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Abstract
Compilers should not miscompile. Our work addresses problems
in developing peephole optimizations that perform local rewriting
to improve the efficiency of LLVM code. These optimizations are
individually difficult to get right, particularly in the presence of un-
defined behavior; taken together they represent a persistent source
of bugs. This paper presents Alive, a domain-specific language for
writing optimizations and for automatically either proving them cor-
rect or else generating counterexamples. Furthermore, Alive can
be automatically translated into C++ code that is suitable for inclu-
sion in an LLVM optimization pass. Alive is based on an attempt
to balance usability and formal methods; for example, it captures—
but largely hides—the detailed semantics of three different kinds
of undefined behavior in LLVM. We have translated more than 300
LLVM optimizations into Alive and, in the process, found that eight
of them were wrong.

Categories and Subject Descriptors D.2.4 [Programming Lan-
guages]: Software/Program Verification; D.3.4 [Programming
Languages]: Processors—Compilers; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

Keywords Compiler Verification, Peephole Optimization, Alive

1. Introduction
Compiler optimizations should be efficient, effective, and correct—
but meeting all of these goals is difficult. In practice, whereas effi-
ciency and effectiveness are relatively easy to quantify, correctness
is not. Incorrect compiler optimizations can remain latent for long
periods of time; the resulting problems are subtle and difficult to
diagnose since the incorrectness is introduced at a level of abstrac-
tion lower than the one where software developers typically work.
Although mainstream compilers use well-known algorithms, bugs
arise due to misunderstandings of the semantics, incomplete reason-
ing about boundary conditions, and errors in the implementation of
the algorithms.

Random testing [15, 23, 37] is one approach to improve the
correctness of compilers; it has been shown to be effective, but
of course testing misses bugs. A stronger form of insurance against
compiler bugs can be provided by a proof that the compiler is correct
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(compiler verification) or a proof that a particular compilation was
correct (translation validation). For example, CompCert [17] uses
a hybrid of the two approaches. Unfortunately, creating CompCert
required several person-years of proof engineering and the resulting
tool does not provide a good value proposition for many real-world
use cases: it implements a subset of C, optimizes only lightly, and
does not yet support x86-64 or the increasingly important vector
extensions to x86 and ARM. In contrast, production compilers
are constantly improved to support new language standards and
to obtain the best possible performance on emerging architectures.

This paper presents Alive: a new language and tool for devel-
oping correct LLVM optimizations. Alive aims for a design point
that is both practical and formal; it allows compiler writers to spec-
ify peephole optimizations for LLVM’s intermediate representation
(IR), it automatically proves them correct with the help of satisfia-
bility modulo theory (SMT) solvers (or provides a counterexample),
and it automatically generates C++ code that is similar to hand-
written peephole optimizations such as those found in LLVM’s in-
struction combiner (InstCombine) pass. InstCombine transforma-
tions perform numerous algebraic simplifications that improve effi-
ciency, enable other optimizations, and canonicalize LLVM code.

Alive is inspired by previous research on domain specific lan-
guages for easing compiler development such as Gospel [36],
Rhodium [16], PEC [13], Broadway [9], and Lola [21]. Alive’s main
contribution to the state of the art is providing a usable formal meth-
ods tool based on the semantics of LLVM IR, with support for auto-
mated correctness proofs in the presence of LLVM’s three kinds of
undefined behavior, and with support for code generation.

While testing LLVM using Csmith, we found InstCombine to
be the single buggiest file [37]; it was subsequently split into multi-
ple files totaling about 15,600 SLOC. A similar pass, InstSimplify,
contains about 2,500 more SLOC. An example InstCombine trans-
formation takes (x⊕−1) +C and turns it into (C − 1)− x where
x is a variable, ⊕ is exclusive or, and C is an arbitrary constant
as wide as x. If C is 3333, the LLVM input to this InstCombine
transformation would look like this:

%1 = xor i32 %x, -1
%2 = add i32 %1, 3333

and the optimized code:

%2 = sub i32 3332, %x

The LLVM code specifying this transformation1 is 160 bytes of
C++, excluding comments. In Alive it is:

%1 = xor %x, -1
%2 = add %1, C

=>
%2 = sub C-1, %x

1 http://llvm.org/viewvc/llvm-project/llvm/tags/
RELEASE_350/final/lib/Transforms/InstCombine/
InstCombineAddSub.cpp?view=markup#l1148
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prog : : = pre nl stmt =⇒ stmt
stmt : : = stmt nl stmt | reg = inst | reg = op |

store op, op | unreachable
inst : : = binop attr op, op | conv op |

select op, op, op | icmp cond , op, op |
alloca typ, constant | bitcast op |
inttoptr op | ptrtoint op |
getelementptr op, . . . , op | load op

cond : : = eq | ne | ugt | uge | ult |
ule | sgt | sge | slt | sle

typ : : = isz | typ∗ | [ sz × typ ]
binop : : = add | sub | mul | udiv | sdiv |

urem | srem | shl | lshr | ashr |
and | or | xor

attr : : = nsw | nuw | exact
op : : = reg | constant | undef

conv : : = zext | sext | trunc

Figure 1. Partial Alive syntax. Types include arbitrary bitwidth
integers, pointers typ∗, and arrays [sz × typ] that have a statically-
known size sz .

The Alive specification is less than one third the size of the
LLVM C++ code. Moreover, it was designed to resemble—both
syntactically and semantically—the LLVM transformation that it
describes. The Alive code is, we claim, much easier to understand,
in addition to being verifiable by the Alive tool chain. This trans-
formation illustrates two forms of abstraction supported by Alive:
abstraction over choice of a compile-time constant and abstraction
over bitwidth.

