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Static analyses play a fundamental role during compilation: they discover facts that are true in all executions
of the code being compiled, and then these facts are used to justify optimizations and diagnostics. Each static
analysis is based on a collection of abstract transformers that provide abstract semantics for the concrete
instructions that make up a program. It can be challenging to implement abstract transformers that are
sound, precise, and efficient—and in fact both LLVM and GCC have suffered from miscompilations caused by
unsound abstract transformers. Moreover, even after more than 20 years of development, LLVM lacks abstract
transformers for hundreds of instructions in its intermediate representation (IR).

We developed NiceToMeetYou: a program synthesis framework for abstract transformers that are aimed at
the kinds of non-relational integer abstract domains that are heavily used by today’s production compilers. It
exploits a simple but novel technique for breaking the synthesis problem into parts: each of our transformers
is the meet of a collection of simpler, sound transformers that are synthesized such that each new piece fills a
gap in the precision of the final transformer. Our design point is bulk automation: no sketches are required.
Transformers are verified by lowering to a previously-created SMT dialect of MLIR. Each of our synthesized
transformers is provably sound and some (17 %) are more precise than those provided by LLVM.
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1 Introduction

A modern, highly optimizing compiler runs numerous dataflow analyses on the code that is being
compiled; the results of the analyses are used to justify optimizations and diagnostics. For example,
LLVM relies heavily on a “KnownBits” analysis that attempts to prove that individual bits of SSA
values are either zero or one in every execution of the program being compiled.
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Empirically, the process of engineering a dataflow-driven compiler works as follows. First,
engineers recognize the need for dataflow results and implement the basic analysis structure within
the compiler, which is initially highly imprecise because not enough, and not-precise-enough,
abstract transformers have been written. Then, optimizations and diagnostics driven by analysis
results are added, typically alongside improvements to analysis precision that are necessary to make
the compiler operate robustly. In a compiler like LLVM, where the IR (intermediate representation)
instruction set is large (over 400 target-independent instructions and intrinsics), this process takes
an enormous amount of time and energy. Across 17 different LLVM backends, only four have any
abstract transformers at all for LLVM instructions representing target-specific intrinsics, and even
those four have poor coverage: 30 out of 1713 intrinsics for x86-64, 2 out of 726 for RISC-V, 2 out of
1286 for AMD GPUs, and 5 out of 1673 for AArch64. Operations that lack abstract transformers
must be analyzed conservatively: they return top, the unknown value. This low coverage can lead
to unpredictable compilation effects where, for example, developers who substitute intrinsics for
portable code while chasing performance can see degraded dataflow-driven optimizations in nearby
code because the portable code could be analyzed but the intrinsics cannot. Moreover, bugs in
unverified dataflow analyses have led to miscompilation errors in both GCC and LLVM [18, 26].

Our work attacks the problem of synthesizing abstract transformers from concrete instruction
semantics that are formally specified using an MLIR dialect [10]. Our goal is to develop technologies
that can rapidly provide compiler developers with reasonable initial implementations. We validate
our prototype by synthesizing transformers for three non-relational, compiler-friendly abstract
domains (KnownBits, signed and unsigned ConstantRange) for 39 instructions that are present
both in LLVM and in MLIR’s Arith dialect. These are formally verified to be sound, and in some
cases are more precise than those that are part of LLVM’s implementation, which has been tweaked
for precision by numerous compiler developers over the last 20 years.

Given a concrete operation f and an abstract domain (e.g., KnownBits), our goal is to synthesize
a corresponding abstract transformer f*. To be sound on a given abstract input, f* must return
an abstract value that over-approximates the set of all possible outputs produced by applying f
to any concrete inputs described by its abstract inputs. The smaller this over-approximation, the
more precise the abstract transformer. Formally, when the power set of concrete values £ (C) is

Y
related to the set of abstract values (i.e., abstract domain) A by a Galois connection P(C) & A,

there is a best abstract transformer f# that is defined as ]?# =ao f oy, where f runs f on a set of
concrete values and produces their corresponding concrete outputs [5]. However, this transformer
definition does not directly lead to a usable implementation: it requires taking the meet of a set of
abstract values whose size is exponential in the bitwidth of the concrete values being analyzed.

Since it does not seem generally practical to synthesize best abstract transformers, previous
research efforts have focused on finding efficient approximations of them. Some approaches, such
as Scherpelz et al. [30] and Elder et al. [9], have targeted specific abstract domains. Kalita et al.
[15] provide a synthesis framework that is applicable to arbitrary domains, but it depends on
user-provided program sketches (see Section 6.6 and Appendix A).

Our work addresses the following research questions in the context of finite, Galois-connection-
based abstract domains (c.f. [5, 7]):

e Practicality and Generality: Using existing formally specified concrete instruction semantics,
can we automatically synthesize abstract transformers for multiple domains that are used in
real-world compilers? In particular, can we generate functions that compiler developers can
adopt—i.e., ones that are free of external dependencies, performant enough for production use,
and sensitive to IR-level subtleties such as undefined behavior?
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e Soundness and Precision: How precisely can our synthesized transformers approximate the

ideal transformer, f*, while being provably sound?
o Automation: Can our synthesis procedure navigate the search space without meaningful help
from users? In other words, can we succeed without requiring sketches?

We treat synthesis as an optimization problem, where the objective is to find a sound transformer
f* that minimizes the user-given norm || f #” that measures the imprecision for every possible pair
of abstract inputs (note that such a function is easy to implement for given abstract domains).
Since the functions that we wish to synthesize are (empirically) out of direct reach for enumeration
or CEGIS, and since we do not wish to rely on user-provided sketches, we use stochastic search
techniques inspired by Stoke (Schkufza et al. [31]), where candidate transformers evolve through a
sequence of random modifications guided by the cost function induced by our objective.

We have observed two implementation patterns in code produced by compiler developers writing
highly precise abstract transformers for GCC and LLVM. Both of these ended up leading to key
aspects of our approach:

Pattern 1: Splitting the input space. Practical abstract transformers often gain precision by making a
case split to separately handle different parts of the input space. For example, LLVM’s transformer for
bitvector truncation on integer ranges' begins with special cases for T and L and then subsequently
splits on whether the incoming integer range wraps around the UINT_MAX / 0 boundary. We observed
that the logic at the finest granularity was often reasonably simple, but that the overall transfer
functions that we wanted to synthesize appeared to be significantly more complicated than anything
we could reliably generate without a sketch.

The insight that allowed us to make progress here was that the meet of a collection of sound
abstract transformers is still sound. Thus, we can synthesize an abstract transformer in parts, and
then assemble the parts at the end: 1 = f' M- - -1 ;7. If we simply synthesized a pile of transformers
and glued them together, they would be likely to all cover similar parts of the input space (because,
e.g., some parts of the input space are easier to cover than others). We discourage this behavior by
dynamically adapting our fitness function: each new abstract transformer is rated by its precision
on parts of the input space not covered by transformers that have previously been synthesized. This
adaptive strategy steers the synthesis process away from inputs that are already handled precisely
and toward those that require new cases. This decomposition not only makes it easier to synthesize
precise transformers with high precision, but also allows users to control the number and size of
components in the meet—providing an easy knob for tuning efficiency vs. precision.

Pattern 2: Separate transformers for separate jobs. Beyond splitting up the input space, we noticed
that realistic transfer functions gain precision by exploiting information that is present in the IR. For
example, the LLVM compiler’s abstract transformer for integer multiply begins with a large special
case for the “nsw” or “no unsigned wrap” flag?—this flag can be exploited to increase analysis
precision, because signed overflows become undefined. Then, immediately inside the nsw case,
the code splits again to handle the case of computing the square of a value, which again affords
additional precision. Our observation is that it is unnecessary and even undesirable to entangle the
implementation of the y * y case with the x = y case and the x #pgy y case: these are actually distinct
transfer functions that need to be handled separately during testing or formal verification. They
happen to be handled by overlapping code only because LLVM’s developers decomposed their code
that way. Program synthesis, on the other hand, changes the basic software engineering economics,

Thttps://github.com/llvm/llvm-project/blob/release/20.x/llvm/lib/IR/ConstantRange.cpp#L864-1L915
Zhttps://github.com/llvm/llvm-project/blob/release/20.x/llvm/lib/ Analysis/ValueTracking.cpp#L.383-1437
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making it cheap to create a large number of abstract transformers, including a specialized version
for every IR-level condition that can be exploited to increase precision.

Implementation in MLIR. We get formal semantics for instructions from previous work on the SMT
dialect for MLIR [10], which supports lowering operations to both LLVM IR and SMT formulae.
The LLVM IR lowering, and subsequent JIT compilation, enables fast evaluation of candidate
transformers during synthesis, and allow us to leverage LLVM’s powerful optimizers to improve
the performance of the final synthesized transformers. The SMT lowering allows us to verify the
soundness and precision of the synthesized transformers, although in practice we generally measure
precision via testing rather than solving because we are interested in giving our stochastic optimizer
a hill to climb, rather than a binary result (a model counting solver would be an alternative way to
get a hill to climb, but in our experience they do not scale to jobs like this one).

Evaluation. We evaluate our approach by synthesizing abstract transformers for the abstract
domains and operations used in the LLVM IR. The results show that NiceToMeetYou complements
the precision of LLVM transformers (when measured on 8-bit and 64-bit integers) of 7/47 transform-
ers in the KnownBits domain and 19/47 in ConstantRange. With the addition of a handwritten
reduced-product operator for combining synthesized transformers across different abstract domains,
our synthesized transformers exceed LLVM’s precision on 22/47 operators.

Contributions. Our work makes the following contributions:

e We propose a framework for synthesizing abstract transformers that leverages existing formal
semantics for instructions, and is not limited to specific abstract domains and does not require
program templates (Section 2).

o We design an algorithm that incrementally synthesizes the meet of multiple abstract transformers
(Section 3), which enables an MCMC-based search procedure that can discover individual smaller
transformers that can be added to the meet (Section 4).

e We implement the algorithm in NiceToMeetYou, a tool that effectively balances MCMC-based
exploration with SMT-based verification. We apply NiceToMeetYou on the bread-and-butter
abstract domains from LLVM, namely KnownBits and ConstantRange (Section 5).

e We conduct an evaluation showing how NiceToMeetYou can synthesize abstract transformers
for real LLVM operators. Our transformers are often complementary to LLVM’s, and in some
cases exceed the precision of LLVM’s hand-tuned transformers (Section 6).

2 Problem Definition and Overview of the Approach

In this section, we define the problem addressed by our framework using a toy example (Section 2.1).
We then provide an excerpt of a real transformer from MLIR, urem over known bits, to illustrate
how our problem setting and approach leads to practical gains (Section 2.2).

2.1 The Transformer Synthesis Problem

Throughout this section, we use a running example in which the goal is to synthesize transformers
for the integer maximum function f(x, y) = max(x, y) over the domain of intervals.

The user of our framework needs to provide a definition of a concrete domain, an abstract domain
over which they are trying to synthesize abstract transformers, and a language of programming
constructs the synthesizer can use to synthesize the abstract transformers.

Concrete Domain and Concrete Transformers. A transformer depends on a concrete domain C,
and a concrete transformer f : C¥ — C. In our example, we let C be integers of bitwidth up to a
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certain number (e.g., 32), which can be represented by the APInt class in LLVM and MLIR.? The
concrete transformer in our example is max : C*> — C = AxAy.ite(x > y, x,y).

Abstract Domain. A lattice A serves as an abstract domain. In this subsection, A is the interval
domain. Each abstract value a is a pair of integers representing an interval [a.l, a.r].*
In particular, the user needs to provide the implementations of the following components:
Concretization function y : A — 2€. In our example, y(a) = {a.l,al+1---,a.r}.
Meet function M : A X A — A. In our example, M is the intersection of two intervals, i.e.,
anb =if max(a.l,b.l) > min(a.r,b.r) then L else [max(a.l, b.l), min(a.r,b.r)].
Join function U : A X A — A. In our example, LI is the union of two intervals, ie.,, a1 b =
[min(a.l, b.l), max(a.r,b.r)].
Single value abstraction function f : C — A. In our example, f(x) = [x, x].

The general abstraction function a : 2¢ — A that maps a set of concrete elements to their
abstract one is defined as a(C) := | |,c¢ f(x). The partial order Ce A X A that relates abstract
elements is defined as follows: a; C ay, < a; May = a;.

