our known bits transfer

functions vs. LLVM’s, in terms of precision and compilation time, when compiling an appropriate

subset of the SPEC 2017 benchmark suite (Section 6.2); evidence that synthesis facilitates exploration

on composite transfer functions and a reduced product domain (Section 6.3); ablation studies of

DSL choice (Section 6.4) and condition abduction (Section 6.5); and, a detailed comparison to

Amurth [15] (Section 6.6). Note that, although we compare against LLVM to show that our work

is practical beating LLVM at its own game is not a goal in and of itself. NiceToMeetYou is a

complement to handcrafted analyses.

6.1 Comparison to LLVM’s Abstract Transformers
LLVM provides abstract transformers for a handful of abstract domains, notably KnownBits and
ConstantRange. These transformers are handwritten and have been fine-tuned over the years.

Currently, LLVM supports 44 of the 47 binary operators for KnownBits and 37 of 47 operators

for ConstantRange. To evaluate the effectiveness of our synthesis approach, we use our tool to

automatically generate abstract transformers for operators in both domains.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



Nice to Meet You: Synthesizing Practical MLIR Abstract Transformers 80:19

Table 1. KnownBits results for 8-bit and 64-bit integers. The 8-bit results report the percentage of tests where
the transformer matches the best transformer 𝑓 #. The 64-bit results report the norm of the transformer
(normalized by the number of Tests) which reflects its imprecision. Higher (↑) is better for exact, while lower
(↓) is better for norm. #𝑓 # is the number of transformers in F 𝑠 . #𝑐 counts those with conditions. #inst is the
total number of MLIR instructions used by those transformers. Tests is the number of sampled test inputs. ⊤,
synth, and LLVM present results for three transformers: a trivial one that always returns top, our synthesized
transformer, and LLVM’s manually-implemented transformer. The meet column is for the transformer synth
⊓ LLVM. Bolded numbers denote cases where the meet of the synthesized transformer and the LLVM one
has higher precision than the LLVM one. If no LLVM implementation is available (N/A) we bold cases in
which the synthesized transformer is better than ⊤. Some 64-bit rows contain a dash (-) because random
sampling failed to produce any valid pairs of inputs. These operators have strict constraints on their inputs.

ConcreteOp Tests 8-bit exact (%) ↑ Tests 64-bit precision (norm) ↓

#𝑓 # #𝑐 #inst ⊤ synth llvm meet ⊤ synth llvm meet

Abds 10 3 189 1000 33.90 60.10 100.00 100.00 10000 0.059 0.050 0.000 0.000

Abdu 16 4 259 1000 33.10 59.40 100.00 100.00 10000 0.059 0.050 0.000 0.000

Add 17 2 306 1000 29.60 58.70 100.00 100.00 10000 0.140 0.082 0.000 0.000

AddNsw 13 2 205 1000 24.50 42.00 100.00 100.00 9674 0.147 0.136 0.000 0.000

AddNswNuw 14 3 220 1000 7.40 45.50 100.00 100.00 7479 0.160 0.136 0.000 0.000

AddNuw 17 4 291 1000 15.20 53.90 100.00 100.00 8305 0.152 0.103 0.000 0.000

And 1 0 14 1000 0.10 100.00 100.00 100.00 10000 0.625 0.000 0.000 0.000

Ashr 5 3 94 1000 31.10 65.50 85.70 85.70 0 - - - -

AshrExact 7 2 123 1000 14.70 40.10 100.00 100.00 0 - - - -

AvgCeilS 8 4 157 1000 31.80 38.80 100.00 100.00 10000 0.139 0.136 0.000 0.000

AvgCeilU 8 6 153 1000 31.60 38.60 100.00 100.00 10000 0.139 0.136 0.000 0.000

AvgFloorS 9 3 163 1000 32.40 39.30 100.00 100.00 10000 0.139 0.136 0.000 0.000

AvgFloorU 7 4 138 1000 32.20 37.70 100.00 100.00 10000 0.139 0.136 0.000 0.000

Lshr 4 1 80 1000 12.30 59.30 96.50 96.50 0 - - - -

LshrExact 6 2 119 1000 12.80 31.40 100.00 100.00 0 - - - -

Mods 12 3 235 1000 41.20 64.70 71.30 71.50 10000 0.090 0.078 0.076 0.076

Modu 12 4 207 1000 16.70 59.00 52.70 70.60 10000 0.149 0.030 0.132 0.027
Mul 10 6 202 1000 25.60 60.60 73.20 73.30 10000 0.025 0.010 0.006 0.006
Or 1 0 8 1000 0.00 100.00 100.00 100.00 10000 0.624 0.000 0.000 0.000

Sdiv 11 7 248 1000 64.10 64.10 83.40 83.40 10000 0.331 0.331 0.114 0.114

SdivExact 2 2 32 1000 19.30 19.30 37.40 37.40 0 - - - -

Shl 4 1 69 1000 10.50 56.90 96.50 96.50 0 - - - -

ShlNsw 7 1 115 1000 6.80 26.20 100.00 100.00 0 - - - -

ShlNswNuw 7 2 115 1000 5.50 9.80 100.00 100.00 0 - - - -

ShlNuw 7 3 139 1000 10.60 40.50 100.00 100.00 0 - - - -

Smax 9 5 185 1000 6.50 63.80 100.00 100.00 10000 0.348 0.095 0.000 0.000

Smin 6 4 119 1000 6.00 72.80 100.00 100.00 10000 0.349 0.064 0.000 0.000

SshlSat 7 1 124 1000 37.60 72.40 N/A 72.40 10000 0.624 0.109 N/A 0.109
Sub 12 2 204 1000 28.50 60.60 100.00 100.00 10000 0.140 0.088 0.000 0.000

SubNsw 16 5 287 1000 22.20 47.80 100.00 100.00 9673 0.146 0.103 0.000 0.000

SubNswNuw 14 6 292 1000 7.60 31.80 100.00 100.00 7515 0.160 0.139 0.000 0.000

SubNuw 18 4 323 1000 16.40 47.10 100.00 100.00 8215 0.152 0.099 0.000 0.000

UaddSat 14 5 305 1000 18.30 61.80 100.00 100.00 10000 0.253 0.069 0.000 0.000

Udiv 10 5 191 1000 2.50 80.80 89.80 90.90 10000 0.960 0.004 0.001 0.001

UdivExact 3 2 53 1000 2.80 15.30 33.90 42.20 0 - - - -

Umax 9 6 199 1000 6.40 90.60 100.00 100.00 10000 0.351 0.002 0.000 0.000

Umin 6 1 105 1000 6.40 92.90 100.00 100.00 10000 0.351 0.001 0.000 0.000

UshlSat 2 1 41 1000 3.60 96.60 N/A 96.60 10000 1.000 0.000 N/A 0.000

UsubSat 10 6 232 1000 19.00 52.10 100.00 100.00 10000 0.254 0.071 0.000 0.000

Xor 3 0 39 1000 2.30 100.00 100.00 100.00 10000 0.390 0.000 0.000 0.000

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



80:20 Xuanyu Peng, Dominic Kennedy, Yuyou Fan, Ben Greenman, John Regehr, and Loris D’Antoni

Table 2. ConstantRange results for 8-bit and 64-bit integers. See the Table 1 caption for descriptions of the
columns, exact, and norm. Higher (↑) is better for exact. Lower (↓) is better for norm. Operators marked by
a * use synthesized CR𝑠 transformers, others use CR𝑢 transformers.