So far Alive has helped us discover eight previously unknown
bugs in the LLVM InstCombine transformations. Furthermore, we
have prevented dozens of bugs from getting into LLVM by mon-
itoring the various InstCombine patches as they were committed
to the LLVM subversion repository. Several LLVM developers are
currently using the Alive prototype to check their InstCombine trans-
formations. Alive is open source.2

2. The Alive Language
We designed Alive to resemble the LLVM intermediate represen-
tation (IR) because our user base—the LLVM developers—is al-
ready familiar with it. Alive’s most important features include its
abstraction over choice of constants, over the bitwidths of operands
(Sections 2.2 and 3.2), and over LLVM’s instruction attributes that
control undefined behavior (Sections 2.4 and 3.4).

2.1 Syntax
Figure 1 gives the syntax of Alive. An Alive transformation has the
formA =⇒ B, whereA is the source template andB is the target
template. Additionally, a transformation may include a precondition.
Since Alive’s representation, like LLVM’s, is based on directed
graphs of instructions in SSA format [5], the ordering of non-
dependent instructions, and the presence of interleaved instructions
not part of a template, are irrelevant.

Alive implements a subset of LLVM’s integer and pointer in-
structions; since InstCombine does not modify control flow, Alive
does not support branches.3 In contrast to LLVM, Alive provides
an explicit assignment instruction for copying temporaries (i.e.,
%tmp1 = %tmp2). Alive supports LLVM’s nsw, nuw, and

2 The latest version of Alive can be found at https://github.com/
nunoplopes/alive.
3 An experimental version of Alive supports branches, but does not yet
support indirect branches and loops.

Pre: C1 & C2 == 0 && MaskedValueIsZero(%V, ∼C1)
%t0 = or %B, %V
%t1 = and %t0, C1
%t2 = and %B, C2
%R = or %t1, %t2
=>

%R = and %t0, (C1 | C2)

Figure 2. An example illustrating many of Alive’s features. ((B ∨
V ) ∧ C1) ∨ (B ∧ C2) can be transformed to (B ∨ V ) ∧
(C1 ∨ C2) when C1 ∧ C2 = 0 and when the predicate
MaskedV alueIsZero(V,¬C1) is true, indicating that an LLVM
dataflow analysis has concluded that V ∧ ¬C1 = 0. %B and %V
are input variables. C1 and C2 are constants. %t0, %t1, and %t2
are temporaries. This transformation is rooted at %R.

exact instruction attributes that weaken the behavior of integer
instructions by adding undefined behaviors.

Scoping. The source and target templates must have a common
root variable that is the root of the respective graphs. The remaining
variables are either inputs to the transformation or else temporary
variables produced by instructions in the source or target template.
Inputs are visible throughout the source and target templates. Tem-
poraries defined in the source template are in scope for the precondi-
tion, the target, and the remaining part of the source from the point
of definition. Temporaries declared in the target are in scope for the
remainder of the target. To help catch errors, every temporary in
the source template must be used in a later source instruction or be
overwritten in the target, and all target instructions must be used in
a later target instruction or overwrite a source instruction.

Constant expressions. To allow algebraic simplifications and con-
stant folding, Alive includes a language for constant expressions. A
constant expression may be a literal, an abstract constant (e.g., C in
the example on the previous page), or a unary or binary operator
applied to one or two constant expressions. The operators include
signed and unsigned arithmetic operators and bitwise logical opera-
tors. Alive also supports functions on constant expressions. Built-in
functions include type conversions and mathematical and bitvector
utilities (e.g., abs(), umax(), width()).

2.2 Type System
Alive supports a subset of LLVM’s types. The types in Alive
are a union of integer types (I = {i1,i2,i3, . . .} for bitwidth
1,2,3,. . .), pointer types (P = {t∗ | t ∈ T }), array types (A =
{[n x t] | n ∈ N ∧ t ∈ T }), and the void type. LLVM also defines
the set of first-class types (FC = I ∪ P), which are the types that
can be the result of an instruction. The set of all types is therefore
T = FC ∪A ∪ {void}. Alive does not yet support floating point,
aggregate types such as records and vectors, and labels.

Unlike LLVM, variables in Alive can be implicitly typed and do
not need to have fixed bitwidth. An Alive transformation is poly-
morphic for all the types that satisfy the constraints imposed by the
instructions. The Alive framework automatically checks the correct-
ness of the transformation for all feasible types. A transformation
can optionally provide types for the input operands of the instruc-
tions, which then constrain the set of feasible types. The typing rules
for the Alive language are shown in Figure 3.