Language. In our setting, a domain-specific language (DSL) L is a context-free grammar of
the form E = a | ¢ | op(Ey,---,Ex), where a ranges over abstract input variables, ¢ de-
notes constants drawn from a fixed set C, and op is an operator drawn from a predefined set
of function symbols L,, supported by the DSL. In our example, .£,, U C consists of the set
{+ -, &, |, min, max, [-, ], -.1, -.r, Zero, A110nes}, where [-, -] denotes interval construction, and -.l
and -.r access the left and right endpoints of an interval, respectively. The Zero and Al10nes
constants return all zeros and all ones at the given bitwidth. For instance, the function f *(a,b) :=
[min(a.l,A110nes), max(a.r, Zero)] is a valid program in the language L.

Soundness and Precision. Our goal is to synthesize a set of sound (i.e., valid overapproximations
of the function behavior) and precise (tight) abstract transformers ¥ = {f, f;/,- - -, fii } expressed
using DSL operators. Because the user of the framework provides the meet operation for the
abstract domain as input, we can then compute the meet of all such transformers - as follows:

Definition 2.1 (Meet of Transformers). Given two abstract transformers f, f;f : Ak — A, their
meet is defined as the transformer f 11 f; : AF — A such that, for all ay,...,ax € A: (ffm
ar,...,a) = fia,....,ax) T ff(a,...,ax). We define the meet of a set of transformers
Fc (A - A) asFr = Mprer f*

Intuitively, the meet of two transformers is their pointwise meet in the abstract domain, which is
both sound and represents the most precise possible combination of the synthesized transformers.>
One can check that a transformer is sound using the concretization function y as follows:

3Note that the set of integers of bitwidths up to w is not equivalent to the set of integers in the range [0, 2" — 1]. Instead,
it is the union of sets of bitvectors with lengths from 1 to w. In other words, C = C; U C; U - - - U C,,, where each C; is
a concrete subdomain representing integers with bitwidth w, and these subdomains are disjoint. We always assume the
concrete transformer is only defined on inputs within the same subdomain C;.

4As we only consider bounded integers of specific bitwidths, the abstract domain is restricted to closed intervals and is
therefore finite. Readers may also notice that a.l and a.r should have the same bitwidth as the concrete values included by
that interval. Strictly speaking, given the full concrete domain C = C; U C, U - - - U C,,, each concrete subdomain C; has
its own abstract domain A;, each equipped with its own top and bottom elements. The full abstract domain A is likewise
the disjoint union of all abstract subdomains A;. The top element of A will only be reached when joining two abstract
values from two different A;, and the bottom element will only be reached when meeting two abstract values from two
different A;. However, in practice, the abstract transformers only need to be defined on inputs from the same A;.
SIdeally, the set of abstract transformers would be a singleton {f#}. However, the theoretical best transformer j? * might not
be expressible in the DSL, or may be too complex and thus computationally expensive for static analysis.
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Definition 2.2 (Soundness of Transformers). A transformer f* : A — A is sound with respect to
a concrete function f : CK — C, denoted by sound(f*), if it is sound on all abstract inputs, i.e.,

sound(f*) def Yay,...,ar € A. {f(ci,....cx) | ci€y(a)} € y(ff(ay,...,ar)).

For precision, there is no easy way to check that a transformer is the most precise possible among
those expressible in a given language (a problem as hard as checking unrealizability in program
synthesis [14]). We address this practical problem by introducing a precision measure; namely, we
ask the user to provide a norm function ||-|| : (A*¥ — A) — N that quantifies the imprecision of a
transformer. The objective of our problem is to minimize the norm of the synthesized transformer
%r. While a norm function over transformers can be hard to define, in our implementation, we
ask the user to provide a size function |-| : A — N on abstract values, and derive the norm via
the size function as || f#H =DacA | f #(a)|. In practice, the size |a| can be set as any function that is
monotonic with respect to the actual size of the concretization set y(a). For the interval domain,
we define the size as the log, of its length, e.g., |[0, 7]| = log,(8) = 3.

Because computing the sum of norms over the entire abstract domain can be expensive, we
will often approximate the size by evaluating it over a representative subset A" C A. We use
|| f #” A = ZaeAr | f#(a)| to denote the approximate norm over the subdomain A’. In our example,
the subset (A’ can be all abstract values represented by integers up to a smaller bitwidth, or some
sampled abstract values represented by integers at a large bitwidth.

Norms vs. Metrics. Initially, we formalized precision using distance metrics rather than norms.
This approach turned out to be problematic because one would need to compute the distance
between a synthesized transformer f #  and the theoretically best transformer f* by enumerating

synth
all abstract values and their concretizations, and computing the join of f(f(c)) for each concrete
value. This is feasible only at small bitwidths. That being said, prior works use metrics [2, 3, 20]
and may provide a way to explore non-integer or infinite abstract domains in the future.

2.1.1  Problem Definition. We are now ready to define the problem solved in this paper:

Definition 2.3 (Transformer Synthesis Problem). Given a concrete transformer f : C¥ — C,
an abstract domain (A, T,y,MN,, f), a norm function ||-|| : (ﬂk — A) — N, and a DSL L, the
transformer synthesis problem is to find a set of transformers & = {f{, f},- -+, fii} in L such that

e Their meet Fry is sound: sound(¥r).
o The norm of Fry is minimal, i.e., there is no sound set of transformers G such that ||Gn|| < ||Fnll-

o Nof* e F is redundant:Vf} € F,3d € AX, (ﬂf#eﬂ{f#}f#(a)) Z f*(a).

The first requirement, that the meet of the n transformers is sound, is satisfied if all n transformers
are sound. The second requirement asks that the final meet be as precise as possible, rather than
requiring each individual transformer to be. The last requirement ensures every transformer in the
final solution contributes to improving the precision.®

Returning to our running example f(x,y) = max(x,y), Figure 1 shows the problem inputs and
one possible set of output transformers. Smart readers may observe that the best transformer has a
succinct representation: f*(a, b) = [max(a.l, b.l), max(a.r, b.r)]. However, the meet of the four out-
put transformers in Figure 1 is also equivalent to this best transformer—since the maximum of their
left endpoints equals max(a.l, b.l) and the minimum of their right endpoints equals max(a.r, b.r).

®Kalita et al. [15] propose a similar definition for the problem of synthesizing one most precise abstract transformer in a
given DSL. In their setting, precision is defined in absolute terms with respect to the C partial order. In our setting, precision
is defined in terms of a size function over the abstract domain. Furthermore, our definition extends to the set of synthesizing
multiple incomparable transformers. We further discuss these implications in Section 7.
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Concretization: y([a.l,a.r]) ={a.l,---,ar}
Meet: armb = [max(a.l, b.l), min(a.r,b.r)] fi(a,b) = [zero, max(ar, b.r)]
Join: aUb = [min(a.l,b.l), max(a.r, b.r)] f7 (a,b) = [a.l & b.I,A110nes]
Abstraction:  f(x) = [x, x] ff(ab) =[alal]|b.l]
Concrete op:  f(x,y) = max(x,y) fi(a,b) = [b.I,Al10nes]
DSL ops: {+ —, &, |, min, max, - - - }
Size: |a| = |log,(|a.l — a.r|)]

Fig. 1. Input and output for the transformer synthesis problem on a toy example.

KnownBits urem(KnownBits L, KnownBits R) {
// Part 1:
unsigned RTrailingZeros = R.Zero.countTrailingZero();
APInt Mask = setLowBits (@, RTrailingZero);
APInt knownZero = L.Zero & Mask;
APInt knownOne = L.One & Mask;

// Part 2:
if (R.isConstant() && R.getConstant().isPower0f2()) { ... %}
// Part 3:
unsigned Leaders = max(L.Zero.countlLeadingZero(), R.Zero.countLeadingZero());
knownZero = setHighBits(knownZero, Leaders);
return {knownZero, knownOne};
3

Fig. 2. The KnownBits transformers for urem operator in LLVM

Although some individual transformers contain “unnecessary fragments” such as a.l&b.r, each
transformer still has a smaller size than the best transformer as a single monolithic expression.

2.2 Case Study: Synthesizing a Precise Transformer for urem

To illustrate the practical capabilities of NiceToMeetYou, we present a detailed case study drawn
from our evaluation: synthesizing a KnownBits transformer for the urem (unsigned remainder)
operation. This example demonstrates how NiceToMeetYou synthesizes precise and non-trivial
transformers that both match and exceed hand-written implementations in LLVM.

2.2.1 Background: The KnownBits Domain and the urem Operator. The KnownBits abstract domain
models partial bit-level knowledge of integer values using two disjoint bitvectors: Zero and One. A
bit is definitely zero if set in Zero, definitely one if set in One, and unknown if unset in both. This
domain is widely used in compiler optimization passes such as those in LLVM.

We focus on the unsigned remainder operation urem, which computes L mod R for unsigned
integers L (dividend) and R (divisor). Optimizing the transformer for urem is challenging due to its
non-linear behavior and the many edge cases involving known bits.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 80. Publication date: January 2026.
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2.2.2  Reference Implementation: LLVM’s Hand-Written Transformer. LLVM includes a hand-written
KnownBits transformer for urem, shown in Figure 2. It is implemented using utility functions from
the APInt library, such as: (i) countTrailingZero(x) and countlLeadingZero(x): compute the
number of trailing or leading zeros, and (ii) setHighBits(x, k) and setLowBits(x, k):construct
bitvectors with the highest or lowest k bits set to 1.

This transformer “applies” three heuristics: (i) If the divisor R is a multiple of 2¥ (i.e., it has k
trailing zeroes), then the lowest k bits of the result are equal to those of L. (ii) If the divisor R is
known to be a constant, some special-case handling is applied. (iii) Since L mod R < min(L, R), the
number of leading zeros in the result must be at least as large as in both L and R.

2.2.3 Synthesized Transformer in MLIR: Matching and Extending LLVM. Figure 3 shows the trans-
former synthesized by NiceToMeetYou in MLIR form. The solution @solution computes the meet
of nine independently synthesized transformer candidates @f 1 through @f9.

Upon manual inspection, we find that 8/9 synthesized components recover key heuristics from
the LLVM implementation. The remaining one is a new heuristic.

Recovering Existing Heuristics. As an example, transformer @f1 matches LLVM’s third heuristic.
It computes the number of leading zeros in the dividend %L, uses that to set the highest bits in a
bitvector, and constructs a KnownBits value accordingly. This sound heuristic (also used by LLVM)
encodes the fact that the result of urem must have at least as many leading zeros as the dividend.

Discovering New Heuristics. Transformer @f?2 illustrates synthesis that eludes human intuition. It
defines a condition @f2_cond and a guarded body @f2_body, returning ite(@f2_cond, @f2_body,
%top) so the body applies only when the condition holds. The body @f2_body returns the dividend
as the result. This is unsound in general, however, the synthesizer simultaneously generates a guard
@f2_cond that ensures soundness: the transformer is only used when the dividend’s maximum
possible value is less than the divisor’s minimum possible value. In that case, the remainder equals
the dividend, and the transformer is sound.

This heuristic—"“if the dividend is provably less than the divisor, then urem(L, R) equals L”—is
absent from the LLVM transformer, highlighting the power of synthesis in discovering useful but
overlooked cases. That synthesis outputs the code realizing this case is the cherry on top.

Our synthesized transformer is more precise than the LLVM implementation—according to our
precision metric—but also complementary. That is, the LLVM and synthesized transformers are
incomparable: neither subsumes the other. Their meet yields a strictly more precise transformer.

This case study highlights three key outcomes:

(1) NiceToMeetYou recovers hand-crafted compiler heuristics automatically.

(2) NiceToMeetYou discovers new, sound heuristics that are absent in existing implementations.

(3) The transformers synthesized by NiceToMeetYou can offer strictly better precision when
combined with human-crafted ones.

This example demonstrates how NiceToMeetYou can serve as a practical, drop-in synthesis
engine for compiler frameworks such as MLIR, producing transformers that are not only correct
and efficient but also competitive with and complementary to those written by domain experts.

3 An ldeal Algorithm for the Transformer Synthesis Problem

In this section, we present an idealized synthesis algorithm for solving the transformer synthesis
problem (Definition 2.3). We will provide a practical instantiation using MCMC search in Section 4.