ConcreteOp Tests 8-bit exact (%) ↑ Tests 64-bit precision (norm) ↓

#𝑓 # #𝑐 #inst ⊤ synth llvm meet ⊤ synth llvm meet

Abds* 3 2 70 1000 59.80 59.80 N/A 59.80 10000 0.917 0.915 N/A 0.915
Abdu 20 6 344 1000 0.00 75.00 N/A 75.00 10000 0.990 0.908 N/A 0.908
Add 2 2 45 509 36.54 100.00 100.00 100.00 4991 0.949 0.887 0.887 0.887

AddNsw* 8 4 148 1000 7.10 100.00 100.00 100.00 9770 0.982 0.905 0.905 0.905

AddNswNuw 10 2 172 1000 0.00 70.70 84.80 88.60 8190 0.994 0.921 0.912 0.910
AddNuw 14 5 243 1000 0.00 94.00 100.00 100.00 8267 0.993 0.910 0.906 0.906

And 10 5 193 1000 0.00 82.30 83.10 83.30 10000 0.990 0.886 0.883 0.883

Ashr* 8 3 141 1000 0.00 98.00 98.50 99.20 0 - - - -

AshrExact* 4 2 73 1000 0.00 81.70 N/A 81.70 0 - - - -

AvgCeilS* 26 2 444 1000 0.00 0.30 N/A 0.30 10000 0.998 0.953 N/A 0.953
AvgCeilU 17 3 303 1000 0.00 1.80 N/A 1.80 10000 0.998 0.947 N/A 0.947
AvgFloorS* 20 1 332 1000 0.00 1.80 N/A 1.80 10000 0.998 0.955 N/A 0.955
AvgFloorU 17 3 276 1000 0.00 30.00 N/A 30.00 10000 0.998 0.932 N/A 0.932
Lshr 1 0 14 1000 0.00 100.00 100.00 100.00 0 - - - -

LshrExact 4 1 78 1000 0.00 85.20 N/A 85.20 0 - - - -

Mods* 6 2 118 1000 0.00 43.50 95.60 95.60 10000 0.997 0.909 0.875 0.875

Modu 8 3 164 1000 0.00 89.00 88.90 89.00 10000 0.989 0.877 0.877 0.877
Mul 17 6 371 998 90.78 90.78 90.88 90.88 10000 0.861 0.861 0.861 0.861

Or 14 8 275 1000 0.00 82.40 85.60 86.20 10000 0.990 0.889 0.882 0.882

Sdiv* 8 3 146 998 0.50 12.32 100.00 100.00 10000 1.000 0.997 0.501 0.501

SdivExact* 8 8 202 1000 0.70 0.70 N/A 0.70 0 - - - -

Shl 8 4 140 1000 0.00 83.00 0.30 83.00 0 - - - -

ShlNsw* 4 3 81 1000 0.70 18.00 99.20 99.40 0 - - - -

ShlNswNuw 7 1 116 1000 0.00 88.30 49.80 100.00 0 - - - -

ShlNuw 7 4 156 1000 0.00 76.40 99.60 99.60 0 - - - -

Smax* 1 0 14 1000 0.00 100.00 100.00 100.00 10000 0.996 0.838 0.838 0.838

Smin* 1 0 13 1000 0.00 100.00 100.00 100.00 10000 0.996 0.839 0.839 0.839

SshlSat* 7 3 132 1000 50.90 75.50 100.00 100.00 10000 0.497 0.486 0.243 0.243

Sub 2 2 39 526 35.36 100.00 100.00 100.00 4997 0.948 0.887 0.887 0.887

SubNsw* 5 4 106 1000 7.00 100.00 100.00 100.00 9773 0.981 0.904 0.904 0.904

SubNswNuw 3 1 59 1000 0.00 74.50 84.00 84.00 8152 0.993 0.917 0.912 0.912

SubNuw 14 8 259 1000 0.00 94.50 100.00 100.00 8304 0.993 0.910 0.906 0.906

UaddSat 6 1 93 1000 0.00 99.20 100.00 100.00 10000 0.995 0.756 0.755 0.755

Udiv 7 1 126 1000 0.00 31.70 100.00 100.00 10000 1.000 0.033 0.006 0.006

UdivExact 5 2 95 1000 0.00 34.30 N/A 34.30 0 - - - -

Umax 1 0 13 1000 0.00 100.00 100.00 100.00 10000 0.996 0.839 0.839 0.839

Umin 1 0 15 1000 0.00 100.00 100.00 100.00 10000 0.996 0.839 0.839 0.839

UshlSat 5 1 85 1000 0.00 100.00 100.00 100.00 10000 1.000 0.000 0.000 0.000

UsubSat 2 0 31 1000 0.00 100.00 100.00 100.00 10000 0.995 0.753 0.753 0.753

Xor 13 2 232 1000 50.90 56.10 66.70 68.20 10000 0.921 0.908 0.890 0.887

Our evaluation reports data for 40 of the 47 operators. The seven omitted operators—MulNsw,

UMulSat, MulNuw, SAddSat, MulNswNuw, SMulSat, and SSubSat—require overflow checks that

we have not yet supported in our dalect.

6.1.1 Evaluation Setting. We evaluate the precision of NiceToMeetYou synthesized transformers,

LLVM built-in transformers, and the meet of both. We measure precision for 8-bit and 64-bit

bitvectors on a set of randomly sampled inputs, denoted as Atest. All concrete operators in our

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



Nice to Meet You: Synthesizing Practical MLIR Abstract Transformers 80:21

benchmarks are binary, so each input consists of a pair of abstract values (𝑎1, 𝑎2). Generally
speaking, the generation of test inputs for evaluation is the same as the test generation described

in Section 5.1.4, but using different random seeds.

In the 8-bit setting, the concrete domain is small (i.e., 2
8
), making it feasible to compute for each

sampled input the theoretically best result 𝑓 # (𝑎1, 𝑎2) by exhaustively enumerating all concrete

value pairs (𝑐1, 𝑐2) such that 𝑐1 ∈ 𝛾 (𝑎1) and 𝑐2 ∈ 𝛾 (𝑎2). We therefore report the percentage of inputs

for which the evaluated transformer produces exactly the abstract output 𝑓 # (𝑎1, 𝑎2). In the 64-bit

setting, exhaustive enumeration is no longer feasible as each abstract value could concretize to as

many as 2
64
concrete values. Therefore, we report the norm over the sampled test inputs



𝑓 #

Atest

.

Specifically, for KnownBits and ConstantRange domain, we both sample 1,000 (and 10,000) pairs

of abstract values for the 8-bit (and 64-bit) evaluations. For each abstract pair, we enumerate all

concrete value pairs in the 8-bit setting, and sample 10,000 concrete value pairs in the 64-bit setting.

Constraints on Concrete Operators. As mentioned in Section 5.1.1, some concrete operators impose

constraints on their operands. For example, shift operators require the second operand to lie within

the range [0, bitwidth]. In such cases, a randomly sampled abstract input pair may not contain

any concrete value pair that satisfies the constraint. For 8-bit inputs, we apply rejection sampling

to ensure only non-empty inputs—those that contain at least one valid concrete value pair—are

included. However, for 64-bit inputs, non-empty inputs could be rare, and rejection sampling

becomes inefficient. Therefore, we simply skip empty inputs and exclude them from evaluation at

64 bits. As a result, the Tests count in some rows of the right columns in Tables 1 and 2 is less than

10,000. In extreme cases where all 10,000 sampled inputs are empty (due to how few valid inputs

there might be for a certain operator), we omit the corresponding data.

Comparing to LLVM’s wrapped ConstantRange.While the LLVM KnownBits domain cleanly fits

into our framework, the LLVM ConstantRange domain presents some friction, as it consists of

wrapped intervals[11]. Specifically, each element in this LLVM domain is either⊥ (the empty set),⊤
(the set of all𝑤-bit integers), or represented by [𝑎, 𝑏), where 𝑎, 𝑏 are𝑤-bit bitvectors such that 𝑎 ≠ 𝑏.

This domain is a sign-agnostic domain. The concretization function for LLVM ConstantRange
domain is defined as follows, where <𝑙 is lexicographic ordering on bit-vectors:

𝛾 ( [𝑎, 𝑏)) =
{
{𝑎, . . . , 𝑏 − 1} if 𝑎 <𝑙 𝑏

{0𝑤, . . . , 𝑏 − 1} ∪ {𝑎, . . . , 1𝑤} otherwise.

The LLVM ConstantRange domain is a sound but non-Galois abstract domain—i.e., it does not

form a Galois connection with the concrete bit-vector domain. Its abstraction function 𝛼 can be

understood as returning a most precise wrapped interval that covers the given set of bitvectors—i.e.,

no subinterval of it does. However, such a most precise interval is not guaranteed to be unique.