2.3 Built-In Predicates
Peephole optimizations frequently make use of the results of
dataflow analyses. Alive makes these results available using a col-
lection of built-in predicates such as isPowerOf2(), MaskedVal-
ueIsZero(), and WillNotOverflowSignedAdd(). The analyses pro-
ducing these results are trusted by Alive: verifying their correctness
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var
Γ,%x : t ` %x : t

Γ ` %x : t Γ ` %y : t t ∈ I
binop

Γ ` binop %x, %y : t

Γ ` %x : t t <: t′
extend

Γ ` extend %x : t′
Γ ` %x : t t′ <: t

trunc
Γ ` trunc %x : t′

Γ ` %x : t t ∈ I t′∗ ∈ P inttoptr
Γ ` inttoptr %x : t′∗

Γ ` %x : t∗ t′ ∈ I ptrtoint
Γ ` ptrtoint %x : t′

Γ ` %x : t Γ ` %y : t t ∈ I ∪ P
icmp

Γ ` icmp cond %x, %y : i1

Γ ` %c : i1 Γ ` %x : t Γ ` %y : t t ∈ FC
select

Γ ` select %c, %x, %y : t

Γ ` %x : t t, t′ ∈ FC width(t) = width(t′)
bitcast

Γ ` bitcast %x : t′

t ∈ FC
alloca

Γ ` alloca t : t∗ Γ ` %x : t

n︷ ︸︸ ︷
@ . . .@ t : t′ Γ ` %y1...n : I

gep
Γ ` getelementptr %x,%y1, . . . ,%yn : t′∗

Γ ` %x : t∗ t ∈ FC
load

Γ ` load %x : t

Γ ` %x : t t ∈ FC Γ ` %y : t∗
store

Γ ` store %x,%y : void
unreach

Γ ` unreachable : void
pointer

@t∗ : t
array

@[n x t] : t

Figure 3. Typing rules of the Alive language. The bitwidth of a type is given by the function width(.) (e.g., width(i3) = 3 and width(i5∗)
is the pointer size, say 32 bits). A type t is smaller than a type t′, written t <: t′, if both are integer types and the bitwidth of t is smaller than
that of t′ (i.e., t <: t′ iff t, t′ ∈ I ∧ width(t) < width(t′)). The extension operations are represented by extend ∈ {zext,sext}. The
type dereferencing operator is denoted by @.

Instruction Definedness Constraint
sdiv a, b b 6= 0 ∧ (a 6= INT MIN ∨ b 6= −1)
udiv a, b b 6= 0
srem a, b b 6= 0 ∧ (a 6= INT MIN ∨ b 6= −1)
urem a, b b 6= 0
shl a, b b <u B
lshr a, b b <u B
ashr a, b b <u B

Table 1. The constraints for Alive’s arithmetic instructions to be
defined. <u is unsigned less-than. B is the bitwidth of the operands
in the Alive instruction. INT MIN is the smallest signed integer
value for a given bitwidth.

is not within Alive’s scope. Predicates can be combined with the
usual logical connectives. Figure 2 shows an example transforma-
tion that includes a built-in predicate in its precondition.

2.4 Well-Defined Programs and Undefined Behaviors
LLVM has three distinct kinds of undefined behavior. Together,
they enable many desirable optimizations, and LLVM aggressively
exploits these opportunities.

Undefined behavior in LLVM resembles undefined behavior in
C/C++: anything may happen to a program that executes it. The
compiler may simply assume that undefined behavior does not oc-
cur; this assumption places a corresponding obligation on the pro-
gram developer (or on the compiler and language runtime, when a
safe language is compiled to LLVM) to ensure that undefined op-
erations are never executed. An instruction that executes undefined
behavior can be replaced with an arbitrary sequence of instructions.
When an instruction executes undefined behavior, all subsequent
instructions can be considered undefined as well.

Table 1 shows when Alive’s arithmetic instructions have defined
behavior, following the LLVM IR specification. For example, the
shl instruction is defined only when the shift amount is less than
the bitwidth of the instruction. With the exception of memory access
instructions (discussed in Section 3.3), the Alive instructions not
listed in Table 1 are always defined.

The undefined value (undef in the IR) is a limited form of
undefined behavior that mimics a free-floating hardware register
than can return any value each time it is read. Semantically, undef
stands for the set of all possible bit patterns for a particular type; the

Instruction Constraints for Poison-free execution
add nsw a, b SExt(a, 1) + SExt(b, 1) = SExt(a+ b, 1)
add nuw a, b ZExt(a, 1) + ZExt(b, 1) = ZExt(a+ b, 1)
sub nsw a, b SExt(a, 1) - SExt(b, 1) = SExt(a− b, 1)
sub nuw a, b ZExt(a, 1) - ZExt(b, 1) = ZExt(a− b, 1)
mul nsw a, b SExt(a,B) × SExt(b,B) = SExt(a× b,B)
mul nuw a, b ZExt(a,B) × ZExt(b,B) = ZExt(a× b,B)
sdiv exact a, b (a÷ b)× b = a
udiv exact a, b (a÷u b)× b = a
shl nsw a, b (a << b) >> b = a
shl nuw a, b (a << b) >>u b = a
ashr exact a, b (a >> b) << b = a
lshr exact a, b (a >>u b) << b = a

Table 2. The constraints for Alive’s arithmetic instructions to be
poison-free. >>u and ÷u are the unsigned shift and division op-
erations. B is the bitwidth of the operands in the Alive instruction.
SExt(a, n) sign-extends a by n bits; ZExt(a, n) zero-extends a by n
bits.

%z  = xor i8 undef, undef  %x = add i8 0, undef
 %y = add i8 0, undef
%z = xor i8 %x , %y  

%z  = or i8 1, undef

(a) (b)

(c)

br undef, l1, l2

(d)

%z  = {0, 1, 2, ..., 255} %z  = {0, 1, 2, ..., 255}

%z  = {1,3,...,253,255} can branch to 
either l1 or l2

Figure 4. Illustration of the semantics of undef. The top half of
each part of the figure presents an LLVM instruction; the bottom
half indicates the possible results. In (a) and (b) the compiler can
choose %z to have any value in [0, 255]. In (c), %z takes an odd
8-bit value. In (d) the compiler can choose either branch.
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compiler is free to pick a convenient value for each use of undef to
enable aggressive optimizations. For example, a one-bit undefined
value, sign-extended to 32 bits, produces a variable containing either
all zeros or all ones. Figure 4 illustrates the semantics of undef.