Our algorithm draws inspiration from recent approaches for synthesizing the most precise
conjunctive specifications [23, 24]. Rather than generating an entire conjunction in one step, these
methods iteratively synthesize individual conjuncts, ensuring that each new conjunct strictly
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func. func @f1(%L : KnownBits, %R : KnownBits) -> KnownBits {
%1 = countlLeadingZero(%L.zero)
%knownZero = setHighBits (@, %1)
return makeKnownBits (%knownZero, @)

3
func. func @f2_cond(%L: KnownBits, %R: KnownBits) -> bool {
%Lmax = negate(%L.zero)
%Rmin = %R.one
%cond = unsignedLessThan (%Lmax, %Rmin)
return %cond
3

func. func @f2_body (%L : KnownBits, %R : KnownBits) -> KnownBits {
return %L

3

func. func @f2(%L : KnownBits, %R : KnownBits) -> KnownBits {
return ite(@f2_cond (%L, %R), @f2_body (%L, %R), %top)

}

func. func @solution(%L : KnownBits, %R : KnownBits) -> KnownBits {
return meet(@f1 (%L, %R), ... , @f9(%L, %R))

Fig. 3. Our synthesized KnownBits transformers for urem, written in MLIR.

improves the overall precision. We adopt a similar strategy, tailored to the transformer setting, by
incrementally synthesizing individual transformers that refine precision.

3.1 Synthesizing One Transformer at a Time

In our setting, meet operations over transformers play the role of conjunctions, and individual trans-
formers correspond to conjuncts. Algorithm 1 maintains a set of sound, incomparable transformers
¥, initialized to the empty set, representing the most imprecise transformer T. The algorithm
iteratively synthesizes new transformers that, when combined via meet, minimize the imprecision
measured by the norm function. It loops as long as it can find a precision improvement:

Algorithm 1: IdealSynthesizeTransformers(prob)

1 Input: prob — An instance of the Transformer Synthesis Problem.
2 Output: 7° — A set of synthesized transformers solving prob.

3 FPe—0 // Initialize to most imprecise transformer set
4 while true do

5 f « SynthesizeTransformer(¥>, prob) // Synthesize transformer maximizing precision gain
o | f[lfn 7R = |75 then

7 return RemoveRedundant(F*) // Termination: remove transformers, preserving norm

// (compute a set greedily; it may not be unique)

8 F*— FU{f} // update set of synthesized transformers

A key advantage of this iterative approach is the reduction of the synthesis problem to repeatedly
generating individual transformers. Specifically, rather than directly synthesizing a full set 7°
minimizing the norm ||THS|| each iteration seeks a transformer f that minimizes the norm when
added to the set of transformers ¥° we already have synthesized:
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pminimize, L7l ®

This structure simplifies the search space and modularizes synthesis, as each
SynthesizeTransformer(¥ 7, prob) call focuses solely on the next incremental improvement.

THEOREM 3.1 (SOUNDNESS). If SynthesizeTransformer synthesizes a single sound transformer
that is a solution to Equation (1) and there exists a finite solution to the transformer synthesis problem,
then Algorithm 1 returns a solution to the transformer synthesis problem.

PRrOOF. Let ¥ be a solution to the synthesis problem such that for every ||F|| = k. Because every
call to SynthesizeTransformer reduces the norm (and the norm is an integer), the algorithm
terminates. Furthermore, the final set satisfies all three conditions: all transformers are sound, the
precision cannot be improved further, and no transformer is redundant. O

Note that any intermediate result of the algorithm is a valid transformer, though (probably)
sub-optimal. This property is important for our MCMC-based approach in Section 4.

3.2 Focusing Precision on Relevant Inputs

A further benefit of this approach is the ability to focus synthesis efforts on the inputs that matter,
that is, inputs where the current transformer set 7 is still imprecise.

While soundness requires that synthesized transformers behave correctly on all inputs, preci-
sion only needs to improve where existing transformers leave room for refinement. Thus, each
SynthesizeTransformer call can restrict its optimization to the subset of “imprecise” inputs:

Aimprecise = A\ {a | Fi(a) = f*(a))}. )

We can equivalently rewrite the objective for the next transformer f as:

ml?lerzllze Hf M 9-7_‘7 || Aimprecise (3)

Here, ||-|| Aimprecise COMPULES NOrM considering only inputs in Ajmprecise- This refinement preserves
correctness while avoiding wasted effort on already-precise regions of the input space. Formally,
minimize N %S|l & minimize nys .

nimize 73] = minimie |17,

This selective focus is efficient (it allowing us to compute the norm on fewer inputs) and also
aligns with standard optimization principles: prioritize areas of maximum potential gain.

4 Randomly Searching for Abstract Transformers using MCMC

The ideal algorithm presented in Section 3 incrementally synthesizes abstract transformers that
collectively form the solution to the transformer synthesis problem (Definition 2.3). To make
this process practical, we implement the core routine SynthesizeTransformer(¥°, prob) using
a stochastic search procedure MCMCSynthesizeTransformer (¥, prob) based on Markov Chain
Monte Carlo (MCMC). Our approach is inspired by Stoke [31] and contributes a novel cost function
and abductive refinement strategy.

The goal of this random search, presented in Algorithm 2, is to synthesize a transformer that
minimizes the cost function defined in Line 3. The cost combines two objectives: maximizing
soundness and minimizing norm. Soundness(f) returns a number between 0 and 1 representing
the fraction of inputs on which the transformer f is sound. Improvement(f, g) returns a number
between 0 and 1 representing how much f M g improves the precision of g. Formally, we define

a predicate soundAt(f,a) := f# (a) E f(a) indicating transformer f is sound at an abstract input
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Algorithm 2: MCMCSynthesizeTransformer(F*, prob)

1 Input: F° — Current set of synthesized transformers;

2 Output: A new sound transformer f € L that (in the limit) minimizes precision.

3 fun Cost(f*) :

4 L return A(1-Soundness(f*)) + x(1—Improvement(f*, ¥5)) // reward soundness, precision improv.

5 f « initialize() // random initial program
6 fori < 1to Ny do

7 f’ « mutate(f) // mutate current candidate
8 p~U®O,1) // sample acceptance threshold
9 if Cost(f) — Cost(f’) > T - log(p) then

10 L fef // accept proposed candidate
11 if Soundness(f) < 1 then

12 L return T // return trivial top transformer if no sound one found
13 return f // return the lowest cost sound transformer found

a. As we target only finite abstract domains, Soundness and Improvement can be defined as in
Equation (4) and Equation (5), respectively:

Soundness(f) := (Z 1[soundAt(f, a)]) /|A| (4)

acA

Improvement(f, g) = (Z 1[soundAt(f, )] - (Ig(a)] - |f(a) ng(a)n) Nigha G
acA

Note that Improvement counts precision gain only on sound inputs. If f is sound over the entire
abstract domain, we have Improvement(f,g) =1 —|[f M gll 5 /llgll 4 because Zoe 7 |g(a)| = llgll #-

The algorithm begins by sampling a random candidate program f from the DSL £ (Line 5). It then
performs Njep, iterations of local search, where in each iteration a syntactic mutation produces a
new candidate f” (Line 7). If " has a lower cost than the current candidate, it is accepted; otherwise,
it is accepted with a probability determined by the difference in cost and temperature parameter T,
following the standard Metropolis-Hastings acceptance rule (Line 9).

If no sound transformer is found after the search, the algorithm returns the trivial transformer
T, representing the most imprecise but sound abstraction (Line 11). Otherwise, the most precise
sound transformer discovered is returned.

The use of MCMC for synthesizing transformers provides important asymptotic guarantees’
assuming ergodicity (discussed below). In the limit, the search procedure samples transformers
according to a distribution biased toward lower-cost candidates. As the number of iterations tends
to infinity, the probability of synthesizing a sound transformer that is sound and minimizes norm
approaches one. The following corollary of the standard convergence guarantees for Metropolis-
Hastings MCMC [12] captures this result:

COROLLARY 4.1 (AsymPTOTIC OPTIMALITY OF MCMC SEARCH). Assume the proposal distribution
used by mutate(-) is ergodic over the space of programs expressible in L. Then, as Ny, — oo, with
probability approaching 1, MCMCSynthesizeTransformer (¥, prob) returns f satisfying:

lrn7sl= min [l 7.

fleL
Soundness(f”)=1
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Algorithm 3: randomly initializing and randomly mutating transformer operations

1 fun initializeNormal() :

2 | « maximum number of lines

3 fori < 1to!ldo

4 op « sample(operator in L)

5 a < sample(0,i — 1) // only use earlier variable indices or the input variable x
6 b < sample(0,i — 1)

7 sli] « (xi = op(xa, xp))

8 return s[1] - - - s[!]

9 fun mutateNormal(f) :

10 xi = 0p(xgq,xp) < sample(line in f) // sample a line of the program to mutate
11 op’ « sample(operator in L)

12 a’ «— sample(0,i — 1)

13 b’ « sample(0,i — 1)

14 return f[x; = op(xg, xp)/xi = op’ (xg7, xpr ) ] // replace i-th line with randomly sampled one

In short, repeated or sufficiently long runs of MCMCSynthesizeTransformer should yield trans-
formers that are sound and highly precise in terms of the norm function. Though each invocation
of the algorithm is approximate, in expectation the overall result tends to maximum precision.

On Ergodicity. Our setup is designed to provide an ergodic search space. First, the space is
in a simple format parameterized by the operation set, and further constrained by the program
representation: each operation takes two abstract inputs, consists of a sequence of SSA instructions,
and produces one abstract output. Only the instructions in the middle are subject to mutation.
Second, our mutation strategy ensures the ergodicity of the Markov chain because the two possible
mutations are invertible. Thus, there is a positive probability of transitioning from any program to
any other. Overall, our strategy is similar to the one employed by Stoke [31].

4.1 Two Strategies for Randomly Sampling Programs

We now describe two complementary strategies that we can use in Algorithm 2 to synthesize
transformers via random search. The strategies correspond to different implementations of the
initialize and mutate procedures in Algorithm 2 (Lines 5 and 7).

4.1.1  Randomly Mutating Transformer Operations. The first strategy performs random syntactic
mutations to the current transformer by altering its operations or structure (Algorithm 3). This
corresponds to traditional MCMC-based synthesis, which operates directly over the DSL £ [31].

For simplicity, the formalization assumes all operations are binary and that x is the input variable
to the transformer. In practice there are more possible inputs as well as constants that can be used
in the transformer. Algorithm 3 defines two core functions: initializeNormal and mutateNormal,
which build and mutate transformers as sequences of statements. The initialization function creates
a transformer with [ statements (this is a parameter in our implementation). Each statement s[i]
assigns a variable x; by applying a randomly selected operator from £ to two variables previously
defined variables at lower indices. This ensures well-formed data dependencies.

The mutation function (mutateNormal) selects a random statement, sampled using a user-given
probability distribution, and replaces it with a newly sampled statement, again selecting operator
and operands consistent with variable dependencies.

This setup supports incremental local modifications during MCMC sampling, enabling the search
to explore transformer candidates efficiently and effectively.
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Algorithm 4: initialize and mutate for condition abduction

1 fun initializeAbd() :

2 CP « history of precise but unsound transformers encountered so far

3 fu < random element from CP // select unsound but precise transformer
4 ¢« initializeNormal() // sample a random condition expressible in £ using Algorithm 3
5 | return ite(e, fu, T)

6 funmutateAbd(ite(c, fu, T)):

7 ¢’ « mutateNormal(c) // randomly mutate ¢ using DSL operators in L using Algorithm 3
8 return ite(c’, fyu, T)

For example, the following transformer from Figure 3 is a valid initial transformer (we avoid
using variable indices for readability and instead use actual variable names):

func. func @f1(%L : KnownBits, %R : KnownBits) -> KnownBits {
%1 = countLeadingZero(%L.zero)
%knownZero = setHighBits (@, %1)
return makeKnownBits (%knownZero, 0)

That same transformer could be mutated into the following one by replacing the argument of
countlLeadingZero with a different input:

func. func @f1(%L : KnownBits, %R : KnownBits) -> KnownBits {
%1 = countlLeadingZero(%R.zero) // mutated
%knownZero = setHighBits (@, %1)
return makeKnownBits (%knownZero, 0)

4.1.2 Randomly Adding Conditions to Unsound but Precise Transformers. Throughout a typical
random search in which Algorithm 2 uses the mutation strategy from Section 4.1.1, the algorithm
discovers transformers that significantly improve precision but are not sound. Such transformers
potentially contain valuable information, but cannot be used directly. To address this issue, we
use our MCMC approach to implement abductive synthesis, which constructs guards that identify
subsets of the input space. Given an unsound transformer f*, we aim to synthesize a guard c
(written in the DSL £) and thereby construct a sound transformer f;’(a) := ite(c, f*(a), T).
We denote a conditional transformer as a term ite(c, f*, T).