NiceToMeetYou only supports Galois-connection-based abstract domains where a best abstrac-

tion is unique. So to enable a comparison to this non-well-defined abstract domain, we synthesized

transformers for the following two segment domains:

• Unsigned Intervals (CR𝑢 ): Each element is either ⊥ or from the set {[𝑎, 𝑏] | 0 ≤ 𝑎 ≤ 𝑏 < 2
𝑤}.

• Signed Intervals (CR𝑠 ): Each element is either ⊥ or from the set {[𝑎, 𝑏] | 2𝑤−1 ≤ 𝑎 ≤ 𝑏 < 2
𝑤−1}.

Because our abstract domains and the not-well-defined abstract domain used by LLVM are tech-

nically incomparable, we need to make some compromises when analyzing their precision and

mapping elements of one to the other. For unsigned concrete operators (e.g. umax) and sign-agnostic
ones (e.g. add), CR𝑢 transformers are used for comparison. If the LLVM transformer produces a

wrapper interval that cannot be represented as an element CR𝑢 , we do not use that input in our

comparison. For signed operators (e.g., smax), we instead use CR𝑠 transformers and similarly skip

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



80:22 Xuanyu Peng, Dominic Kennedy, Yuyou Fan, Ben Greenman, John Regehr, and Loris D’Antoni

cases where LLVM’s wrapped interval cannot be captured in CR𝑠 . To summarize, we only compare

the two domains on inputs that they can both represent. These skipped inputs cause the Tests
number in both 8-bit and 64-bit in Table 2 to be less than the desired number of sampled inputs.

6.1.2 Evaluation Results. Table 1 and Table 2 summarize KnownBits and ConstantRange evalua-
tion result respectively. Experiments ran on a server with 2× Intel Xeon Gold 6230 CPUs (40 cores,

80 threads, 2.10GHz). Each benchmark took around 6 hours to finish.

For the KnownBits domain, LLVM provides manually written transformers for 37/40 concrete
operators. Among these, there are 12 operators for which the LLVM transformers do not achieve

the theoretically best result. For 3 out of these 12 cases, NiceToMeetYou synthesizes more precise

transformers, as measured by the norm function on 64-bit inputs. For another 5 out of 11 cases,

the synthesized transformers are less precise than the LLVM ones but still uncover new heuristics

that are not present in the LLVM implementations and therefore result in increased precision

for the meet of the LLVM and the synthesized transformer. The remaining 28 out of 40 LLVM

transformers are already the best, meaning there is no room for improvement via synthesis. That

being said, NiceToMeetYou is able to match the precision for 3 of these hand-tuned transformers.

NiceToMeetYou also synthesizes transformers with non-trivial precision for the two operations for

which LLVM does not include a transformer.

For the ConstantRange domain, LLVM provides manually written transformers for 30/40 con-
crete operators. NiceToMeetYou is able to synthesize transformers for all 40 operators. There are

13 operators where LLVM transformers do not achieve the theoretically best result. For 9 out of

these 13 cases, NiceToMeetYou synthesizes more precise transformers, as measured by the norm

function on 64-bit inputs. For another 6 out of 13 cases, the synthesized transformers are less

precise than the LLVM ones but still uncover new heuristics that are not present in the LLVM

implementations (again shown by the increased precision obtained when taking the meet of the

LLVM and synthesized transformer). The remaining 17 out of 30 LLVM transformers are already the

best, meaning there is no room for improvement via synthesis. NiceToMeetYou matches existing

hand-tuned transformers for 11 of these cases.

6.2 End-to-End Precision and Performance
In this section we evaluate the effect of replacing LLVM’s known bits transfer functions with our

own. We perform this comparison to show that our transfer functions are reasonable ones, but our

larger goal is not to beat LLVM at its own game. Rather, we aim to develop basic technologies that

can be used to avoid manual implementation of transfer functions in future compilers.

Replacing LLVM’s transfer functions with our own was not entirely a clean software engineering

job since LLVM’s known bits analysis is implemented in a style that intermixes its transfer functions

with a highly ad hoc dataflow framework that simply recurses along backwards dataflow edges

until a maximum depth is reached. We left this framework in place, but called out to our own

transfer functions, instead of LLVM’s, at appropriate points in the code.

We took the nine C/C++, integer programs from the SPEC CPU 2017 benchmark suite and

compiled them using an off-the-shelf Clang/LLVM version 21, and then also our modified version.

This optimizing compilation (using Clang’s -O3 -march=native flags) was done on a Linuxmachine

using an AMD 2990WX 32-core CPU, with parallelism disabled in the build system. During an

optimizing compile, LLVM uses the known bits analysis results many times, from many different

passes. To evaluate precision, we took the final, optimized LLVM IR resulting from optimized

compilation and invoked LLVM’s known bits analysis—with and without our synthesized transfer

functions—on every integer-typed SSA value.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



Nice to Meet You: Synthesizing Practical MLIR Abstract Transformers 80:23

Table 3. Comparison of compilation times and known bits precision between LLVM’s own transfer functions
and ours, for the nine SPEC CPU 2017 integer benchmarks in C/C++

perlbench gcc mcf omnetpp xalancbmk x264 deepsjeng leela xz

KLOC 362 1,304 3 134 520 96 10 21 33

LLVM 68.39 370.60 1.94 117.82 303.47 42.08 4.78 13.49 11.31

Compile time (s) Ours 69.95 376.80 2.05 117.99 304.61 46.41 5.07 13.66 11.74

Slowdown 2.27 % 1.67 % 5.49 % 0.14 % 0.38 % 10.29 % 5.89 % 1.22 % 3.80 %

LLVM 1,356,555 4,272,154 910 62,251 475,736 247,344 15,578 25,207 76,907

Known bits Ours 1,305,537 4,195,918 910 62,102 442,838 218,171 14,780 19,353 72,090

Precision loss 3.76 % 1.78 % 0.00 % 0.24 % 6.92 % 11.79 % 5.12 % 23.22 % 6.26 %

Table 3 shows the results of this experiment. Our transfer functions are neither as fast nor as

precise as LLVM’s, but the difference is not huge. We have not yet attempted to optimize our

transfer functions for runtime performance. One aspect that could be improved is our generated

C++, which is not idiomatic: it creates and destroys more temporary objects than does LLVM’s

hand-written code, and furthermore it performs some translation between MLIR and LLVM data

structures that could be elided. Another potential avenue for improvement would be to make

execution time part of our fitness function during synthesis.

In addition, we ran a smaller ad-hoc experiment compiling openssl, ffmpeg, and cvc5 using the

meet of our synthesized KnownBits transformers and LLVM’s. The precision improvements are

modest: +2 discovered bits in openssl (above the baseline of 1.3M bits discovered by LLVM), +14

bits in ffmpeg (baseline: 3.7M), and +0 bits in cvc5 (baseline: 16M).

6.3 Opportunities Created by NiceToMeetYou

We believe that synthesis changes the basic economics of transfer functions, in the sense that we

can synthesize more of these than we would want to write by hand.

6.3.1 Precision via Specialization. Production compilers usually provide a wide variety of intrinsic

functions that encapsulate higher-level operations such as popcount (Hamming weight) and saturat-

ing arithmetic operations. The advantage of intrinsics over open-coded versions of these operations

is that the composite versions can readily be lowered to either dedicated machine instructions or

optimized library code. However, composite operations have a secondary benefit, which is that

a composite transfer function is typically more precise than what we would get by composing

the results of the transfer functions for the elementary operations that make up the open-coded

version of the operation. To create Table 4, which illustrates this point, we synthesized transfer

functions for eight LLVM intrinsics, and then we also measured the precision attained by analyzing

an open-coded version of each operation—that is, by composing the most precise transformers that

we have been able to synthesize. In all cases, the transfer function for the composed operation is

considerably more precise.

6.3.2 Reduced Product. A reduced product domain improves analysis precision by combining

the strengths of multiple abstract domains. Each domain captures different aspects of program

behavior—for example, KnownBits tracks known zero and one bits, while ConstantRange tracks
possible value ranges. The reduced product coordinates these domains using a reduction operator

(𝜎), which refines each domain’s element based on information from the other [6]. This mutual

refinement helps eliminate infeasible states and improve the overall precision of the analysis.