Poison values, which are distinct from undefined values, are
used to indicate that a side-effect-free instruction has a condition
that produces undefined behavior. When the poison value gets
used by an instruction with side effects, the program exhibits true
undefined behavior. Hence, poison values are deferred undefined
behaviors: they are intended to support speculative execution of
possibly-undefined operations. Poison values cannot be represented
in the IR, but rather are ephemeral effects of certain incorrect
operations. Poison values taint subsequent dependent instructions;
unlike undef, poison values cannot be untainted by subsequent
operations.

Instruction attributes modify the behavior of some LLVM in-
structions. The nsw attribute (“no signed wrap”) makes signed
overflow undefined. For example, this Alive transformation, which
is equivalent to the optimization of (x+1)>x to 1 in C/C++ where
x is a signed integer, is valid:

%1 = add nsw %x, 1
%2 = icmp sgt %1, %x

=>
%2 = true

An analogous nuw attribute exists to rule out unsigned wrap.
If an add, subtract, multiply, or shift left operation with an nsw or
nuw attribute overflows, the result is a poison value. Additionally,
LLVM’s shift right and divide instructions have an exact attribute
that requires an operation to not be lossy. Table 2 provides the
constraints for the instructions to be poison-free. Developers writing
Alive patterns can omit instruction attributes, in which case Alive
infers where they can be safely placed.

2.5 Memory
LLVM’s alloca instruction reserves memory in the current stack
frame and returns a pointer to the allocated memory block. Heap
memory, in contrast, is handled indirectly: there is no instruction in
the IR for heap allocations; it is handled by library functions such
as calls to malloc.

The getelementptr instruction supports structured address
computations: it uses a sequence of additions and multiplications
to compute the address of a specific array element or structure field.
For example, an array dereference in C such as val = a[b][c]
can be translated to the following LLVM code:

%ptr = getelementptr %a, %b, %c
%val = load %ptr

Unstructured memory accesses are supported by the inttoptr
instruction. The load and store instructions support typed mem-
ory reads and writes. Out-of-bounds and unaligned loads and stores
result in true undefined behavior, but a load from valid, uninitialized
memory returns an undef.

3. Verifying Optimizations in Alive
The Alive checker verifies a transformation by automatically en-
coding the source and target, their definedness conditions, and the
overall correctness criteria into SMT queries. An Alive transforma-
tion is parametric over the set of all feasible types: the concrete types
satisfying the constraints of LLVM’s type system. When computing
feasible types, we place an upper limit on the width of each variable
and constant (64 bits, by default).

3.1 Checking Correctness for a Feasible Type
In the absence of undefined behavior in the source or target of an
Alive transformation, we can check correctness using a straightfor-
ward equivalence check: for each possible combination of values of
input variables, the value of any variable that is present in both the
source and target must be the same. However, checking equality of
the values produced both in the source and target is not sufficient to
prove correctness in the presence of any of the three kinds of unde-
fined behavior described in Section 2.4. We use refinement to reason
about optimizations in the presence of undefined behavior, follow-
ing prior work [17]. The target of an Alive transformation refines
the source template if all the behaviors of the target are included in
the set of behaviors of the source.

When an instruction can produce or use an undef value, we
need to ensure that the value produced in the target is one of
the values that the source would have produced. In other words,
an undef in the source represents a set of values and the target
can refine it to any particular value. Poison values are handled
by ensuring that an instruction in the target template will not
yield a poison value when the source instruction did not, for any
specific choice of input values. In summary, we check correctness
by checking (1) the target is defined when the source is defined, (2)
the target is poison-free when the source is poison-free, and (3) the
source and the target produce the same result when the source is
defined and poison-free.

3.1.1 Verification Condition Generation
To automatically check correctness of an Alive transformation,
we need to encode the values produced, the precondition, and the
correctness conditions into SMT. The semantics of the LLVM
and Alive integer instructions closely match bitvector operations
provided by SMT solvers. The encoding of these instructions is
therefore straightforward and we omit the details. Predicates used
in preconditions are also easily encoded as predicates over bitvector
expressions in SMT.

For each instruction, Alive computes three SMT expressions: (1)
an expression for the result of the operation (except for instructions
returning void), (2) an expression representing the cases for which
the instruction has defined behavior, and (3) an expression repre-
senting the cases for which the instruction does not return a poison
value. The verification condition generator (VC Gen) generates a
constraint for each instruction representing the cases for which it is
defined (see Table 1). The VC Gen aggregates definedness condi-
tions over the def-use chains, such that the definedness condition for
each instruction is the conjunction of the definedness condition of
the instruction and the definedness conditions of all of its operands.
In summary, definedness constraints flow through def-use chains.
The same applies to poison-free constraints.

Encoding undef values in SMT. An undef value represents a
set of values of a particular type. The VC Gen encodes each undef
value as a fresh SMT variable and adds it to a set U . Variables
in U are then appropriately quantified (see Section 3.1.2) over the
correctness conditions to check refinement.

Encoding precondition predicates in SMT. The encoding of
predicates depends on whether the underlying analysis is precise
or is an over- or under-approximation. For example, the predicate
isPower2 is implemented in LLVM with a must-analysis, i.e.,
when isPower2(%a) is true, we know for sure that %a is a power
of two; when it is false, no inference can be made. The VC Gen en-
codes the result of isPower2(%a) using a fresh Boolean variable
p, and a side constraint p =⇒ a 6= 0 ∧ a & (a− 1) = 0.