The initializeAbd and mutateAbd operations in Algorithm 4 implement this abductive syn-
thesis by reusing the initialization and mutation operations in Algorithm 3 to explore the space
of possible conditions ¢ starting from an unsound transformer. The remaining structure of Algo-
rithm 2 is untouched as the cost function and overall structure of the algorithm are exactly the
same regardless of what type of transformer we decide to synthesize. For example, the following
transformer f_2 from Figure 3 is a valid initial transformer for Algorithm 4, assuming again proper
renaming of variables and that the last variable is being returned:

func. func @f2_cond(%L: KnownBits, %R: KnownBits) -> bool {
%Lmax = negate(%L.zero)
%Rmin = %R.one
%cond = unsignedLessThan (%Lmax, %Rmin)
return %cond
3
func. func @f2_body (%L : KnownBits, %R : KnownBits) -> KnownBits { return %L }
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func. func @f2(%L : KnownBits, %R : KnownBits) -> KnownBits {
return ite(@f2_cond (%L, %R), @f2_body (%L, %R), %top)

That same transformer could be mutated by modifying f2_cond, e.g., by changing the second
argument of unsignedLessThan, but the body f2_body would remain unchanged:

func. func @f2_cond (%L : KnownBits, %R : KnownBits) -> KnownBits {

%Lmax = negate(%L.zero)
%Rmin = %R.one
%cond = unsignedLessThan (%Lmax, %R.zero) // mutated

return %cond

5 Implementation

We have implemented NiceToMeetYou as a modular and extensible synthesis framework that
supports several finite non-relational integer abstract domains and concrete operations. Figure 4
presents a high-level overview of the system architecture. This section first describes how we
instantiate the core synthesis algorithm to support different domains and instruction semantics
(Section 5.1), and then outlines key engineering optimizations that enable efficient large-scale
synthesis (Section 5.2). The implementation is publicly available [13].

5.1 The Basic Ingredients

Synthesis of an approximation of the ideal transformer f * takes place through a two-loop process:
(i) A slow outer loop performs bounded model checking (via z3) to validate soundness, and (ii) A
fast inner loop generates new candidates and aggressively tests their soundness and precision by
sampling the space of abstract values. In practice, we run 1,000 inner-loop iterations per outer-loop
iteration. After each outer iteration, the framework discards provably unsound candidates, adds
sound candidates to the solution set #°, and updates weights in the probability distribution used
to sample MCMC mutations.

While the ultimate goal is to produce a set of sound abstract transformers #*, our implementation
also maintains a set of unsound-but-precise functions, F?, as well. The purpose of ¥, as outlined
in Section 4.1.2, is to discover sound functions in a bottom-up way from a precise function f* € F?
by synthesizing a condition ¢ that narrows the input space to a subset on which f* is sound.
Concretely, the goal is to find ¢ such that f7(x) := ite(c(x), f*(x), T) issound.

Accordingly, the system performs two interleaved forms of MCMC-guided synthesis. In each
round of the inner loop:

e When discovering new sound transformers starting from a transformer f¥, synthesis mutates f*
itself.
e When discovering guard conditions for existing transformers f* € FP?, synthesis keeps f* fixed

and mutates c in f(x) := ite(c(x), f*(x), T).

When the process converges or time runs out, we return the meet of all sound candidates 7.
The precise set 77 is discarded.

5.1.1 Input Language. Our target DSL L for synthesis is the MLIR dialect xdsl-smt [4]. This
language has several important characteristics: (1) it includes basic numeric operations (+, /, ite),
making it suitable to express a variety of transformers; (2) it uses SSA form, which narrows the
scope of possible mutations; (3) it implements SMT-Lib [1] and has a direct mapping to z3; and (4)
it has a straightforward mapping to C++, enabling fast testing of transformers in the inner loop.
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To instantiate our framework, users must provide the semantics of the concrete operation for
which a transformer is to be synthesized, and the definition of the abstract domain over which the
transformer operates. NiceToMeetYou targets one concrete operation at a time in its outer loop
(hence the multi-arrow in Figure 4). Multiple loops can of course run in parallel.

For each concrete operation, the user provides both a z3 implementation (for verification in
the outer loop) and a corresponding C++ implementation (for fast evaluation in the inner loop).
Users must ensure these are in agreement. Operations may additionally specify input constraints
prohibiting abstract values—e.g., integer division excludes zero denominators. For each abstract
domain, the user supplies a top element, a meet operation, a concretization function (technically,
only a membership test: the function is given a concrete value v and an abstract value A, and must
determine whether v € y(A)), a size function to guide precision, and an optional well-formedness
constraint to rule out syntactically valid but semantically invalid abstract values (e.g., for KnownBits,
the two bitvectors representing known-zero and known-one must not overlap). Information about
concrete operations can be reused across abstract domains. Information about abstract domains
can potentially be reused across different sets of concrete operations.

Turning back to our toy example from Section 2, the following elements suffice to instan-
tiate NiceToMeetYou for max on the interval domain. Each piece must be defined in MLIR:

e Concrete op: f(x,y) = max(x,y) e Concretization: y([a.l,a.r]) ={a.l,---,a.r}
o Input constraint: None e Size function: |a| = [log,(|a.l —a.r|)]
o Top element: [0, UINT_MAX] e Well-formedness constraint: V a.a.l < a.r

e Meet: aMb = [max(a.l,b.l),min(a.r, b.r)]

5.1.2 Initializing MCMC in the Inner Loop. Each iteration of the inner MCMC synthesis loop begins
by generating a fresh pool of candidate transformer functions and candidate guard conditions.
Candidate functions are initialized with approximately 30 randomly generated instructions, drawn
from the DSL described in Section 5.1.1. These functions are intended to represent full transformer
logic. Candidate conditions, which are used for condition abduction (Section 4.1.2), are initialized
with around 6 instructions, reflecting their role as lightweight guards. In both cases, mutation
attempts to morph these placeholder candidates into codes that outperform the current members
of 7. We chose the constants 30 and 6 empirically; similar values work as well.

The scoring function used to evaluate candidates balances two objectives: soundness and preci-
sion. Two tunable parameters, k and A (from Algorithm 2), govern this tradeoff. During the early
stages of synthesis, we prioritize exploratory behavior by assigning a higher weight to precision
for functions (1) and to soundness for conditions (k). These weights encourage exploration; later
on, the verifier prunes unsound functions and the scoring function de-emphasizes overly precise
conditions. The relative value of these parameters is important; the exact value is not so much.

5.1.3 Mutation. Mutation is the simplest component of the implementation. It operates directly on
MLIR programs expressed in the xds1-smt dialect. Each candidate is a sequence of SSA assignments
of the form x; = op(x,, ...) where op is an xdsl-smt operator, i is the current line number, and a
is some index preceding i. There are two possible mutations: replace one variable reference x, with
another, or replace the operator with another op’ (with randomly selected arguments). Our DSL
consists of 29 operators in total, each of which corresponds to a function in APInt library.

Variables are always selected uniformly at random. Each index in the range [0, i) has equal
probability. Operators are initially chosen uniformly at random, but their weights get adjusted
after each update to the sound set #°. The operators that are most common across the sound
functions have the highest chance of selection. Concretely, weight(op) := 1 + frequency(op, F°),
where frequency(op, F) is the total number of op appearances in all transformers in F.
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Fig. 4. Implementation overview. The outer loop (above) checks the soundness of promising candidates. The
inner loop (below) generates new candidates via mutation and evaluates candidates’ soundness and precision.

Weights never decrease below a positive minimum, ensuring all operators maintain a nonzero
probability of selection and preserving exploration diversity throughout synthesis.

5.14  Evaluation Engine. After mutation generates candidate functions and conditions, a fast eval-

uation engine implemented in C++ tests their soundness and precision by executing the semantics

of the candidates. This engine implements the core procedure outlined in Algorithm 2. We choose

C++ for its fast performance and good integration with LLVM infrastructure—most notably, with

LLVM’s type APInt for arbitrary-precision integers.

Since our transformers operate over integer domains, the evaluation engine is tailored to effi-
ciently test integer values in several ways:

e Bitvector representation: The bitvectors that we use for static analysis are not faithfully
represented by standard C++ datatypes such as uint64_t. We use LLVM’s APInt numbers
instead. Crucially, an APInt can be instantiated at any bitwidth and comes with numerous helper
functions, e.g., for overflow checking.

e Test generation by bitwidth: Integers can be enumerated in a straightforward way. This
property guides test generation:

— For small bitwidths (range [1, 4]), evaluation tests all possible abstract values and concrete
inputs. Candidate functions are thus guaranteed to be sound on small bitwidths. Examples: For
KnownBits, there are 120 small abstract values. For ConstantRange, there are 185 abstract
values. To test a transformer f¥, we compute a = f¥(ag, a;) for all pairs of abstract values
ao, a1, and, unless a is bottom, we check that f(ng, n1) € a for all pairs of concrete numbers.

— For mid-size bitwidths ([5, 8]), evaluation samples abstract values a and exhaustively tests the
concretization of a. Candidate functions are sound over sampled tests, but may be unsound
over the entire abstract domain; z3 verification is there to catch mistakes.

— For large bitwidths ([9, 64]), evaluation samples abstract values a and samples elements
¢ € y(a). Due to this incomplete concretization, candidate functions could be unsound even
on sampled abstract values at this stage.

The extraction of an MLIR candidate to C++ requires some care beyond the use of APInt values.
Operations that can lead to undefined behavior in C++, such as division, must be guarded with a
check for invalid input and must return a default value that matches the behavior of the z3 verifier.
For division, invalid input is a zero denominator and the z3 default is to return zero. Our goal here
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is simply to keep the evaluation engine and the verifier in sync. If static analysis discovers that a
program definitely divides by zero, other passes in LLVM will take appropriate action.

5.1.5 Size Functions. Each abstract domain has a size function || to quantify precision:

e For the KnownBits domain, the size measures the number of unknown bits. For example, the
KnownBits abstract value 121?007 has size 3.

o For the ConstantRange domain, the size is computed as the |log,] of the absolute difference
between the lower and upper bounds of the abstract intervals. For example a ConstantRange
abstract value of [15, 45] has a size of |log,(30)| = 4

5.1.6 Integrating MCMC Results in the Outer Loop. At each outer-loop iteration, the inner MCMC
loop generates a collection of candidate transformers and guard conditions, ranked by their size.
These candidates are then filtered and integrated as follows:

o Sound candidates that are not subsumed by any existing member of the solution set ¥ are added
to it. Subsumption is determined using the abstract domain’s ordering (e.g., inclusion).

e Precise but unsound candidates are selectively retained in ¥7, the pool used for condition
abduction (Section 4.1.2). To control memory and evaluation cost, ¥7 is capped at a fixed size
(15 in our implementation), and retains only the top-scoring elements.

This strategy ensures that 7° grows monotonically with respect to both soundness and variety,
while F? remains a focused source of potentially useful components for future synthesis.

5.1.7 Verifier. Soundness is established via z3. For each candidate produced by the inner loop, we
check it across all possible inputs for bitwidths ranging from 1 to 64. This validation ensures that
the candidate respects the transformer specification over the full concrete input space. If z3 times
out, we simply assume the transformer is unsound and discard it. To perform this check, we use
the lowering to z3 that is provided by the xds1-smt dialect. We use this lowering directly, though
we did fix several bugs in it along the way [21, 22]. Candidates that pass verification are admitted
to #° and considered sound in subsequent synthesis and scoring phases.

5.2 Gotta Go Fast

NiceToMeetYou can find promising transformers only because it can quickly explore a huge number
of candidates. Most candidates are garbage. Sifting through the trash in a reasonable time is possible
thanks to details of its engineering, described below.

Parallel MCMC. The MCMC synthesis in our inner loop is a slow, step-by-step process. To
accelerate converge and improve the likelihood of high coverage, we run this inner loop in parallel
(currently, 100 times). Operationally, each time we enter the inner loop with a set of candidate
functions, we spawn several copies of MCMC that independently mutate and evaluate transformers.
At the end of the inner loop, the highest-scoring candidates from each process are selected as
candidates for the outer loop to verify. MCMC splits its focus between sound candidates (¥°) and
precise candidates (¥7) on a 70/30 basis: 70 % of the parallel searches explore sound candidates,
and 30 % of the searches perform condition abduction.