Since NiceToMeetYou synthesizes transformers for all operations in both the KnownBits and

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



80:24 Xuanyu Peng, Dominic Kennedy, Yuyou Fan, Ben Greenman, John Regehr, and Loris D’Antoni

Table 4. Results for top, composed, and synth on unary (6,561 test cases) and binary (43,046,721 cases) functions.
Exact is reported in % (higher is better), and precision is reported as a normalized count (lower is better).

Category Concrete Op Exact (%) ↑ Precision (norm) ↓

⊤ composed synth ⊤ composed synth

Abs 1.95 3.92 100.00 3372 2552 0
Unary Functions CountRZero 0.00 33.33 83.63 5740 3553 193
(6,561 test cases) CountLZero 0.00 0.00 83.63 5740 5466 193

PopCount 0.00 0.05 69.53 4461 4456 369

Smax 4.46 6.33 56.86 19,797,600 18,179,000 5,471,520
Binary Functions Smin 4.46 6.04 70.39 19,797,600 18,384,100 4,117,500
(43,046,721 test cases) UaddSat 13.93 22.93 56.20 17,358,900 14,111,200 4,471,530

UsubSat 13.93 19.46 49.11 17,358,900 15,377,400 5,369,170

Table 5. Results for reduced product between KnownBits and ConstantRange for 8-bit and 64-bit integers.
The columns and cells have the same meaning as in Table 1. Only operations for which the reduced product
has an improvement over our synthesized KnownBits transformer are included.

Concrete Op Tests 8-bit exact (%) ↑ Tests 64-bit precision (norm) ↓

⊤ synth reduced ⊤ synth reduced

Abds 1000 7.64 18.06 28.98 10000 0.1260 0.1119 0.1069
Abdu 1000 7.11 20.76 71.06 10000 0.1236 0.1085 0.0921
AddNsw 1000 6.68 18.73 81.65 10000 0.2820 0.1125 0.0869
AddNswNuw 1000 0.22 44.89 88.20 10000 0.5592 0.1216 0.0610
AddNuw 1000 3.35 31.80 92.32 10000 0.4920 0.0930 0.0557
AvgCeilS 1000 9.83 18.01 29.16 10000 0.1651 0.1573 0.1503
AvgFloorS 1000 9.86 17.37 46.61 10000 0.1669 0.1598 0.1412
AvgFloorU 1000 9.90 19.00 50.37 10000 0.1668 0.1481 0.1336
Sdiv 1000 17.99 27.85 45.61 10000 0.7262 0.2493 0.2229
Smax 1000 0.44 59.89 83.19 10000 0.4959 0.0926 0.0822
Smin 1000 0.43 59.62 84.23 10000 0.4954 0.0953 0.0843
Srem 1000 13.14 22.41 26.92 10000 0.1845 0.1701 0.1689
SshlSat 1000 4.08 33.43 43.35 10000 0.9542 0.3211 0.3148
SubNswNuw 1000 0.33 39.01 77.20 10000 0.5617 0.1299 0.0701
SubNuw 1000 3.52 36.84 90.94 10000 0.4822 0.0763 0.0466
UaddSat 1000 4.11 61.03 83.09 10000 0.4482 0.0874 0.0469
Udiv 1000 0.00 68.66 75.28 10000 0.9845 0.0134 0.0067
UdivExact 1000 0.02 3.21 5.78 10000 1.0000 0.0272 0.0195
Umax 1000 0.54 95.28 99.74 10000 0.4947 0.0016 0.0001
Umin 1000 0.56 92.99 99.59 10000 0.4964 0.0023 0.0003
Urem 1000 2.12 61.45 66.53 10000 0.2677 0.0393 0.0367
UsubSat 1000 4.06 56.03 73.09 10000 0.4508 0.1106 0.0700

ConstantRange domains, we can automatically construct reduced product transformers for any

concrete operation bymanually providing a suitable reduction operator that relates the two domains.

We evaluate the difference in precision between using KnownBits and using the reduced product
between KnownBits and ConstantRange. To have a uniform random sampling from this reduced

product lattice, we simply sample uniformly from both KnownBits and ConstantRange, where the
reduction between the KnownBits and ConstantRange abstract values is not bottom.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



Nice to Meet You: Synthesizing Practical MLIR Abstract Transformers 80:25

We compare only against our synthesized transformers, not LLVM’s, because our sampling

occurs over the product lattice. This means the abstract elements we evaluate are inherently more

precise than those representable by KnownBits alone, making a direct comparison with LLVM’s

KnownBits transformers unfair. Instead, we focus on identifying which concrete operations benefit

from the added precision of the reduced product domain, and by how much, when using our

synthesized transformers.

Table 5 presents our results. The experiment finished quickly (90 seconds, on a reasonably

fast laptop) because it merely evaluates transformers rather than synthesizing transformers. We

report only the transformers for which the reduced product yields a precision improvement over

using KnownBits alone. On the remaining operations, such as Xor (not shown in Table 5), the

reduced product offers no additional benefit, as KnownBits is already maximally precise. In contrast,

operations such as AddNswNuw show substantial gains in precision when evaluated within the

reduced product domain. There were 22 such concrete operations for which the reduced product

was able to improve over the KnownBits domain, out of 40 total operations. For the concrete

operations where there was an improvement, the reduced product improved by an average of

24.4% points for the tests at 8-bits wide, and improved the average size score by 196.2, on the

tests at 64-bits wide. By combining KnownBits with ConstantRange in a reduced product, we are

able to improve precision particularly for operators that are challenging for both our synthesized

KnownBits transformers and LLVM’s. Overall, the reduced product delivers consistently strong

performance across the full range of supported operations, thus showcasing one additional benefit

enabled by NiceToMeetYou.

6.4 Impact of DSL Choice
We evaluate how the choice of operations in DSL affects the performance of NiceToMeetYou.
The Full DSL used in Section 6.1 includes 29 primitives, which can be grouped as fol-

lows: (1) Bitwise: and, or, xor, neg; (2) Add: add, sub. (3) Max: umax, umin, smax, smin;
(4) Mul: mul, udiv, sdiv, urem, srem; (5) Shift: shl, ashr, lshr; (6) BitSet: set_high_bits,
set_low_bits, clear_low_bits, clear_high_bits, set_sign_bit, clear_sign_bit; (7) Bit-
Count: count_left_one, count_left_zero, count_right_one, count_right_zero. (8) ITE:
if_then_else. We conduct an ablation study on the KnownBits domain over two DSL sub-

sets: Basic =Bitwise ∪ Add, contains only addition, subtraction, and bitwise operations. BitExt
=Bitwise ∪ Add ∪ Max ∪ Shift ∪ BitSet ∪ BitCount ∪ ITE, contains all primitives except those in

Mul.
The Full language, Basic , and BitExt yield the most precise transformers for 16, 5, and 14

operations, respectively. For the remaining 5/40 benchmarks, they all reach the same precision.

Detailed results are summarized in Table 6 in Appendix B.1.

The results are in a way expected: if certain operations are known to be irrelevant for a specific

transformer, removing them from the DSL can improve the precision—e.g., Basic is the smallest of

the three languages that can produce an optimal transformer for add and sub and does well for

such benchmarks.

6.5 Impact of Abduction
We now evaluate the impact of condition abduction (Section 4.1.2) by running NiceToMeetYouwith
and without condition abduction. For KnownBits, condition abduction improves precision by 6.44%

on average (geometric mean), with 19/40 benchmarks showing gains. For ConstantRange, condition
abduction improves precision by 2.3% on average (geometric mean), with 16/37 benchmarks showing

gains. Detailed Results are shown in Tables 7 and 8 in Appendix B.2.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



80:26 Xuanyu Peng, Dominic Kennedy, Yuyou Fan, Ben Greenman, John Regehr, and Loris D’Antoni

A representative case highlighting the necessity of abduction is the add benchmark in the CR𝑢
domain. Its best transformers produce intervals better than ⊤ only when one knows overflow

cannot happen. Using condition abduction, NiceToMeetYou synthesizes the best transformer in

2 rounds: first, it discovers a transformer that only works for non-overflow cases, and then it

identifies the overflow condition to generate a complete transformer. When abduction is disabled,

NiceToMeetYou cannot find the best transformer within 5 rounds.