The encoding of may-analyses is similar. The VC Gen creates
a fresh variable p to represent the result of the analysis and a
side constraint of the form s =⇒ p where s is an expression
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summarizing the may-analysis based on the inputs. For example, a
simplified encoding of mayAlias(%a,%b) is a = b =⇒ p.

Most analyses in LLVM are precise when their inputs are
compile-time constants. Therefore, we encode the result of these
analyses precisely when we detect such cases (done statically by
the VC Gen).

3.1.2 Correctness Criteria
Let φ be the precondition of a transformation, δ be the definedness
constraint of the source instruction, ρ be the poison-free constraint,
ι the result of executing a source instruction, and δ, ρ, and ι the
respective constraints for the target.

Let I be the set of input variables from the source template
including constants, P be the set of all fresh variables p used to
encode approximating analyses in the precondition, and U and U
be the sets of variables created by the VC Gen to encode undef
values of the source and target, respectively.

Let ψ ≡ φ∧δ∧ρ. A transformation specified in Alive is correct
iff all of the following constraints hold for each instruction:

1. ∀I,P,U ∃U : ψ =⇒ δ

2. ∀I,P,U ∃U : ψ =⇒ ρ

3. ∀I,P,U ∃U : ψ =⇒ ι = ι

The first constraint states that the target operation should be
defined whenever the source operation is defined. The second
constraint states that the target operation can only produce poison
values for the inputs that the source operation does. Finally, the
third constraint states that the source and target instructions should
produce the same result whenever the precondition holds and the
source operation is defined and poison-free.

The correctness conditions are universally quantified over the
undef values in the target and existentially quantified over the
undef values from the source. If the target has an undef value, we
check that the correctness conditions hold for all possible values that
a particularundef can take. In contrast, if the source has an undef
value, undef can be instantiated with any value that enables the
validity of the correctness conditions. Hence an existential quantifier
is used for undef variables in the source, which occurs after the
universal quantifier for the target undef variables. In summary,
for each set of input variables, and undef values in the target, we
can pick any value for the undef in the source that satisfies the
correctness conditions.

We now state the correctness criteria for an Alive transformation:

T H E O R E M 1 (Soundness). If conditions 1–3 hold for every in-
struction in an Alive transformation (without memory operations)
and for any valid type assignment (as given by the type system of
Figure 3), then the transformation is correct.

3.1.3 Illustration of Correctness Checking
We illustrate the verification condition generation and correctness
conditions with two examples.

Pre: C1 u>= C2
%0 = shl nsw i8 %a, C1
%1 = ashr %0, C2

=>
%1 = shl nsw %a, C1-C2

The precondition for the above transformation is φ ≡ c1 ≥u c2,
where c1 and c2 are bitvector variables corresponding to constants
C1 and C2 in the transformation. The source instruction that pro-
duces %0 is defined when shl is defined (c1 <u 8: the SMT vari-
able c1 is unsigned less than 8, the bitwidth of the operands). Like-
wise, instruction %1 is defined when ashr is defined (c2 <u 8)

and its operands are defined. Hence, the definedness conditions for
the source are δ%0 ≡ c1 <u 8 and δ%1 ≡ c1 <u 8 ∧ c2 <u 8.

The source instruction %0 is poison-free if no signed overflow
occurs in the shift operation (because of the nsw attribute). The
source instruction %1 can only be poison if any of its operands is
poison (since it has no nsw or nuw attributes). Hence, constraints
for poison-free execution in the source are ρ%0 ≡ ρ%1 ≡ (a <<
c1) >> c1 = a, where a is the SMT variable for input %a in the
source.

Similarly, the definedness and poison-free constraints for the
target are δ%1 ≡ c1 − c2 <u 8 and ρ%1 ≡ (a << (c1 − c2)) >>
(c1 − c2) = a respectively. We trivially have δ%0 = δ%0 and
ρ%0 = ρ%0. The constraints for the values produced by the source
and target are ι%0 ≡ ι%0 ≡ a << c1, ι%1 = (a << c1) >> c2,
and ι%1 = a << (c1 − c2). There are no undef values in this
transformation.

Let ψ ≡ φ∧δ%1∧ρ%1. To ensure correctness, we need to check
the validity of the following formulas:

1. ∀a,c1,c2 : ψ =⇒ δ%1

2. ∀a,c1,c2 : ψ =⇒ ρ%1

3. ∀a,c1,c2 : ψ =⇒ ι%1 = ι%1

Since we have that δ%0 = δ%0, ρ%0 = ρ%0, and ι%0 = ι%0,
the corresponding formulas for %0 are trivially valid, and therefore
we do not present them.

To check validity, we check if the negation of the above formulas
are unsatisfiable; that is, we check if (1) ∃a,∃c1, ∃c2 : ψ ∧ ¬δ, (2)
∃a,∃c1, ∃c2 : ψ ∧ ¬ρ, and (3) ∃a,∃c1,∃c2 : ψ ∧ ι 6= ι are unsat.