LLVM FIT. Our evaluation engine uses the LLVM JIT, LLJIT [19], to quickly compile and test
candidate functions. We create a pre-compiled binary that packages the abstract domain, the APInt
API, our scoring function, and LLJIT, and use it to lower candidates written in MLIR to executable
code. Compared to our initial approach of invoking clang, linking with LLVM, and compiling the
candidates, JIT-ing improves performance by roughly two orders of magnitude. Testing a batch of
roughly 100 candidates dropped from seconds to milliseconds with LLJIT.
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5.3 Generalizability of the Approach

We have focused on KnownBits and ConstantRange domains because these are the main abstract
domains employed by LLVM. There are no fundamental limitations to adapting NiceToMeetYou to
other abstract domains:

o Non-relational abstract domains: NiceToMeetYou can be directly applied to non-relational do-
mains where each abstract value consists of a finite number of integers, as in KnownBits or
non-wrapping interval domains. Users must provide the components described above (Sec-
tion 5.1.1) and a soundness verifier. Reuse is made simple because the template of mutated
programs begins by deconstructing each input abstract value into integers and ends by recon-
structing the output abstract value from several integers, and only the operations in the middle
are mutated. To support non-relational abstract domains that are not composed of integers,
significant engineering is needed to define suitable templates and mutation strategies.

e Relational abstract domains: We conjecture that NiceToMeetYou can synthesize transformers for
relational domains, such as octagons and polyhedra. We have deferred investigation because
we suspect these domains will lead to prohibitively high compilation overhead. In contrast to
a non-relational domain, where program variables can be tracked independently, a relational
domain requires all variables to be tracked simultaneously. A transformer must operate over
entire program states rather than individual variables, which complicates reuse across operators.

e Non-Galois abstract domains: Our abstract domains are characterized by a Galois connection.
This means there is a unique most precise abstraction for each concrete set of integers, a fact
that our inner MCMC loop leverages to speed up evaluation. To adapt NiceToMeetYou to a non-
Galois-connection-based abstract domain, the framework would need a method for choosing
among multiple sound abstract values. Take the wrapped interval domain as an example [11].
There is no most precise abstraction for integers in a circle; any number can be the left endpoint.

NiceToMeetYou targets MLIR, but there is nothing fundamental about our choice to use it. MLIR
is convenient because it has an SMT dialect [10], a dataflow analysis framework with pluggable
transfer functions, and a clear relation with LLVM to facilitate comparisons.

6 Evaluation

Our evaluation consists of several parts: a direct comparison between LLVM’s KnownBits and
ConstantRange transformers and ours (Section 6.1); an evaluation of our known bits transfer
functions vs. LLVM’s, in terms of precision and compilation time, when compiling an appropriate
subset of the SPEC 2017 benchmark suite (Section 6.2); evidence that synthesis facilitates exploration
on composite transfer functions and a reduced product domain (Section 6.3); ablation studies of
DSL choice (Section 6.4) and condition abduction (Section 6.5); and, a detailed comparison to
Amurth [15] (Section 6.6). Note that, although we compare against LLVM to show that our work
is practical beating LLVM at its own game is not a goal in and of itself. NiceToMeetYou is a
complement to handcrafted analyses.

6.1 Comparison to LLVM’s Abstract Transformers

LLVM provides abstract transformers for a handful of abstract domains, notably KnownBits and
ConstantRange. These transformers are handwritten and have been fine-tuned over the years.
Currently, LLVM supports 44 of the 47 binary operators for KnownBits and 37 of 47 operators
for ConstantRange. To evaluate the effectiveness of our synthesis approach, we use our tool to
automatically generate abstract transformers for operators in both domains.
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Table 1. KnownBits results for 8-bit and 64-bit integers. The 8-bit results report the percentage of tests where
the transformer matches the best transformer ]a. The 64-bit results report the norm of the transformer
(normalized by the number of Tests) which reflects its imprecision. Higher (T) is better for exact, while lower
(1) is better for norm. #f* is the number of transformers in 7. #c counts those with conditions. #inst is the
total number of MLIR instructions used by those transformers. Tests is the number of sampled test inputs. T,
synth, and LLVM present results for three transformers: a trivial one that always returns top, our synthesized
transformer, and LLVM’s manually-implemented transformer. The meet column is for the transformer synth
M LLVM. Bolded numbers denote cases where the meet of the synthesized transformer and the LLVM one
has higher precision than the LLVM one. If no LLVM implementation is available (N/A) we bold cases in
which the synthesized transformer is better than T. Some 64-bit rows contain a dash (-) because random
sampling failed to produce any valid pairs of inputs. These operators have strict constraints on their inputs.

8-bit exact (%) T 64-bit precision (norm) |

ConcreteOp _ Tests Tests

#f* #c #inst T synth llvm meet T synth llvm meet
Abds 10 3 189 | 1000 33.90 60.10 100.00 100.00 | 10000 0.059 0.050 0.000 0.000
Abdu 16 4 259 | 1000 33.10 59.40 100.00 100.00 | 10000 0.059 0.050 0.000 0.000
Add 17 2 306 | 1000 29.60 58.70 100.00 100.00 | 10000 0.140 0.082 0.000 0.000
AddNsw 13 2 205| 1000 24.50 42.00 100.00 100.00 | 9674 0.147 0.136 0.000 0.000
AddNswNuw | 14 3 220 | 1000 7.40 4550 100.00 100.00 | 7479 0.160 0.136 0.000 0.000
AddNuw 17 4 291 | 1000 15.20 53.90 100.00 100.00 | 8305 0.152 0.103 0.000 0.000
And 1 0 14| 1000 0.10 100.00 100.00 100.00 | 10000 0.625 0.000 0.000 0.000
Ashr 5 3 94| 1000 31.10 65.50 85.70  85.70 0 - - - -
AshrExact 7 2 123 | 1000 14.70 40.10 100.00 100.00 0 - - - -
AvgCeilS 8 4 157 | 1000 31.80 3880 100.00 100.00 | 10000 0.139 0.136 0.000 0.000
AvgCeilU 8 6 153 | 1000 31.60 38.60 100.00 100.00 | 10000 0.139 0.136 0.000 0.000
AvgFloorS 9 3 163 | 1000 32.40 39.30 100.00 100.00 | 10000 0.139 0.136 0.000 0.000
AvgFloorU 7 4 138 | 1000 32.20 37.70 100.00 100.00 | 10000 0.139 0.136 0.000 0.000
Lshr 4 1 80 | 1000 1230 59.30  96.50  96.50 0 - - - -
LshrExact 6 2 119 | 1000 12.80 31.40 100.00 100.00 0 - - - -
Mods 123 235| 1000 41.20 64.70 71.30 71.50 | 10000 0.090 0.078 0.076  0.076
Modu 12 4 207 | 1000 16.70 59.00 52.70 70.60 | 10000 0.149 0.030 0.132 0.027
Mul 10 6 202 | 1000 25.60 60.60 73.20 73.30 | 10000 0.025 0.010 0.006 0.006
Or 1 0 8| 1000 0.00 100.00 100.00 100.00 | 10000 0.624 0.000 0.000 0.000
Sdiv 11 7 248 | 1000 64.10 64.10 83.40 83.40 | 10000 0.331 0.331 0.114 0.114
SdivExact 2 2 32| 1000 1930 1930 37.40 37.40 0 - - - -
Shl 4 1 69 | 1000 10.50 56.90 96.50  96.50 0 - - - -
ShiNsw 7 1 115 | 1000 6.80 26.20 100.00 100.00 0 - - - -
ShINswNuw 7 2 115] 1000 5.50 9.80 100.00 100.00 0 - - - -
ShiNuw 7 3 139 | 1000 10.60 40.50 100.00 100.00 0 - - - -
Smax 9 5 185| 1000 6.50 63.80 100.00 100.00 | 10000 0.348 0.095 0.000 0.000
Smin 6 4 119 1000 6.00 72.80 100.00 100.00 | 10000 0.349 0.064 0.000 0.000
SshlSat 7 1 124 | 1000 37.60 72.40 N/A 72.40 | 10000 0.624 0.109 N/A 0.109
Sub 12 2 204 | 1000 2850 60.60 100.00 100.00 [ 10000 0.140 0.088 0.000 0.000
SubNsw 16 5 287 | 1000 22.20 47.80 100.00 100.00 | 9673 0.146 0.103 0.000 0.000
SubNswNuw 14 6 292| 1000 7.60 31.80 100.00 100.00 [ 7515 0.160 0.139 0.000 0.000
SubNuw 18 4 323 | 1000 16.40 47.10 100.00 100.00 | 8215 0.152 0.099 0.000 0.000
UaddSat 14 5 305| 1000 1830 61.80 100.00 100.00 [ 10000 0.253 0.069 0.000 0.000
Udiv 10 5 191 | 1000 2.50 80.80 89.80 90.90 | 10000 0.960 0.004 0.001 0.001
UdivExact 3 2 53 | 1000 2.80 1530 33.90 42.20 0 - - - -
Umax 9 6 199| 1000 6.40 90.60 100.00 100.00 | 10000 0.351 0.002 0.000 0.000
Umin 6 1 105 | 1000 6.40 92.90 100.00 100.00 | 10000 0.351 0.001 0.000 0.000
UshlSat 2 1 41| 1000 3.60 96.60 N/A  96.60 | 10000 1.000 0.000 N/A  0.000
UsubSat 10 6 232 | 1000 19.00 52.10 100.00 100.00 | 10000 0.254 0.071 0.000  0.000
Xor 30 39| 1000 2.30 100.00 100.00 100.00 | 10000 0.390 0.000 0.000 0.000
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Table 2. ConstantRange results for 8-bit and 64-bit integers. See the Table 1 caption for descriptions of the
columns, exact, and norm. Higher (1) is better for exact. Lower (|) is better for norm. Operators marked by
a * use synthesized CRg transformers, others use CR,, transformers.

8-bit exact (%) T 64-bit precision (norm) |

ConcreteOp _ Tests Tests

#f* #c  #inst T synth llvm  meet T synth llvim  meet
Abds* 3 2 70 | 1000 59.80  59.80 N/A  59.80 | 10000 0.917 0.915 N/A 0.915
Abdu 20 6 344 | 1000 0.00 75.00 N/A  75.00 | 10000 0.990 0.908 N/A 0.908
Add 2 45 509 36.54 100.00 100.00 100.00 | 4991 0.949 0.887 0.887 0.887
AddNsw* 4 148 | 1000 7.10 100.00 100.00 100.00 | 9770 0.982 0.905 0.905 0.905
AddNswNuw | 10 2 172 | 1000 0.00 70.70 84.80 88.60 | 8190 0.994 0.921 0.912 0.910
AddNuw 14 5 243 | 1000 0.00 94.00 100.00 100.00 | 8267 0.993 0.910 0.906 0.906
And 10 5 193 | 1000 0.00 8230 83.10 83.30 | 10000 0.990 0.886 0.883 0.883
Ashr* 8 3 141 | 1000 0.00 98.00 9850 99.20 0 - - - -
AshrExact” 4 2 73| 1000 0.00 81.70 N/A  81.70 0 - - - -
AvgCeilS* 26 2 444| 1000 0.00 0.30 N/A 0.30 | 10000 0.998 0.953 N/A 0.953
AvgCeilU 17 3 303 | 1000 0.00 1.80 N/A 1.80 | 10000 0.998 0.947 N/A 0.947
AvgFloorS* 20 1 332| 1000 0.00 1.80 N/A 1.80 | 10000 0.998 0.955 N/A 0.955
AvgFloorU 17 3 276 | 1000 0.00 30.00 N/A  30.00 | 10000 0.998 0.932 N/A 0.932
Lshr 0 14| 1000 0.00 100.00 100.00 100.00 0 - - - -
LshrExact 4 1 78 | 1000 0.00 85.20 N/A  85.20 0 - - - -
Mods* 6 2 118 | 1000 0.00 4350 9560  95.60 | 10000 0.997 0.909 0.875 0.875
Modu 3 164 | 1000 0.00 89.00 88.90 89.00 | 10000 0.989 0.877 0.877 0.877
Mul 17 6 371 998 90.78 90.78  90.88 90.88 | 10000 0.861 0.861 0.861 0.861
Or 14 8 275| 1000 0.00 8240 8560 86.20 | 10000 0.990 0.889 0.882 0.882
Sdiv* 8 3 146 998 0.50 12.32 100.00 100.00 | 10000 1.000 0.997 0.501 0.501
SdivExact” 8 8 202 1000 0.70 0.70 N/A 0.70 0 - - - -
Shl 8 4 140 | 1000 0.00 83.00 0.30  83.00 0 - - - -
ShINsw™ 4 3 81| 1000 0.70 18.00 99.20 99.40 0 - - - -
ShINswNuw 7 1 116| 1000 0.00 8830 49.80 100.00 0 - - - -
ShiNuw 7 4 156 | 1000 0.00 76.40 99.60 99.60 0 - - - -
Smax™* 1 0 14| 1000 0.00 100.00 100.00 100.00 | 10000 0.996 0.838 0.838 0.838
Smin* 1 0 13 | 1000 0.00 100.00 100.00 100.00 | 10000 0.996 0.839 0.839 0.839
SshlSat* 7 3 132| 1000 50.90 75.50 100.00 100.00 | 10000 0.497 0.486 0.243 0.243
Sub 2 2 39 526 35.36 100.00 100.00 100.00 | 4997 0.948 0.887 0.887 0.887
SubNsw* 5 4 106 | 1000 7.00 100.00 100.00 100.00 | 9773 0.981 0.904 0.904 0.904
SubNswNuw 3 1 59 | 1000 0.00 74.50 84.00 84.00 | 8152 0.993 0917 0912 0.912
SubNuw 14 8 259 | 1000 0.00 94.50 100.00 100.00 | 8304 0.993 0.910 0.906 0.906
UaddSat 6 1 93 | 1000 0.00 99.20 100.00 100.00 | 10000 0.995 0.756 0.755 0.755
Udiv 7 1 126 | 1000 0.00 31.70 100.00 100.00 | 10000 1.000 0.033 0.006 0.006
UdivExact 5 2 95| 1000 0.00 34.30 N/A  34.30 0 - - - -
Umax 1 0 13 | 1000 0.00 100.00 100.00 100.00 | 10000 0.996 0.839 0.839  0.839
Umin 1 0 15| 1000 0.00 100.00 100.00 100.00 [ 10000 0.996 0.839 0.839 0.839
UshlSat 5 1 85| 1000 0.00 100.00 100.00 100.00 | 10000 1.000 0.000 0.000  0.000
UsubSat 2 0 31| 1000 0.00 100.00 100.00 100.00 | 10000 0.995 0.753 0.753 0.753
Xor 132 232 | 1000 50.90 56.10 66.70 68.20 | 10000 0.921 0.908 0.890 0.887