To summarize, overall condition abduction generally improves precision, but because it uses

part of the compute budget, it may in certain cases reduce precision. Of course, one can also run

NiceToMeetYou with and without abduction and output the better result.

6.6 Comparison to Amurth

The only other work we are aware of that tackles the general problem of synthesizing abstract

transformers is Amurth [15]. Amurth takes the same inputs as NiceToMeetYou—i.e., a DSL, a
concrete semantics, and an abstract domain—and synthesizes a provably most precise (up to a given

input bound) transformer expressible within the given DSL. To do so, Amurth uses constraint

solvers (specifically Sketch [32]) to iteratively synthesize transformers that increase precision on a

finite set of abstract inputs until a provably optimal transformer is sound.

The evaluation by Kalita et al. includes transformers for both string operations and integer

operations. Because NiceToMeetYou currently does not support string operations, we only focus on
the latter. Amurth has successfully been used to synthesize transformers for 9 concrete operators

for the unsigned and signed interval domains Kalita et al. [15, Table 4]: add, sub, mul, and, or, xor,
shl, ashr, and lshr. We therefore focus our evaluation on these 2 domains and 9 operations.

When provided with this DSL consisting of the set of 29 primitive instructions we used in

Section 6.4, Amurth could not synthesize any transformer or returned ⊤ within the time limit.

While Amurth cannot synthesize abstract transformers when given a generic DSL, it can do

so by providing “hints” to the synthesizer in the form of sketches—i.e., partial programs where

only some parts are missing—and custom auxiliary functions. For example, Amurth synthesizes

transformers for bitwise operators (and, or, xor), when auxiliary functions such as minOr, maxOr,
minAnd, maxAnd (which compute the lower/upper bound of the results of bitwise-or/and over 2

intervals) are provided. With those auxiliary functions provided, they further provide program

template (that describes a clever way to divide input intervals at 0) to synthesize for signed domains

Kalita et al. [15, Figure 16]. Providing hints and templates allows Amurth to synthesize most-

precise transformers for very tricky transformers operations, but requires the users of Amurth to

provide insights that are quite close to the actual solution. Moreover, one has to provide Amurth

with different hints and sketches (i.e., different DSLs) for different concrete operations, even when

the underling abstract domain does not change.

To summarize, Amurth cannot solve the problem tackled in this paper—i.e., synthesize abstract

transformers for many concrete operators using just one given DSL. However, Amurth is well-

suited for synthesizing optimal transformers for tricky individual operations, as long as the user is

willing to provide hints to the synthesizer in the form of program sketches and auxiliary functions.

7 Other Related Work
Our approach draws on a rich line of work on synthesizing abstract transformers, verification

infrastructure, and stochastic program synthesis. We build on the MLIR ecosystem [10], expressing

synthesized abstract transformers in a first-class dialect that supports both efficient compilation via

LLVM and formal reasoning via SMT encoding, using Z3 [8] for soundness verification. We have

already discussed at length how NiceToMeetYou relates to its closest related work, Amurth [15, 16],

in Section 6.6, and use the rest of the section to discuss other approaches.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



Nice to Meet You: Synthesizing Practical MLIR Abstract Transformers 80:27

Precision-Oriented Synthesis and Domain-Specific Approaches. Several efforts have addressed the

problem of deriving best or approximate abstract transformers. A line of work by Reps, Sagiv, Yorsh,

and Thakur [28, 29, 33–35] develops methods for automated symbolic abstraction—computing the

best abstract transformer for a given input. In these approaches, the transformer is not necessarily

an explicit, executable program. Other works have focused on finding executable representations of

abstract transformers, but are typically tied to specific abstract domains or specific representations.

For example, Regehr and Reid [27] encode transformers using BDDs, which can sometimes be

inefficient due to the limited expressivity of BDDs. Elder et al. [9] target conjunctions of bit-vector

equalities, and Laurel et al. [17] target numerical abstract domains such as linear convex polytope. In

contrast, NiceToMeetYou supports a wide range of instructions for composing abstract transformers

and remains agnostic to specific domains. More recent work proposes sketching-based algorithms

for learning disjunctive and conjunctive specifications over program behaviors [23, 24]. While our

work shares the idea of synthesizing multiple components and combining them (via meet), we

instantiate it in the domain of abstract interpretation with formal guarantees and no sketching.

Stochastic and MCMC-Based Synthesis. Our synthesis algorithm is inspired by stochastic search

techniques, in particular the Markov Chain Monte Carlo (MCMC) superoptimization strategy

introduced by Stoke [31]. Like Stoke, our framework searches the space of candidate programs

guided by a cost function, using probabilistic rewrites. Unlike Stoke, which targets concrete program

optimization, we use MCMC to synthesize abstract transformers, and our cost function encodes

the precision improvement from existing transformers. Moreover, our work introduces a novel

abductive refinement strategy that iteratively improves precision by synthesizing and composing

multiple sound transformers. Instantiating this algorithm over the full LLVM instruction set via

MLIR requires significant engineering and forms a core contribution of our work.

8 Conclusion
Abstract transformers are a load-bearing component of a modern optimizing compiler: the compiler

will miss optimizations if transformers are imprecise, and it will miscompile if they are unsound. We

created NiceToMeetYou: a framework for synthesizing formally verified abstract transformers from

specifications of integer IR instructions and finite non-relational abstract domains. Unlike previous

systems, ours does not require any sketches—transformers are synthesized from scratch—and

can therefore quickly synthesize transformers for dozens of operators. The insight that made this

possible is that transformers can be synthesized piecewise, with each new piece targeting a different

part of the input space. The final transformer is simply the meet of its constituent pieces. In our

evaluation, NiceToMeetYou synthesized transformers for most LLVM operations with precision

sometimes comparable to LLVM’s manually written transformers. NiceToMeetYou also synthesized
26 transformers that are either more precise than LLVM’s or can be combined with LLVM ones via

a meet operation to yield new transformers with greatly increased precision—i.e., NiceToMeetYou’s
transformers deal with corner cases that had eluded LLVM developers.

Data-Availability Statement
NiceToMeetYou and scripts for reproducing our experiments are available on Zenodo [25].

Acknowledgments
Kennedy was supported by a seed grant from the University of Utah. D’Antoni and Peng are

supported in part by a Microsoft Faculty Fellowship; a UCSD JSOE Scholarship; and NSF under

grants CCF-2422214, CCF-2506134 and CCF-2446711. Fan and Regehr were supported in part by

the National Science Foundation under grant under Grant No. 1955688. Any opinions, findings,

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



80:28 Xuanyu Peng, Dominic Kennedy, Yuyou Fan, Ben Greenman, John Regehr, and Loris D’Antoni

and conclusions or recommendations expressed in this publication are those of the authors, and

do not necessarily reflect the views of the sponsoring entities. Loris D’Antoni holds concurrent

appointments as a Professor at the University of California San Diego and as an Amazon Scholar.

This paper describes work performed at the University of California San Diego and is not associated

with Amazon.

References
[1] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2010. The SMT-LIB standard: Version 2.0. InWorkshop on Satisfiability

Modulo Theories, Vol. 13. 14. https://smt-lib.org/papers/smt-lib-reference-v2.7-r2025-02-05.pdf.

[2] Marco Campion, Caterina Urban, Mila Dalla Preda, and Roberto Giacobazzi. 2023. A Formal Framework to Measure

the Incompleteness of Abstract Interpretations. In SAS. Springer, 114–138. doi:10.1007/978-3-031-44245-2_7
[3] Ignacio Casso, José F. Morales, Pedro López-García, Roberto Giacobazzi, and Manuel V. Hermenegildo. 2020. Computing

Abstract Distances in Logic Programs. In Logic-Based Program Synthesis and Transformation. Springer, 57–72. doi:10.
1007/978-3-030-45260-5_4

[4] Compiler Research at The University of Cambridge. 2025. xdsl-smt. https://github.com/opencompl/xdsl-smt, Accessed

2025-11-25.