Example with undef. We illustrate verification condition gener-
ation and correctness checking for undef with the following exam-
ple:

%r = select undef, i4 -1, 0
=>

%r = ashr undef, 3

In this example, both the source and target are always defined
and poison-free. However, there are undef values both in the
source and the target. The VC Gen creates an SMT variable u1

for the undef in the source and a variable u2 for the undef in
the target. Since both the source and the target are always defined
and poison-free, checking refinement amounts only to checking that
the values produced by the instructions are equal. The constraint
for the value produced by the source is ι ≡ ite(u1 = 1,−1, 0),
and for the target is ι ≡ u2 >> 3 (where ite is the standard if-
then-else SMT expression). We check the validity of the following
formula: ∀u2∃u1 : ι = ι. Since the formula is valid, the Alive
transformation is correct. Note the use of universal quantification of
the target undef (u2) and existential quantification of the source
undef (u1).

3.1.4 Generating Counterexamples
When Alive fails to prove the correctness of a transformation, it
prints a counterexample showing values for inputs and constants,
as well as for each of the preceding intermediate operations. We
bias the SMT solver to produce counterexamples with bitwidths
such as four or eight bits. It is obvious that large-bitwidth examples
are difficult to understand; we also noticed that, perhaps counter-
intuitively, examples involving one- or two-bit variables are also
not easy to understand, perhaps because almost every value is a
corner case. Figure 5 shows an example.

3.2 Enumerating Feasible Types
Alive transformations are parametric over types. Hence, Alive must
verify a transformation for all valid type assignments. We use
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Pre: C2 % (1 << C1) == 0
%s = shl nsw %X, C1
%r = sdiv %s, C2
=>

%r = sdiv %X, C2 / (1 << C1)

ERROR: Mismatch in values of i4 %r

Example:
%X i4 = 0xF (15, -1)
C1 i4 = 0x3 (3)
C2 i4 = 0x8 (8, -8)
%s i4 = 0x8 (8, -8)
Source value: 0x1 (1)
Target value: 0xF (15, -1)

Figure 5. Alive’s counterexample for the incorrect transformation
reported as LLVM PR21245

an SMT solver to perform type inference and to enumerate all
possible type assignments (up to a bound of 64 bits for integers).
We create SMT variables to represent types and create typing
constraints between these variables according to the typing rules
in Figure 3. Given this setup, enumerating all valid typings amounts
to enumerating all (non-partial) models of an SMT formula. We
solve the formula to obtain a model for the typing constraints and
check the correctness of the Alive transformation for the typing.
We explore all valid type assignments using the standard technique
of iteratively strengthening the formula with the negation of each
model until the formula becomes unsatisfiable.

3.3 Memory
We encode memory-handling instructions precisely in order
to support arbitrary pointer arithmetic through structured (i.e.,
getelementptr) and unstructured (i.e.,inttoptr) means. We
use the SMT array theory to describe our encoding. Memory is rep-
resented by an array from the pointer length (e.g., 32 or 64 bits) to 8
bits, and is represented by m. Both the source and target start with
an arbitrary, but equal, memory array m0.

3.3.1 Verification Condition Generation
Alloca. Stack memory allocation is handled in two steps. First, a
variable is created to represent the pointer resulting from an alloca
instruction. This variable is constrained (1) to be different than
zero, (2) to have a value that is properly aligned (e.g., a pointer
to a 32-bit integer must be a multiple of 4), (3) to enforce that
the allocated memory range does not overlap with other allocated
regions (i.e., for two pointers p, p′ and allocated sizes sz, sz′, we
have p′ ≥u p+sz∨p′+s′ ≤u p), and (4) to ensure that the allocated
memory range does not wrap around the memory space (i.e., for a
pointer p and allocated size sz, we have p ≤u p + sz). These
constraints are added to α: a collection of constraints corresponding
to stack memory allocation from alloca instructions. Second, the
allocated region is marked as uninitialized because reading from an
uninitialized memory location returns an undef value in LLVM.
The VC Gen accomplishes this by creating a fresh bit vector with
length equal to the allocation size and stores it to the memory region
at the pointer value. This fresh variable is added to set U . With this
encoding, different loads of the same uninitialized memory location
will return the same arbitrary value.

The size of the allocated memory block is equal to the number
of allocated elements multiplied by the aligned allocation size of
each element type. The allocation size of a type is computed by first
rounding it to the nearest byte boundary (e.g., the allocation size
of i5 is 8 bits). Then, the size is rounded to the next valid ABI
alignment. For example, in common x86 ABIs, the alignment for

integers is usually 32 bits, and therefore the aligned allocation size
of i5 would be 32 bits. Verification is done parametrically on the
ABI. If the allocation size exceeds the memory size, the operation
has undefined behavior.

Load. Since memory is encoded as a byte array, load instructions
are encoded as a concatenation of multiple array loads (select op-
eration with the array theory). We use concat and extract oper-
ations from the bitvector theory to concatenate multiple bits and
to extract a set of bits, respectively. For example, the instruction
%v = load i16* %p is encoded as v = concat(select(m, p+
1), select(m, p)) (assuming a little-endian architecture, like x86).
For loads of values whose size is not a multiple of 8 bits, an extract
is added to the last loaded byte to trim its size. It is undefined be-
havior if a load operation is not within any known memory block, if
the alignment of a load is larger than the alignment of the accessed
memory block, or if the pointer is null.

Store. The encoding of store instructions is similar to that of the
load instructions. Stored values are sliced into 8-bit fragments and
then stored to the memory array. If undefined behavior has been
observed previously, the memory is not modified. For example,
the instruction store %v, %p yields the memory configuration
ite(δ,m′′,m), with m′ = store(m, p, extract(v, 7, 0)) and m′′ =
store(m′, p+ 1, extract(v, 15, 8)).