Our evaluation reports data for 40 of the 47 operators. The seven omitted operators—MulNsw,
UMulSat, MulNuw, SAddSat, MulNswNuw, SMulSat, and SSubSat—require overflow checks that
we have not yet supported in our dalect.

6.1.1  Evaluation Setting. We evaluate the precision of NiceToMeetYou synthesized transformers,
LLVM built-in transformers, and the meet of both. We measure precision for 8-bit and 64-bit
bitvectors on a set of randomly sampled inputs, denoted as Axest. All concrete operators in our
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benchmarks are binary, so each input consists of a pair of abstract values (aj, a;). Generally
speaking, the generation of test inputs for evaluation is the same as the test generation described
in Section 5.1.4, but using different random seeds.

In the 8-bit setting, the concrete domain is small (i.e., 28), making it feasible to compute for each
sampled input the theoretically best result f# (a1, az) by exhaustively enumerating all concrete
value pairs (cy, ¢z) such that ¢; € y(a;) and ¢, € y(az). We therefore report the percentage of inputs
for which the evaluated transformer produces exactly the abstract output f# (a3, az). In the 64-bit
setting, exhaustive enumeration is no longer feasible as each abstract value could concretize to as
many as 2° concrete values. Therefore, we report the norm over the sampled test inputs || f#” A

Specifically, for KnownBits and ConstantRange domain, we both sample 1,000 (and 10,000) paielfs
of abstract values for the 8-bit (and 64-bit) evaluations. For each abstract pair, we enumerate all
concrete value pairs in the 8-bit setting, and sample 10,000 concrete value pairs in the 64-bit setting.

Constraints on Concrete Operators. As mentioned in Section 5.1.1, some concrete operators impose
constraints on their operands. For example, shift operators require the second operand to lie within
the range [0, bitwidth]. In such cases, a randomly sampled abstract input pair may not contain
any concrete value pair that satisfies the constraint. For 8-bit inputs, we apply rejection sampling
to ensure only non-empty inputs—those that contain at least one valid concrete value pair—are
included. However, for 64-bit inputs, non-empty inputs could be rare, and rejection sampling
becomes inefficient. Therefore, we simply skip empty inputs and exclude them from evaluation at
64 bits. As a result, the Tests count in some rows of the right columns in Tables 1 and 2 is less than
10,000. In extreme cases where all 10,000 sampled inputs are empty (due to how few valid inputs
there might be for a certain operator), we omit the corresponding data.

Comparing to LLVM’s wrapped ConstantRange. While the LLVM KnownBits domain cleanly fits
into our framework, the LLVM ConstantRange domain presents some friction, as it consists of
wrapped intervals[11]. Specifically, each element in this LLVM domain is either L (the empty set), T
(the set of all w-bit integers), or represented by [a, b), where a, b are w-bit bitvectors such that a # b.
This domain is a sign-agnostic domain. The concretization function for LLVM ConstantRange
domain is defined as follows, where <; is lexicographic ordering on bit-vectors:

{a,...,b—1} ifa<;b
{0v,...,b—-1}U{a,...,1¥} otherwise.

y([a, b)) = {

The LLVM ConstantRange domain is a sound but non-Galois abstract domain—i.e., it does not
form a Galois connection with the concrete bit-vector domain. Its abstraction function « can be
understood as returning a most precise wrapped interval that covers the given set of bitvectors—i.e.,
no subinterval of it does. However, such a most precise interval is not guaranteed to be unique.

NiceToMeetYou only supports Galois-connection-based abstract domains where a best abstrac-
tion is unique. So to enable a comparison to this non-well-defined abstract domain, we synthesized
transformers for the following two segment domains:

e Unsigned Intervals (CR,): Each element is either L or from the set {[a,b] |0 < a < b < 2™}.

e Signed Intervals (CRg): Each element is either L or from the set {[a,b] | 2% < a < b < 2W71}.
Because our abstract domains and the not-well-defined abstract domain used by LLVM are tech-
nically incomparable, we need to make some compromises when analyzing their precision and
mapping elements of one to the other. For unsigned concrete operators (e.g. umax) and sign-agnostic
ones (e.g. add), CR,, transformers are used for comparison. If the LLVM transformer produces a
wrapper interval that cannot be represented as an element CR,,, we do not use that input in our
comparison. For signed operators (e.g., smax), we instead use CRy transformers and similarly skip
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cases where LLVM’s wrapped interval cannot be captured in CR. To summarize, we only compare
the two domains on inputs that they can both represent. These skipped inputs cause the Tests
number in both 8-bit and 64-bit in Table 2 to be less than the desired number of sampled inputs.

6.1.2 Evaluation Results. Table 1 and Table 2 summarize KnownBits and ConstantRange evalua-
tion result respectively. Experiments ran on a server with 2x Intel Xeon Gold 6230 CPUs (40 cores,
80 threads, 2.10GHz). Each benchmark took around 6 hours to finish.

For the KnownBits domain, LLVM provides manually written transformers for 37/40 concrete
operators. Among these, there are 12 operators for which the LLVM transformers do not achieve
the theoretically best result. For 3 out of these 12 cases, NiceToMeetYou synthesizes more precise
transformers, as measured by the norm function on 64-bit inputs. For another 5 out of 11 cases,
the synthesized transformers are less precise than the LLVM ones but still uncover new heuristics
that are not present in the LLVM implementations and therefore result in increased precision
for the meet of the LLVM and the synthesized transformer. The remaining 28 out of 40 LLVM
transformers are already the best, meaning there is no room for improvement via synthesis. That
being said, NiceToMeetYou is able to match the precision for 3 of these hand-tuned transformers.
NiceToMeetYou also synthesizes transformers with non-trivial precision for the two operations for
which LLVM does not include a transformer.

For the ConstantRange domain, LLVM provides manually written transformers for 30/40 con-
crete operators. NiceToMeetYou is able to synthesize transformers for all 40 operators. There are
13 operators where LLVM transformers do not achieve the theoretically best result. For 9 out of
these 13 cases, NiceToMeetYou synthesizes more precise transformers, as measured by the norm
function on 64-bit inputs. For another 6 out of 13 cases, the synthesized transformers are less
precise than the LLVM ones but still uncover new heuristics that are not present in the LLVM
implementations (again shown by the increased precision obtained when taking the meet of the
LLVM and synthesized transformer). The remaining 17 out of 30 LLVM transformers are already the
best, meaning there is no room for improvement via synthesis. NiceToMeetYou matches existing
hand-tuned transformers for 11 of these cases.

6.2 End-to-End Precision and Performance

In this section we evaluate the effect of replacing LLVM’s known bits transfer functions with our
own. We perform this comparison to show that our transfer functions are reasonable ones, but our
larger goal is not to beat LLVM at its own game. Rather, we aim to develop basic technologies that
can be used to avoid manual implementation of transfer functions in future compilers.

Replacing LLVM’s transfer functions with our own was not entirely a clean software engineering
job since LLVM’s known bits analysis is implemented in a style that intermixes its transfer functions
with a highly ad hoc dataflow framework that simply recurses along backwards dataflow edges
until a maximum depth is reached. We left this framework in place, but called out to our own
transfer functions, instead of LLVM’s, at appropriate points in the code.

We took the nine C/C++, integer programs from the SPEC CPU 2017 benchmark suite and
compiled them using an off-the-shelf Clang/LLVM version 21, and then also our modified version.
This optimizing compilation (using Clang’s -03 -march=native flags) was done on a Linux machine
using an AMD 2990WX 32-core CPU, with parallelism disabled in the build system. During an
optimizing compile, LLVM uses the known bits analysis results many times, from many different
passes. To evaluate precision, we took the final, optimized LLVM IR resulting from optimized
compilation and invoked LLVM’s known bits analysis—with and without our synthesized transfer
functions—on every integer-typed SSA value.
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Table 3. Comparison of compilation times and known bits precision between LLVM’s own transfer functions
and ours, for the nine SPEC CPU 2017 integer benchmarks in C/C++

perlbench gee  mef omnetpp xalancbmk — x264 deepsjeng  leela XZ

KLOC 362 1,304 3 134 520 96 10 21 33

LLVM 68.39 370.60 1.94 117.82 303.47  42.08 4.78 13.49 11.31

Compile time (s) Ours 69.95 376.80  2.05 117.99 304.61  46.41 5.07 13.66 11.74
Slowdown 2.27% 1.67% 5.49% 0.14 % 0.38% 10.29% 589% 1.22% 3.80%

LLVM 1,356,555 4,272,154 910 62,251 475,736 247,344 15,578 25,207 76,907

Known bits Ours 1,305,537 4,195,918 910 62,102 442,838 218,171 14,780 19,353 72,090
Precision loss 3.76 % 1.78 % 0.00 % 0.24 % 6.92% 11.79% 5.12% 23.22% 6.26%

Table 3 shows the results of this experiment. Our transfer functions are neither as fast nor as
precise as LLVM’s, but the difference is not huge. We have not yet attempted to optimize our
transfer functions for runtime performance. One aspect that could be improved is our generated
C++, which is not idiomatic: it creates and destroys more temporary objects than does LLVM’s
hand-written code, and furthermore it performs some translation between MLIR and LLVM data
structures that could be elided. Another potential avenue for improvement would be to make
execution time part of our fitness function during synthesis.

In addition, we ran a smaller ad-hoc experiment compiling openssl, ffmpeg, and cvc5 using the
meet of our synthesized KnownBits transformers and LLVM’s. The precision improvements are
modest: +2 discovered bits in openssl (above the baseline of 1.3M bits discovered by LLVM), +14
bits in ffmpeg (baseline: 3.7M), and +0 bits in cvc5 (baseline: 16M).

6.3 Opportunities Created by NiceToMeetYou

We believe that synthesis changes the basic economics of transfer functions, in the sense that we
can synthesize more of these than we would want to write by hand.

6.3.1 Precision via Specialization. Production compilers usually provide a wide variety of intrinsic
functions that encapsulate higher-level operations such as popcount (Hamming weight) and saturat-
ing arithmetic operations. The advantage of intrinsics over open-coded versions of these operations
is that the composite versions can readily be lowered to either dedicated machine instructions or
optimized library code. However, composite operations have a secondary benefit, which is that
a composite transfer function is typically more precise than what we would get by composing
the results of the transfer functions for the elementary operations that make up the open-coded
version of the operation. To create Table 4, which illustrates this point, we synthesized transfer
functions for eight LLVM intrinsics, and then we also measured the precision attained by analyzing
an open-coded version of each operation—that is, by composing the most precise transformers that
we have been able to synthesize. In all cases, the transfer function for the composed operation is
considerably more precise.