[5] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of

Programs by Construction or Approximation of Fixpoints. In POPL. ACM, 238–252. doi:10.1145/512950.512973

[6] Patrick Cousot and Radhia Cousot. 1979. Systematic Design of Program Analysis Frameworks. In POPL. ACM, 269–282.

doi:10.1145/567752.567778

[7] Patrick Cousot and Radhia Cousot. 1992. Comparing the Galois Connection and Widening/Narrowing Approaches

to Abstract Interpretation. In Programming Language Implementation and Logic Programming. Springer, 269–295.
doi:10.1007/3-540-55844-6_142

[8] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS. 337–340. doi:10.1007/978-3-
540-78800-3_24

[9] Matt Elder, Junghee Lim, Tushar Sharma, Tycho Andersen, and Thomas W. Reps. 2014. Abstract Domains of Affine

Relations. Transactions on Programming Languages and Systems 36, 4 (2014), 11:1–11:73. doi:10.1145/2651361
[10] Mathieu Fehr, Yuyou Fan, Hugo Pompougnac, John Regehr, and Tobias Grosser. 2025. First-Class Verification Dialects

for MLIR. Proceedings of the ACM on Programming Languages 9, PLDI, Article 206 (2025), 25 pages. doi:10.1145/3729309
[11] Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey. 2015. Interval Analysis and

Machine Arithmetic: Why Signedness Ignorance Is Bliss. Transactions on Programming Languages and Systems 37, 1,
Article 1 (2015), 35 pages. doi:10.1145/2651360

[12] W. K. Hastings. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 1 (04
1970), 97–109. doi:10.1093/biomet/57.1.97

[13] Hatsunespica and OpenCompl Contributors. 2025. xdsl-smt: Artifact Branch. https://github.com/Hatsunespica/xdsl-

smt/tree/artifact. Accessed: 2025-10-23.

[14] Qinheping Hu, Jason Breck, John Cyphert, Loris D’Antoni, and Thomas Reps. 2019. Proving Unrealizability for

Syntax-Guided Synthesis. In CAV. Springer, 335–352. doi:10.1007/978-3-030-25540-4_18
[15] Pankaj Kumar Kalita, Sujit Kumar Muduli, Loris D’Antoni, Thomas W. Reps, and Subhajit Roy. 2022. Synthesizing

Abstract Transformers. Proceedings of the ACM on Programming Languages OOPSLA (2022). doi:10.1145/3563334

[16] Pankaj Kumar Kalita, Thomas Reps, and Subhajit Roy. 2024. Synthesizing Abstract Transformers for Reduced-Product

Domains. In SAS. Springer-Verlag, Berlin, Heidelberg, 147–172. doi:10.1007/978-3-031-74776-2_6
[17] Jacob Laurel, Ignacio Laguna, and Jan Hückelheim. 2025. Synthesizing Sound and Precise Abstract Transformers for

Nonlinear Hyperbolic PDE Solvers. Proceedings of the ACM on Programming Languages 9, OOPSLA2, Article 310 (2025),
29 pages. doi:10.1145/3763088

[18] Nick Lewycky. 2015. Miscompile of % in loop. https://bugs.llvm.org/show_bug.cgi?id=23011, Accessed 2025-11-25.

[19] LLVM Contributors. 2025. LLJIT Class Reference. https://llvm.org/doxygen/classllvm_1_1orc_1_1LLJIT.html, Accessed

2025-11-25.

[20] Francesco Logozzo. 2009. Towards a Quantitative Estimation of Abstract Interpretations. In Workshop on Quantitative
Analysis of Software. Microsoft. https://www.microsoft.com/en-us/research/publication/towards-a-quantitative-

estimation-of-abstract-interpretations/

[21] OpenCompl Contributors. 2025. Pull Request #73: xdsl-smt. https://github.com/opencompl/xdsl-smt/pull/73. Accessed:

2025-10-23.

[22] OpenCompl Contributors. 2025. Pull Request #74: xdsl-smt. https://github.com/opencompl/xdsl-smt/pull/74. Accessed:

2025-10-23.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.

https://smt-lib.org/papers/smt-lib-reference-v2.7-r2025-02-05.pdf
https://doi.org/10.1007/978-3-031-44245-2_7
https://doi.org/10.1007/978-3-030-45260-5_4
https://doi.org/10.1007/978-3-030-45260-5_4
https://github.com/opencompl/xdsl-smt
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1007/3-540-55844-6_142
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2651361
https://doi.org/10.1145/3729309
https://doi.org/10.1145/2651360
https://doi.org/10.1093/biomet/57.1.97
https://github.com/Hatsunespica/xdsl-smt/tree/artifact
https://github.com/Hatsunespica/xdsl-smt/tree/artifact
https://doi.org/10.1007/978-3-030-25540-4_18
https://doi.org/10.1145/3563334
https://doi.org/10.1007/978-3-031-74776-2_6
https://doi.org/10.1145/3763088
https://bugs.llvm.org/show_bug.cgi?id=23011
https://llvm.org/doxygen/classllvm_1_1orc_1_1LLJIT.html
https://www.microsoft.com/en-us/research/publication/towards-a-quantitative-estimation-of-abstract-interpretations/
https://www.microsoft.com/en-us/research/publication/towards-a-quantitative-estimation-of-abstract-interpretations/
https://github.com/opencompl/xdsl-smt/pull/73
https://github.com/opencompl/xdsl-smt/pull/74


Nice to Meet You: Synthesizing Practical MLIR Abstract Transformers 80:29

[23] Kanghee Park, Loris D’Antoni, and Thomas W. Reps. 2023. Synthesizing Specifications. Proc. ACM Program. Lang. 7,
OOPSLA2 (2023), 1787–1816. doi:10.1145/3622861

[24] Kanghee Park, Xuanyu Peng, and Loris D’Antoni. 2025. LOUD: Synthesizing Strongest and Weakest Specifications.

Proceedings of the ACM on Programming Languages 9, OOPSLA1, Article 114 (2025), 28 pages. doi:10.1145/3720470
[25] Xuanyu Peng, Dominic Kennedy, Yuyou Fan, Ben Greenman, John Regehr, and Loris D’Antoni. 2025. Artifact for Nice

to Meet You: Synthesizing Practical Abstract Transformers for MLIR. doi:10.5281/zenodo.17371668 Version v2.

[26] John Regehr. 2012. Wrong code bug. https://bugs.llvm.org/show_bug.cgi?id=12541, Accessed 2025-11-25.

[27] John Regehr and Alastair Reid. 2004. HOIST: A System for Automatically Deriving Static Analyzers for Embedded

Systems. In ASPLOS. ACM, 133–143. doi:10.1145/1024393.1024410

[28] Thomas W. Reps, Shmuel Sagiv, and Greta Yorsh. 2004. Symbolic Implementation of the Best Transformer. In VMCAI.
252–266. doi:10.1007/978-3-540-24622-0_21

[29] Thomas W. Reps and Aditya V. Thakur. 2016. Automating Abstract Interpretation. In Verification, Model Checking,
and Abstract Interpretation - 17th International Conference, VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016.
Proceedings (Lecture Notes in Computer Science, Vol. 9583), Barbara Jobstmann and K. Rustan M. Leino (Eds.). Springer,

3–40. doi:10.1007/978-3-662-49122-5_1

[30] Erika Rice Scherpelz, Sorin Lerner, and Craig Chambers. 2007. Automatic Inference of Optimizer Flow Functions from

Semantic Meanings. In PLDI. ACM, 135–145. doi:10.1145/1250734.1250750

[31] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic Superoptimization. In ASPLOS. ACM, 305–316.

doi:10.1145/2451116.2451150

[32] Armando Solar-Lezama. 2013. Program sketching. International Journal on Software Tools for Technology Transfer 15,
5-6 (2013), 475–495. doi:10.1007/s10009-012-0249-7

[33] Aditya V. Thakur, Matt Elder, and Thomas W. Reps. 2012. Bilateral Algorithms for Symbolic Abstraction. In SAS.
111–128. doi:10.1007/978-3-642-33125-1_10

[34] Aditya V. Thakur, Akash Lal, Junghee Lim, and Thomas W. Reps. 2015. PostHat and All That: Automating Abstract

Interpretation. Electronic Notes in Theoretical Computer Science 311 (2015), 15–32. doi:10.1016/j.entcs.2015.02.003
[35] Aditya V. Thakur and Thomas W. Reps. 2012. A Method for Symbolic Computation of Abstract Operations. In CAV.