Input memory blocks. An input variable in an Alive transforma-
tion can be a pointer. Such pointers can point to memory blocks
that have been allocated without using the alloca instruction. Alive
transformations can transform load and/or store instructions through
these input pointer variables. Since we do not know anything about
the memory regions referenced by these pointers (e.g., their size and
alignment, whether they have been initialized before, whether any
of the input pointers alias, etc.), none of the constraints described for
the alloca instructions apply here. However, the VC Gen adds con-
straints that ensure that these pointers cannot alias pointers returned
from alloca instructions (added to α).

Definedness constraint propagation with memory operations.
Definedness constraints flow through the def-use chain. However,
with the addition of memory operations, definedness constraints are
also propagated by instructions with side-effects (e.g., stores and
volatile loads). To propagate definedness constraints, the VC Gen
has to maintain the order between instructions with side-effects.
These instructions create sequence points. At each sequence point,
the definedness constraints of the instructions and its operands are
recorded and are also propagated to any subsequent instruction.
Hence, the target can only perform limited reordering of instruc-
tions across sequence points.

3.3.2 Correctness Criteria
Let m and m be the final memory configurations of the source and
the target. Let α be the alloca constraints given in the previous
section for the source, and α the respective constraints for the target.
The three correctness constraints of Section 3.1.2 must be modified
to include memory information (i.e., ψ ≡ φ ∧ δ ∧ ρ ∧ α ∧ α).
Moreover, an additional constraint must be discharged whenever
the transformation uses memory-handling instructions:

4. ∀I,U,i ∃U : φ ∧ α ∧ α =⇒ select(m, i) = select(m, i)

This constraint does not explicitly include constraints for limit-
ing the equality to defined behavior like the correctness constraint 3
in Section 3.1.2. These are, however, already included inm. A store
instruction only updates a memory block if no undefined behav-
ior has been observed previously. Thus, no further constraints are
required.
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We now state the correctness criteria for Alive transformations
with memory operations:

T H E O R E M 2 (Soundness). If, for every valid type assignment in
an Alive transformation, conditions 1–3 hold for every instruction
and condition 4 holds for the final memory configurations, then the
transformation is correct.

3.3.3 Beyond the Array Theory
Many SMT solvers do not support the theory of arrays efficiently, es-
pecially in the presence of quantifiers. Hence, we explore encoding
memory operations without arrays. This is usually accomplished
with Ackermann’s expansion [1]. In the worst case, this procedure
can result in a quadratic increase in the size of the formula in terms
of the number of load instructions, and requires an additional fresh
SMT variable per load. SMT solvers usually perform Ackerman-
nization lazily to avoid the quadratic blowup as much as possible.

In contrast to lazy Ackermannization as usually performed by
SMT solvers, we use an eager Ackermannization encoding that is
linear in the number of load and store instructions. Our encoding
has the additional advantage of not requiring extra SMT variables,
at the expense of potentially more complex SMT expressions.

With our eager encoding, store instructions are replaced with
if-then-else expressions, such that the expression returns the stored
value if pointer p is equal to the stored location, or returns the pre-
vious memory expression otherwise, i.e., store(m, q, v) becomes
ite(p = q, v,m).

Load instructions take the memory expression built so far (a
chain of ite expressions) and replace p with the loaded mem-
ory location, i.e., select(m, q) becomes ite(q = p1, v1, ite(q =
p2, v2, . . . ite(q = pn, vn,m0))) for previously stored values
v1, . . . , vn at locations p1, . . . , pn (potentially overlapping) and ini-
tial memory content m0. Since the store operations are enqueued
in order (most to least recent), the expression yields the most recent
store in case there were multiple stores to the same location.

In our experiments, we observed that our eager encoding results
in faster SMT solving when compared to the theory of arrays.
However, our encoding does not ensure consistency across different
loads to the same uninitialized memory location, but this is not
required by any optimization we have analyzed.

3.4 Attribute Inference
By watching LLVM developers submit patches, we observed that
placing the nsw, nuw, and exact attributes in LLVM optimiza-
tions is difficult enough that it often becomes a matter of trial and
error, with developers frequently omitting attributes from the tar-
get side of transformations rather than determining whether they
can be added safely. The result is that peephole optimizations in
LLVM tend to strip away attributes, constraining the behavior of
subsequent optimization passes that might have been able to exploit
the attributes, had they been preserved.

Alive has support for adding the nsw, nuw, and exact at-
tributes to the source and target of transformations when it is safe
to do so. On the source side, our goal is to automatically synthesize
the weakest precondition for a transformation in terms of instruc-
tion attributes. On the target side, we want to synthesize the optimal
propagation of attributes: the strongest postcondition.

Our algorithm enumerates all models of a quantified SMT for-
mula for correctness to infer attributes. As attributes only influ-
ence constraints generated for poison-free execution, we generate
these poison-free constraints conditionally based on the presence
or absence of the attributes. The algorithm introduces a fresh SMT
Boolean variable f for each instruction and for each attribute. More
concretely, we have ρ ≡ f1 =⇒ p1 ∧ . . . ∧ fn =⇒ pn, where
fi are fresh Boolean variables, and pi are the conditions that state

Φ := true

for each type assignment do
f := ∃F,F : Φ ∧ c1 ∧ c2 ∧ c3 ∧ c4
µ := false

while f is satisfiable with model m do

b := {l | l ∈ F ∧m(l)} ∪ {¬l | l ∈ F ∧ ¬m(l)}

µ := µ ∨
∧
b

f := f ∧ ¬
∧
b

Φ := Φ ∧ µ

Figure 6. Optimal attribute inference algorithm. The set b accu-
mulates SMT variables that indicate the presence of attributes in
the source (for the precondition) and absence of attributes in the
target in a given model (for the postcondition). The result (Φ) is a
constraint that gives all possible attribute assignments.

when the instruction is poison-free when the respective attribute i
is enabled.