6.3.2 Reduced Product. A reduced product domain improves analysis precision by combining
the strengths of multiple abstract domains. Each domain captures different aspects of program
behavior—for example, KnownBits tracks known zero and one bits, while ConstantRange tracks
possible value ranges. The reduced product coordinates these domains using a reduction operator
(0), which refines each domain’s element based on information from the other [6]. This mutual
refinement helps eliminate infeasible states and improve the overall precision of the analysis.
Since NiceToMeetYou synthesizes transformers for all operations in both the KnownBits and
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Table 4. Results for top, composed, and synth on unary (6,561 test cases) and binary (43,046,721 cases) functions.
Exact is reported in % (higher is better), and precision is reported as a normalized count (lower is better).

Category Concrete Op Exact (%) T Precision (norm) |
T composed  synth T  composed synth
Abs 1.95 3.92  100.00 3372 2552 0
Unary Functions CountRZero 0.00 33.33 83.63 5740 3553 193
(6,561 test cases) CountLZero 0.00 0.00 83.63 5740 5466 193
PopCount 0.00 0.05 69.53 4461 4456 369
Smax 4.46 6.33 56.86 19,797,600 18,179,000 5,471,520
Binary Functions Smin 4.46 6.04 70.39 19,797,600 18,384,100 4,117,500
(43,046,721 test cases) UaddSat 13.93 22.93 56.20 17,358,900 14,111,200 4,471,530
UsubSat 13.93 19.46 49.11 17,358,900 15,377,400 5,369,170

Table 5. Results for reduced product between KnownBits and ConstantRange for 8-bit and 64-bit integers.
The columns and cells have the same meaning as in Table 1. Only operations for which the reduced product
has an improvement over our synthesized KnownBits transformer are included.

8-bit exact (%) T 64-bit precision (norm) |

Concrete Op = Tests Tests

T synth reduced T  synth reduced
Abds 1000 7.64  18.06 28.98 | 10000 0.1260 0.1119 0.1069
Abdu 1000 7.11  20.76 71.06 | 10000 0.1236 0.1085 0.0921
AddNsw 1000 6.68  18.73 81.65 | 10000 0.2820 0.1125 0.0869
AddNswNuw 1000 0.22  44.89 88.20 | 10000 0.5592 0.1216 0.0610
AddNuw 1000 335 31.80 92.32 | 10000 0.4920 0.0930 0.0557
AvgCeilS 1000 9.83  18.01 29.16 | 10000 0.1651 0.1573 0.1503
AvgFloorS 1000 9.86  17.37 46.61 | 10000 0.1669 0.1598 0.1412
AvgFloorU 1000 9.90  19.00 50.37 | 10000 0.1668  0.1481 0.1336
Sdiv 1000 17.99  27.85 45.61 | 10000 0.7262 0.2493 0.2229
Smax 1000 044  59.89 83.19 | 10000 0.4959 0.0926 0.0822
Smin 1000 043  59.62 84.23 | 10000 0.4954 0.0953 0.0843
Srem 1000 13.14 2241 26.92 | 10000 0.1845 0.1701 0.1689
SshlSat 1000 4.08 33.43 43.35 | 10000 0.9542 0.3211 0.3148
SubNswNuw 1000 0.33  39.01 77.20 | 10000 0.5617  0.1299 0.0701
SubNuw 1000 3.52  36.84 90.94 | 10000 0.4822 0.0763 0.0466
UaddSat 1000 411  61.03 83.09 | 10000 0.4482 0.0874 0.0469
Udiv 1000 0.00 68.66 75.28 | 10000 0.9845 0.0134 0.0067
UdivExact 1000 0.02 3.21 5.78 | 10000 1.0000 0.0272 0.0195
Umax 1000 0.54  95.28 99.74 | 10000 0.4947 0.0016 0.0001
Umin 1000 0.56  92.99 99.59 | 10000 0.4964 0.0023 0.0003
Urem 1000 2.12  61.45 66.53 | 10000 0.2677 0.0393 0.0367
UsubSat 1000 4.06  56.03 73.09 | 10000 0.4508 0.1106 0.0700

ConstantRange domains, we can automatically construct reduced product transformers for any
concrete operation by manually providing a suitable reduction operator that relates the two domains.

We evaluate the difference in precision between using KnownBits and using the reduced product
between KnownBits and ConstantRange. To have a uniform random sampling from this reduced
product lattice, we simply sample uniformly from both KnownBits and ConstantRange, where the
reduction between the KnownBits and ConstantRange abstract values is not bottom.
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We compare only against our synthesized transformers, not LLVM’s, because our sampling
occurs over the product lattice. This means the abstract elements we evaluate are inherently more
precise than those representable by KnownBits alone, making a direct comparison with LLVM’s
KnownBits transformers unfair. Instead, we focus on identifying which concrete operations benefit
from the added precision of the reduced product domain, and by how much, when using our
synthesized transformers.

Table 5 presents our results. The experiment finished quickly (90 seconds, on a reasonably
fast laptop) because it merely evaluates transformers rather than synthesizing transformers. We
report only the transformers for which the reduced product yields a precision improvement over
using KnownBits alone. On the remaining operations, such as Xor (not shown in Table 5), the
reduced product offers no additional benefit, as KnownBits is already maximally precise. In contrast,
operations such as AddNswNuw show substantial gains in precision when evaluated within the
reduced product domain. There were 22 such concrete operations for which the reduced product
was able to improve over the KnownBits domain, out of 40 total operations. For the concrete
operations where there was an improvement, the reduced product improved by an average of
24.4% points for the tests at 8-bits wide, and improved the average size score by 196.2, on the
tests at 64-bits wide. By combining KnownBits with ConstantRange in a reduced product, we are
able to improve precision particularly for operators that are challenging for both our synthesized
KnownBits transformers and LLVM’s. Overall, the reduced product delivers consistently strong
performance across the full range of supported operations, thus showcasing one additional benefit
enabled by NiceToMeetYou.

6.4 Impact of DSL Choice

We evaluate how the choice of operations in DSL affects the performance of NiceToMeetYou.
The Full DSL used in Section 6.1 includes 29 primitives, which can be grouped as fol-
lows: (1) Bitwise: and, or, xor, neg; (2) Add: add, sub. (3) Max: umax, umin, smax, smin;
(4) Mul: mul, udiv, sdiv, urem, srem; (5) Shift: shl, ashr, 1shr; (6) BitSet: set_high_bits,
set_low_bits, clear_low_bits, clear_high_bits, set_sign_bit, clear_sign_bit; (7) Bit-
Count: count_left_one, count_left_zero, count_right_one, count_right_zero. (8) ITE:
if_then_else. We conduct an ablation study on the KnownBits domain over two DSL sub-
sets: Basic =Bitwise U Add, contains only addition, subtraction, and bitwise operations. BitExt
=Bitwise U Add U Max U Shift U BitSet U BitCount U ITE, contains all primitives except those in
Mul.

The Full language, Basic , and BitExt yield the most precise transformers for 16, 5, and 14
operations, respectively. For the remaining 5/40 benchmarks, they all reach the same precision.
Detailed results are summarized in Table 6 in Appendix B.1.

The results are in a way expected: if certain operations are known to be irrelevant for a specific
transformer, removing them from the DSL can improve the precision—e.g., Basic is the smallest of
the three languages that can produce an optimal transformer for add and sub and does well for
such benchmarks.

6.5 Impact of Abduction

We now evaluate the impact of condition abduction (Section 4.1.2) by running NiceToMeetYou with
and without condition abduction. For KnownBits, condition abduction improves precision by 6.44%
on average (geometric mean), with 19/40 benchmarks showing gains. For ConstantRange, condition
abduction improves precision by 2.3% on average (geometric mean), with 16/37 benchmarks showing
gains. Detailed Results are shown in Tables 7 and 8 in Appendix B.2.
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A representative case highlighting the necessity of abduction is the add benchmark in the CR,
domain. Its best transformers produce intervals better than T only when one knows overflow
cannot happen. Using condition abduction, NiceToMeetYou synthesizes the best transformer in
2 rounds: first, it discovers a transformer that only works for non-overflow cases, and then it
identifies the overflow condition to generate a complete transformer. When abduction is disabled,
NiceToMeetYou cannot find the best transformer within 5 rounds.

To summarize, overall condition abduction generally improves precision, but because it uses
part of the compute budget, it may in certain cases reduce precision. Of course, one can also run
NiceToMeetYou with and without abduction and output the better result.

6.6 Comparison to AMURTH

The only other work we are aware of that tackles the general problem of synthesizing abstract
transformers is AMURTH [15]. AMURTH takes the same inputs as NiceToMeetYou—i.e., a DSL, a
concrete semantics, and an abstract domain—and synthesizes a provably most precise (up to a given
input bound) transformer expressible within the given DSL. To do so, AMURTH uses constraint
solvers (specifically Sketch [32]) to iteratively synthesize transformers that increase precision on a
finite set of abstract inputs until a provably optimal transformer is sound.

The evaluation by Kalita et al. includes transformers for both string operations and integer
operations. Because NiceToMeetYou currently does not support string operations, we only focus on
the latter. AMURTH has successfully been used to synthesize transformers for 9 concrete operators
for the unsigned and signed interval domains Kalita et al. [15, Table 4]: add, sub, mul, and, or, xor,
shl, ashr, and 1shr. We therefore focus our evaluation on these 2 domains and 9 operations.

When provided with this DSL consisting of the set of 29 primitive instructions we used in
Section 6.4, AMURTH could not synthesize any transformer or returned T within the time limit.

While AMURTH cannot synthesize abstract transformers when given a generic DSL, it can do
so by providing “hints” to the synthesizer in the form of sketches—i.e., partial programs where
only some parts are missing—and custom auxiliary functions. For example, AMURTH synthesizes
transformers for bitwise operators (and, or, xor), when auxiliary functions such as minOr, maxOr,
minAnd, maxAnd (which compute the lower/upper bound of the results of bitwise-or/and over 2
intervals) are provided. With those auxiliary functions provided, they further provide program
template (that describes a clever way to divide input intervals at 0) to synthesize for signed domains
Kalita et al. [15, Figure 16]. Providing hints and templates allows AMURTH to synthesize most-
precise transformers for very tricky transformers operations, but requires the users of AMURTH to
provide insights that are quite close to the actual solution. Moreover, one has to provide AMURTH
with different hints and sketches (i.e., different DSLs) for different concrete operations, even when
the underling abstract domain does not change.

To summarize, AMURTH cannot solve the problem tackled in this paper—i.e., synthesize abstract
transformers for many concrete operators using just one given DSL. However, AMURTH is well-
suited for synthesizing optimal transformers for tricky individual operations, as long as the user is
willing to provide hints to the synthesizer in the form of program sketches and auxiliary functions.

7 Other Related Work

Our approach draws on a rich line of work on synthesizing abstract transformers, verification
infrastructure, and stochastic program synthesis. We build on the MLIR ecosystem [10], expressing
synthesized abstract transformers in a first-class dialect that supports both efficient compilation via
LLVM and formal reasoning via SMT encoding, using Z3 [8] for soundness verification. We have
already discussed at length how NiceToMeetYou relates to its closest related work, AMURTH [15, 16],
in Section 6.6, and use the rest of the section to discuss other approaches.
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Precision-Oriented Synthesis and Domain-Specific Approaches. Several efforts have addressed the
problem of deriving best or approximate abstract transformers. A line of work by Reps, Sagiv, Yorsh,
and Thakur [28, 29, 33-35] develops methods for automated symbolic abstraction—computing the
best abstract transformer for a given input. In these approaches, the transformer is not necessarily
an explicit, executable program. Other works have focused on finding executable representations of
abstract transformers, but are typically tied to specific abstract domains or specific representations.
For example, Regehr and Reid [27] encode transformers using BDDs, which can sometimes be
inefficient due to the limited expressivity of BDDs. Elder et al. [9] target conjunctions of bit-vector
equalities, and Laurel et al. [17] target numerical abstract domains such as linear convex polytope. In
contrast, NiceToMeetYou supports a wide range of instructions for composing abstract transformers
and remains agnostic to specific domains. More recent work proposes sketching-based algorithms
for learning disjunctive and conjunctive specifications over program behaviors [23, 24]. While our
work shares the idea of synthesizing multiple components and combining them (via meet), we
instantiate it in the domain of abstract interpretation with formal guarantees and no sketching.

Stochastic and MCMC-Based Synthesis. Our synthesis algorithm is inspired by stochastic search
techniques, in particular the Markov Chain Monte Carlo (MCMC) superoptimization strategy
introduced by Stoke [31]. Like Stoke, our framework searches the space of candidate programs
guided by a cost function, using probabilistic rewrites. Unlike Stoke, which targets concrete program
optimization, we use MCMC to synthesize abstract transformers, and our cost function encodes
the precision improvement from existing transformers. Moreover, our work introduces a novel
abductive refinement strategy that iteratively improves precision by synthesizing and composing
multiple sound transformers. Instantiating this algorithm over the full LLVM instruction set via
MLIR requires significant engineering and forms a core contribution of our work.