174–192. doi:10.1007/978-3-642-31424-7_17

A Detailed Comparison to Amurth

Kalita et al. used Amurth to synthesize transformers for both string domains and fixed-bitwidth

integer domains. We focus our comparison on integer domains, as NiceToMeetYou currently

supports only integer domains. Amurth synthesized transformers for 9 concrete operators for

unsigned and signed interval domains: add, sub, mul, and, or, xor, shl, ashr, and lshr [15, Table 4].
These operators are also featured in our benchmark set. Amurth successfully synthesized the best

transformers for each of these operators within 30 minutes, whereas NiceToMeetYou synthesized

the best transformers only for add, sub, and ashr.
However, the reason Amurth performs well is that it requires users to supply program templates

and auxiliary functions, which serve as powerful hints to guide synthesis. Moreover, these hints

differ across synthesis tasks. When Amurth is restricted to the same setting as NiceToMeetYou
—i.e., using only the base DSL operators and no templates—it times out on all benchmarks for

both unsigned and signed interval domains. In the following case studies, we examine several

examples of such hints from the Amurth benchmark suite and illustrate why Amurth is not suited

to automate the synthesis of many transformers in a compiler.

Amurth Requires Sketches or Templates. Users of Amurth typically need to provide a program

sketch or template of the desired solution, even though the theoretical framework supporting

Amurth is parametric in the choice of DSL. The sketches are often hand-derived from existing

manual implementations (noted in Kalita et al. [15, Table 2 and Table 3]).

For instance, the template used to synthesize the transformer for xor Kalita et al. [15, Figure 16]

in the signed domain begins with a helper function splitAtZero, which divides each input interval

at 0 if it crosses 0. The core synthesis task then fills in the logic that transforms the resulting (up to

2*2=4) pairs of same-signed intervals, before the template finally joins those outputs into the final

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.

https://doi.org/10.1145/3622861
https://doi.org/10.1145/3720470
https://doi.org/10.5281/zenodo.17371668
https://bugs.llvm.org/show_bug.cgi?id=12541
https://doi.org/10.1145/1024393.1024410
https://doi.org/10.1007/978-3-540-24622-0_21
https://doi.org/10.1007/978-3-662-49122-5_1
https://doi.org/10.1145/1250734.1250750
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/978-3-642-33125-1_10
https://doi.org/10.1016/j.entcs.2015.02.003
https://doi.org/10.1007/978-3-642-31424-7_17


80:30 Xuanyu Peng, Dominic Kennedy, Yuyou Fan, Ben Greenman, John Regehr, and Loris D’Antoni

interval. While the template is effective, both the splitAtZero helper and the looping pattern over

split-interval pairs are non-trivial to synthesize from scratch.

In contrast, our candidate program fixes only a minimal structure: it deconstructs each input

interval into two integers at the beginning and reconstructs the output interval from two integers

at the end. The middle portion is a free-form SSA program, unconstrained in its instruction

dependencies.

Additionally, Amurth does not synthesize boundary conditions to handle overflow [15, Section

6.2.3]. It synthesizes the non-overflow case, and such an assumption can be seen as an implicit

template. For example, consider the best transformer for addition in the unsigned interval domain,

shown in Figure 5a. Our approach synthesized an equivalent transformer. In contrast, Amurth

synthesized only the else branch [𝑎.𝑙 +𝑏.𝑙, 𝑎.𝑟 +𝑏.𝑟 ], as it assumes its output will be plugged into a

sketch that checks for overflow. Such an assumption is equivalent to (𝑎.𝑙 +𝑏.𝑙 > MAX_INT) or (𝑎.𝑟 +
𝑏.𝑟 > MAX_INT). This condition is weaker than the one in our transformer because it means an

overflow for additions of either the left or right endpoints (which should be an xor). As a result, their
no-overflow assumption not only reduces the difficulty of the synthesis, but also loses precision on

the overflow cases.

add♯ (𝑎, 𝑏) :=
if (𝑎.𝑙 + 𝑏.𝑙 > MAX_INT) xor (𝑎.𝑟 + 𝑏.𝑟 > MAX_INT)
then [0, MAX_INT]
else [𝑎.𝑙 + 𝑏.𝑙, 𝑎.𝑟 + 𝑏.𝑟 ]

(a) The best transformer for the add operator
in CR𝑢 domain

KnownBits add#( KnownBits L, R) {

APInt l0 = L.Zero , l1 = L.One;

APInt r0 = r.Zero , r1 = R.One;

APInt E = (l0 | l1) & (r0 | r1) &

(~((~l0 + ~r0) ^ l0 ^ r0) |

((l1 + r1) ^ l1 ^ r1));

APInt known0 = ~(~l0 + ~r0) & E;

APInt known1 = (l1 + r1) & E;

return {known0 , known1 };

}

(b) The best transformer for the add operator
in the KnownBits domain

Fig. 5. Optimal transformers

Amurth relies on auxiliary functions. This limitation is reflected in [15, Section 6.2.4] and we

confirmed it by examining the Amurth codebase. For example, to synthesize transformers for

bitwise operators (and, or, xor), auxiliary functions such as minOr, maxOr, minAnd, maxAnd (which

compute the lower/upper bound of the results of bitwise-or/and over 2 intervals) are provided.

These auxiliary functions are non-trivial, consisting of about 25 operators and involving branch-

ing and loops, and make the synthesis tasks much easier. Even with the hints above, Amurth still

needs advanced program sketches for several harder benchmarks.

Hints vary across synthesis tasks. When provided with enough structure and templates, Amurth

can directly synthesize optimal transformers. However, the supporting DSL is typically crafted and

modified individually for synthesis tasks of each concrete operator. For example, even within the

same abstract domain, bitwise operators, arithmetic operators, and shifting operators each rely on a
distinct DSL. These DSLs consist of nearly disjoint sets of operations.

In contrast, our approach employs a single, unified DSL shared across all concrete operators. It

consists of 29 basic numeric operations that can express a wide variety of transformers. Details of

the DSL’s design and its operations are discussed in Section 6.4.

Summary. To summarize, one cannot use Amurth to solve the problem solved by

NiceToMeetYou, i.e., automatically synthesizing transformers for many operators at once without

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



Nice to Meet You: Synthesizing Practical MLIR Abstract Transformers 80:31

Table 6. KnownBits results under DSLs with different operation subsets. Each value denotes the percentage of
tests where the synthesized transformer matches the best transformer 𝑓 # at 8-bit precision. Bolded numbers
denote the configuration that yields the most precise result

Ab
ds

Ab
du

Ad
d

Ad
dN
sw

Ad
dN
sw
Nu
w

Ad
dN
uw

An
d

As
hr

As
hr
Ex
ac
t

Av
gC
ei
lS

Av
gC
ei
lU

Av
gF
lo
or
S

Av
gF
lo
or
U

Ls
hr

Ls
hr
Ex
ac
t

Mo
ds

Mo
du

Mu
l

Or Sd
iv

Full 60.1 59.4 58.7 42.0 45.5 53.9 100.0 65.5 40.1 38.8 38.6 39.3 37.7 59.3 31.4 64.7 59.0 60.6 100.0 64.1
Basic 54.7 53.3 100.0 78.0 12.9 37.9 100.0 31.2 30.0 31.8 31.6 32.4 32.2 12.6 28.1 48.6 39.3 74.4 100.0 64.1

BitExt 60.3 59.3 51.8 51.3 49.0 49.5 100.0 37.8 36.6 39.4 40.9 39.0 40.5 31.0 31.6 60.4 58.4 62.1 100.0 64.1

Sd
iv
Ex
ac
t

Sh
l

Sh
lN
sw

Sh
lN
sw
Nu
w

Sh
lN
uw

Sm
ax

Sm
in

Ss
hl
Sa
t

Su
b

Su
bN
sw

Su
bN
sw
Nu
w

Su
bN
uw

Ua
dd
Sa
t

Ud
iv

Ud
iv
Ex
ac
t

Um
ax

Um
in

Us
hl
Sa
t

Us
ub
Sa
t

Xo
r

Full 19.3 56.9 26.2 9.8 40.5 63.8 72.8 72.4 60.6 47.8 31.8 47.1 61.8 80.8 15.3 90.6 92.9 96.6 52.1 100.0
Basic 19.3 13.2 6.9 5.6 10.7 57.8 51.9 37.6 100.0 72.3 12.0 42.4 42.5 24.1 2.9 71.4 72.2 3.7 48.2 100.0

BitExt 19.3 56.6 27.9 34.9 46.9 71.0 56.1 45.0 61.5 51.4 28.5 45.0 67.4 39.9 15.4 93.3 88.3 96.6 56.9 100.0

manually tuning the underlying DSL or providing strong hints in the form of sketches. While

Amurth does appear to be better than NiceToMeetYou for the task of finding tricky transformers

for individual operators, it needs guidance from human experts. In practice, for an abstract domain,

there could be hundreds of operators that need an abstract transformer, and providing tailored

hints for each of them is infeasible. Hence, we believe that Amurth cannot be used to automate

large-scale synthesis of transformers in a compiler.