8 Conclusion

Abstract transformers are a load-bearing component of a modern optimizing compiler: the compiler
will miss optimizations if transformers are imprecise, and it will miscompile if they are unsound. We
created NiceToMeetYou: a framework for synthesizing formally verified abstract transformers from
specifications of integer IR instructions and finite non-relational abstract domains. Unlike previous
systems, ours does not require any sketches—transformers are synthesized from scratch—and
can therefore quickly synthesize transformers for dozens of operators. The insight that made this
possible is that transformers can be synthesized piecewise, with each new piece targeting a different
part of the input space. The final transformer is simply the meet of its constituent pieces. In our
evaluation, NiceToMeetYou synthesized transformers for most LLVM operations with precision
sometimes comparable to LLVM’s manually written transformers. NiceToMeetYou also synthesized
26 transformers that are either more precise than LLVM’s or can be combined with LLVM ones via
a meet operation to yield new transformers with greatly increased precision—i.e., NiceToMeetYou’s
transformers deal with corner cases that had eluded LLVM developers.

Data-Availability Statement

NiceToMeetYou and scripts for reproducing our experiments are available on Zenodo [25].
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A Detailed Comparison to AMURTH

Kalita et al. used AMURTH to synthesize transformers for both string domains and fixed-bitwidth
integer domains. We focus our comparison on integer domains, as NiceToMeetYou currently
supports only integer domains. AMURTH synthesized transformers for 9 concrete operators for
unsigned and signed interval domains: add, sub, mul, and, or, xor, shl, ashr, and 1shr [15, Table 4].
These operators are also featured in our benchmark set. AMURTH successfully synthesized the best
transformers for each of these operators within 30 minutes, whereas NiceToMeetYou synthesized
the best transformers only for add, sub, and ashr.

However, the reason AMURTH performs well is that it requires users to supply program templates
and auxiliary functions, which serve as powerful hints to guide synthesis. Moreover, these hints
differ across synthesis tasks. When AMURTH is restricted to the same setting as NiceToMeetYou
—i.e., using only the base DSL operators and no templates—it times out on all benchmarks for
both unsigned and signed interval domains. In the following case studies, we examine several
examples of such hints from the AMURTH benchmark suite and illustrate why AMURTH is not suited
to automate the synthesis of many transformers in a compiler.

AMURTH Requires Sketches or Templates. Users of AMURTH typically need to provide a program
sketch or template of the desired solution, even though the theoretical framework supporting
AMURTH is parametric in the choice of DSL. The sketches are often hand-derived from existing
manual implementations (noted in Kalita et al. [15, Table 2 and Table 3]).

For instance, the template used to synthesize the transformer for xor Kalita et al. [15, Figure 16]
in the signed domain begins with a helper function splitAtZero, which divides each input interval
at 0 if it crosses 0. The core synthesis task then fills in the logic that transforms the resulting (up to
2*2=4) pairs of same-signed intervals, before the template finally joins those outputs into the final
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interval. While the template is effective, both the splitAtZero helper and the looping pattern over
split-interval pairs are non-trivial to synthesize from scratch.

In contrast, our candidate program fixes only a minimal structure: it deconstructs each input
interval into two integers at the beginning and reconstructs the output interval from two integers
at the end. The middle portion is a free-form SSA program, unconstrained in its instruction
dependencies.

Additionally, AMURTH does not synthesize boundary conditions to handle overflow [15, Section
6.2.3]. It synthesizes the non-overflow case, and such an assumption can be seen as an implicit
template. For example, consider the best transformer for addition in the unsigned interval domain,
shown in Figure 5a. Our approach synthesized an equivalent transformer. In contrast, AMURTH
synthesized only the else branch [a.l + b.l, a.r + b.r], as it assumes its output will be plugged into a
sketch that checks for overflow. Such an assumption is equivalent to (a.l+b.] > MAX_INT) or (a.r +
b.r > MAX_INT). This condition is weaker than the one in our transformer because it means an
overflow for additions of either the left or right endpoints (which should be an xor). As a result, their
no-overflow assumption not only reduces the difficulty of the synthesis, but also loses precision on
the overflow cases.

KnownBits add#(KnownBits L, R) {
APInt 10 = L.Zero, 11 = L.One;
APInt ro = r.Zero, rl1 = R.One;
APInt E = (10 | 11) & (r@ | r1) &

(~((~1e + ~ro) ~ 10 * ro) |

addﬁ(a,b) = (11 + r1) ~ 11~ r1));
if (a.l+b.I > MAX_INT) xor (a.r +b.r > MAX_INT)  ap1nt knowno = ~(~10 + ~ro) & E;
then [0, MAX_INT] APInt knownl = (11 + r1) & E;
else [a.l +bl ar+ b.r] return {known@, knownl};
(a) The best transformer for the add operator (b) The best transformer for the add operator
in CR, domain in the KnownBits domain

Fig. 5. Optimal transformers

AMURTH relies on auxiliary functions. This limitation is reflected in [15, Section 6.2.4] and we
confirmed it by examining the Amurth codebase. For example, to synthesize transformers for
bitwise operators (and, or, xor), auxiliary functions such as minOr, maxOr, minAnd, maxAnd (which
compute the lower/upper bound of the results of bitwise-or/and over 2 intervals) are provided.

These auxiliary functions are non-trivial, consisting of about 25 operators and involving branch-
ing and loops, and make the synthesis tasks much easier. Even with the hints above, AMURTH still
needs advanced program sketches for several harder benchmarks.

Hints vary across synthesis tasks. When provided with enough structure and templates, AMURTH
can directly synthesize optimal transformers. However, the supporting DSL is typically crafted and
modified individually for synthesis tasks of each concrete operator. For example, even within the
same abstract domain, bitwise operators, arithmetic operators, and shifting operators each rely on a
distinct DSL. These DSLs consist of nearly disjoint sets of operations.

In contrast, our approach employs a single, unified DSL shared across all concrete operators. It
consists of 29 basic numeric operations that can express a wide variety of transformers. Details of
the DSL’s design and its operations are discussed in Section 6.4.

Summary. To summarize, one cannot use AMURTH to solve the problem solved by
NiceToMeetYou, i.e., automatically synthesizing transformers for many operators at once without
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Table 6. KnownBits results under DSLs with different operation subsets. Each value denotes the percentage of

tests where the synthesized transformer matches the best transformer ]?# at 8-bit precision. Bolded numbers
denote the configuration that yields the most precise result

S ¢ S 3 S
SRR & s S

Full 60.1 59.4 58.7 42.0 45.5 53.9 100.0 65.5 40.1 38.8 38.6 39.3 37.7 59.3 31.4 64.7 59.0 60.6 100.0 64.1
Basic 54.7 53.3 100.0 78.0 12.9 37.9 100.0 31.2 30.0 31.8 31.6 32.4 32.2 12.6 28.1 48.6 39.3 74.4 100.0 64.1
BitExt 60.3 59.3 51.8 51.3 49.0 49.5 100.0 37.8 36.6 39.4 40.9 39.0 40.5 31.0 31.6 60.4 584 62.1 100.0 64.1

X
O
> LY x
<& f F
R NG R
& S
N

N3
s &8
I~ & &S
Qo 9 9 D RN N N |

Ko

<
N P

Full 193 56.9 26.2 9.8 405 63.8 72.8 72.4 60.6 47.8 31.8 47.1 61.8 80.8 153 90.6 92.9 96.6 52.1 100.0
Basic 193 13.2 6.9 5.6 10.7 57.8 51.9 37.6 100.0 72.3 12.0 42.4 425 241 29 714 722 3.7 48.2 100.0
BitExt 19.3 56.6 27.9 34.9 46.9 71.0 56.1 45.0 61.5 51.4 285 45.0 67.4 39.9 15.4 93.3 88.3 96.6 56.9 100.0

manually tuning the underlying DSL or providing strong hints in the form of sketches. While
AMURTH does appear to be better than NiceToMeetYou for the task of finding tricky transformers
for individual operators, it needs guidance from human experts. In practice, for an abstract domain,
there could be hundreds of operators that need an abstract transformer, and providing tailored
hints for each of them is infeasible. Hence, we believe that AMURTH cannot be used to automate
large-scale synthesis of transformers in a compiler.

B Ablation Study
B.1 Impact of DSL Choice

We evaluate how the choice of operations in DSL affects the performance of NiceToMeetYou. As
mentioned in Section 6.4, we run synthesis over the Full language and 2 subsets (Basic and BitExt
). Detailed results are summarized in Table 6.

Basic is the DSL with the most limited expressivity and causes substantial precision loss in many
benchmarks, though it produces optimal transformers for add and sub. Figure 5b shows a reference
implementation of the add transformer in KnownBits, which uses only operations from Basic
but remains fairly complex. Nevertheless, NiceToMeetYou successfully synthesizes a transformer
equivalent to this implementation when the DSL is limited to Basic .

BitExt is the DSL variant that excludes multiplicative operations. Since the transformers for
shifting operators (e.g., shl) rarely rely on multiplication and division, synthesis with BitExt
achieves slightly higher precision for these operators compared to using the full DSL.

In conclusion, if certain operations are known to be irrelevant for a specific transformer, removing
them from the DSL can improve the precision.

B.2 Impact of Condition Abduction

In this section, we evaluate the impact of condition abduction (Section 4.1.2). We run synthesis
with and without condition abduction on both the KnownBits and ConstantRange domains. For
KnownBits, condition abduction improves precision by 6.44% on average (geometric mean) across
all benchmarks, with 18/39 benchmarks showing gains. For ConstantRange, condition abduc-
tion improves precision by 2.3% on average (geometric mean) across all benchmarks, with 16/39
benchmarks showing gains. Results are shown in Tables 7 and 8.
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A representative case highlighting the necessity of abduction is the add benchmark in the CR,
domain. Its best transformers, shown in Figure 5a, produce intervals better than T only when
whether overflow happens is known. When inspecting the synthesis process, we observe that
NiceToMeetYou synthesized the best transformer in 2 rounds: in the first round, it discovered
a transformer that only works for non-overflow cases and stored it as one of the unsound but
highly precise candidates; in the second round, it successfully identified the overflow condition
the complete the full transformers. However, when abduction is disabled, NiceToMeetYou failed to
synthesize the best transformer within 5 rounds.

To summarize, condition abduction generally improves precision, but may sometimes reduce
it since condition abduction reuses part of the parallel search budget. However, one can also run
NiceToMeetYou with and without abduction and selecting the better result.

Table 7. KnownBits results with and without abduction. Each value denotes the percentage of tests where
the synthesized transformer matches the best transformer ﬁ* at 8-bit precision.

¥ O » 5
S NG

Abd  60.1 59.4 58.7 42.0 45.5 53.9 100.0 65.5 40.1 38.8 38.6 39.3 37.7 59.3 31.4 64.7 59.0 60.6 100.0 64.1
No Abd 60.7 61.7 63.4 48.8 50.5 40.3 100.0 49.3 25.0 38.8 38.4 40.3 40.2 59.3 24.4 64.7 44.6 64.3 100.0 67.8

Abd 19.3 56.9 26.2 9.8 40.5 63.8 72.8 72.4 60.6 47.8 31.8 47.1 61.8 80.8 15.3 90.6 92.9 96.6 52.1 100.0
No Abd 19.3 555 27.6 41.8 25.4 67.0 54.3 65.7 53.5 57.8 14.4 50.0 63.4 79.8 17.7 73.2 62.1 92.9 19.1 100.0

Table 8. ConstantRange results with and without abduction. The cells have the same meaning as in Table 7.

Abd  59.8 75.0 100.0100.0 70.7 94.0 82.3 98.0 81.7 0.3 1.8 1.8 30.0 100.085.2 43.5 89.0 90.8 82.4
No Abd 59.8 67.2 36.5 68.6 61.5 81.7 76.3 953 81.0 0.7 2.9 2.0 67.8 100.0 72.5 43.9 89.0 90.8 82.5

Abd  12.3 83.0 88.3 76.4 100.0100.0 75.5 100.0100.0 74.5 94.5 99.2 31.7 100.0100.0100.0100.0 56.1
No Abd 3.7 83.0 88.3 87.7 100.0100.0 75.2 35.4 70.1 59.7 100.0 85.6 40.5 100.0 100.0 98.6 98.8 60.6
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