B Ablation Study
B.1 Impact of DSL Choice
We evaluate how the choice of operations in DSL affects the performance of NiceToMeetYou. As
mentioned in Section 6.4, we run synthesis over the Full language and 2 subsets (Basic and BitExt
). Detailed results are summarized in Table 6.

Basic is the DSL with the most limited expressivity and causes substantial precision loss in many

benchmarks, though it produces optimal transformers for add and sub. Figure 5b shows a reference
implementation of the add transformer in KnownBits, which uses only operations from Basic
but remains fairly complex. Nevertheless, NiceToMeetYou successfully synthesizes a transformer

equivalent to this implementation when the DSL is limited to Basic .
BitExt is the DSL variant that excludes multiplicative operations. Since the transformers for

shifting operators (e.g., shl) rarely rely on multiplication and division, synthesis with BitExt
achieves slightly higher precision for these operators compared to using the full DSL.

In conclusion, if certain operations are known to be irrelevant for a specific transformer, removing

them from the DSL can improve the precision.

B.2 Impact of Condition Abduction
In this section, we evaluate the impact of condition abduction (Section 4.1.2). We run synthesis

with and without condition abduction on both the KnownBits and ConstantRange domains. For

KnownBits, condition abduction improves precision by 6.44% on average (geometric mean) across

all benchmarks, with 18/39 benchmarks showing gains. For ConstantRange, condition abduc-

tion improves precision by 2.3% on average (geometric mean) across all benchmarks, with 16/39

benchmarks showing gains. Results are shown in Tables 7 and 8.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.



80:32 Xuanyu Peng, Dominic Kennedy, Yuyou Fan, Ben Greenman, John Regehr, and Loris D’Antoni

A representative case highlighting the necessity of abduction is the add benchmark in the CR𝑢
domain. Its best transformers, shown in Figure 5a, produce intervals better than ⊤ only when

whether overflow happens is known. When inspecting the synthesis process, we observe that

NiceToMeetYou synthesized the best transformer in 2 rounds: in the first round, it discovered

a transformer that only works for non-overflow cases and stored it as one of the unsound but

highly precise candidates; in the second round, it successfully identified the overflow condition

the complete the full transformers. However, when abduction is disabled, NiceToMeetYou failed to

synthesize the best transformer within 5 rounds.

To summarize, condition abduction generally improves precision, but may sometimes reduce

it since condition abduction reuses part of the parallel search budget. However, one can also run

NiceToMeetYou with and without abduction and selecting the better result.

Table 7. KnownBits results with and without abduction. Each value denotes the percentage of tests where
the synthesized transformer matches the best transformer 𝑓 # at 8-bit precision.

Ab
ds

Ab
du

Ad
d

Ad
dN
sw

Ad
dN
sw
Nu
w

Ad
dN
uw

An
d

As
hr

As
hr
Ex
ac
t

Av
gC
ei
lS

Av
gC
ei
lU

Av
gF
lo
or
S

Av
gF
lo
or
U

Ls
hr

Ls
hr
Ex
ac
t

Mo
ds

Mo
du

Mu
l

Or Sd
iv

Abd 60.1 59.4 58.7 42.0 45.5 53.9 100.0 65.5 40.1 38.8 38.6 39.3 37.7 59.3 31.4 64.7 59.0 60.6 100.0 64.1

No Abd 60.7 61.7 63.4 48.8 50.5 40.3 100.0 49.3 25.0 38.8 38.4 40.3 40.2 59.3 24.4 64.7 44.6 64.3 100.0 67.8

Sd
iv
Ex
ac
t

Sh
l

Sh
lN
sw

Sh
lN
sw
Nu
w

Sh
lN
uw

Sm
ax

Sm
in

Ss
hl
Sa
t

Su
b

Su
bN
sw

Su
bN
sw
Nu
w

Su
bN
uw

Ua
dd
Sa
t

Ud
iv

Ud
iv
Ex
ac
t

Um
ax

Um
in

Us
hl
Sa
t

Us
ub
Sa
t

Xo
r

Abd 19.3 56.9 26.2 9.8 40.5 63.8 72.8 72.4 60.6 47.8 31.8 47.1 61.8 80.8 15.3 90.6 92.9 96.6 52.1 100.0
No Abd 19.3 55.5 27.6 41.8 25.4 67.0 54.3 65.7 53.5 57.8 14.4 50.0 63.4 79.8 17.7 73.2 62.1 92.9 19.1 100.0

Table 8. ConstantRange results with and without abduction. The cells have the same meaning as in Table 7.

Ab
ds

Ab
du

Ad
d

Ad
dN
sw

Ad
dN
sw
Nu
w

Ad
dN
uw

An
d

As
hr

As
hr
Ex
ac
t

Av
gC
ei
lS

Av
gC
ei
lU

Av
gF
lo
or
S

Av
gF
lo
or
U

Ls
hr

Ls
hr
Ex
ac
t

Mo
ds

Mo
du

Mu
l

Or

Abd 59.8 75.0 100.0100.0 70.7 94.0 82.3 98.0 81.7 0.3 1.8 1.8 30.0 100.0 85.2 43.5 89.0 90.8 82.4

No Abd 59.8 67.2 36.5 68.6 61.5 81.7 76.3 95.3 81.0 0.7 2.9 2.0 67.8 100.0 72.5 43.9 89.0 90.8 82.5

Sd
iv

Sh
l

Sh
lN
sw
Nu
w

Sh
lN
uw

Sm
ax

Sm
in

Ss
hl
Sa
t

Su
b

Su
bN
sw

Su
bN
sw
Nu
w

Su
bN
uw

Ua
dd
Sa
t

Ud
iv

Um
ax

Um
in

Us
hl
Sa
t

Us
ub
Sa
t

Xo
r

Abd 12.3 83.0 88.3 76.4 100.0100.0 75.5 100.0100.0 74.5 94.5 99.2 31.7 100.0100.0100.0100.0 56.1

No Abd 3.7 83.0 88.3 87.7 100.0 100.0 75.2 35.4 70.1 59.7 100.0 85.6 40.5 100.0 100.0 98.6 98.8 60.6

Received 2025-07-10; accepted 2025-11-06

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.


	Abstract
	1 Introduction
	2 Problem Definition and Overview of the Approach
	2.1 The Transformer Synthesis Problem
	2.2 Case Study: Synthesizing a Precise Transformer for urem

	3 An Ideal Algorithm for the Transformer Synthesis Problem
	3.1 Synthesizing One Transformer at a Time
	3.2 Focusing Precision on Relevant Inputs

	4 Randomly Searching for Abstract Transformers using MCMC
	4.1 Two Strategies for Randomly Sampling Programs

	5 Implementation
	5.1 The Basic Ingredients
	5.2 Gotta Go Fast
	5.3 Generalizability of the Approach

	6 Evaluation
	6.1 Comparison to LLVM's Abstract Transformers
	6.2 End-to-End Precision and Performance
	6.3 Opportunities Created by NiceToMeetYou
	6.4 Impact of DSL Choice
	6.5 Impact of Abduction
	6.6 Comparison to Amurth

	7 Other Related Work
	8 Conclusion
	Acknowledgments
	References
	A Detailed Comparison to Amurth
	B Ablation Study
	B.1 Impact of DSL Choice
	B.2 Impact of Condition Abduction