Let F (F) be the set of all f variables from the source (resp.
target). The disjunction of all models of the following formula is
the optimal set of attributes:

∃F,F : c1 ∧ c2 ∧ c3 ∧ c4
Constraints c1, c2, c3, c4 are the conjunction of the constraints given
as the correctness criteria in Section 3.1.2 for all instructions.

The algorithm for optimal attribute inference, shown in Figure 6,
exploits the partial ordering between the attribute assignments. For
example, if an optimization is correct without the nsw attribute in
a source instruction, then the optimization is also correct with it.
Similarly, if an attribute can be enabled in a target operation, then
the optimization is also correct if it is turned off (although we are
interested in enabling as many attributes in the target as possible).

The inner loop of the algorithm in Figure 6 generates all possi-
ble attribute assignments, which satisfy the correctness constraints
and exploits the partial ordering of the attributes, for a given type
assignment. The algorithm strengthens the set of possible attribute
assignments with the disjunction of all possible attribute assign-
ments for a given type assignment. The inner loop of the algorithm
generates all possible attributes by iteratively enumerating all possi-
ble solutions by blocking each model at a time (i.e., f := f∧¬

∧
b).

The outer loop strengthens the attribute assignments explored for
each type assignment to generate the constraint (Φ), whose solution
gives the optimal attribute assignment. The algorithm can be further
improved to reduce the number of queries by using techniques to
bias the results of the SMT solver (e.g., [19]), which we leave for
future work.

4. Generating C++ from Alive
After a transformation has been proved correct, Alive can turn it into
C++ code that uses the same instruction pattern matching library
that InstCombine uses; the generated code can be linked into LLVM
and used as an LLVM optimization pass. The C++ code for an
optimization has two parts. First, there is an if-statement checking
if the optimization should fire, which is the case when a DAG of
LLVM instructions matches the Alive source template and when the
precondition, if any, is met. Second, the body of the transformation
creates instructions from the target template and wires them up to
the source and input variables. Figure 7 shows an example. The
generated C++ code does not attempt to clean up any instructions
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Alive transformation:

Pre: isSignBit(C1)
%b = xor %a, C1
%d = add %b, C2

=>
%d = add %a, C1 ˆ C2

Generated C++:

Value *a, *b;
ConstantInt *C1, *C2, *C3;
if (match(I,m_Add(m_Value(b),m_ConstantInt(C2))) &&

match(b,m_Xor(m_Value(a),m_ConstantInt(C1))) &&
C1->getValue().isSignBit()) {

APInt C3_val = C1->getValue() ˆ C2->getValue();
C3 = ConstantInt::get(I->getType(), C3_val);
BinaryOperator *d =

BinaryOperator::CreateAdd(a, C3, "", I);
I->replaceAllUsesWith(d);

}

Figure 7. An Alive transformation and its corresponding generated
code. The C++ transformation is conditional on two match calls, one
for each instruction in the source template, and also on the precon-
dition. The target template has a single instruction and creates a
new compile-time constant; both of these are directly reflected in
the body of the C++ transformation.

that might have been rendered useless by the optimization; this task
is left to a subsequent dead-code elimination pass.

Translating a source template. The code generator translates
the source into conditions using LLVM’s pattern-matching li-
brary, and binds variables for later use. For example, match(I,
m Add(m Value(b), m ConstantInt(C2))) in Figure 7
will return true if an LLVM instruction I is an addition of a value to
a constant, and sets b and C2 to point to the arguments. Matching be-
gins with the root instruction in the source template and recursively
matches operands until all non-inputs have been bound. Although
LLVM allows arbitrarily nested pattern matching, Alive currently
matches each instruction in a separate clause. Alive’s predicates and
logical connectives directly correspond to their C++ equivalents in
LLVM.

Translating a target template. A new instruction is created for
each instruction that is in the target template but not the source. The
root instruction from the source is replaced by its counterpart in the
target.

Constants. Constant expressions translate to APInt (LLVM’s
arbitrary-width literal values) or Constant values, depending on
the context. Arithmetic expressions and functions translate to the
corresponding operations for APInt values in LLVM.

Type unification. The LLVM constructors for constant literal val-
ues and conversion instructions require explicit types. In general,
this information will depend on types in the source. As Alive trans-
formations are parametric over types, and Alive provides support for
explicit and named types, such information is not readily available.
The Alive code generator uses a unification-based type inference
algorithm to identify appropriate types for the operands and intro-
duces additional clauses in the if condition to ensure the operands
have the appropriate type before invoking the transformation. This
type system ensures that the generated code does not produce ill-
typed LLVM code.

The unification proceeds in three phases. First, the types of the
operands in the source are unified according to the constraints in
the source (e.g., the operands of a binary operator must have the

same type) based on the assumption that source is a well-formed
LLVM program. Second, the types of the operands in the target are
similarly unified according to constraints of the target. Third, when
the operands of a particular instruction in the target do not belong
to the same class, then an explicit check requiring that the types
are equal is inserted to the if condition in the C++ code generated.
The explicit check is necessary as the target has type constraints
that cannot be determined by the source alone.

5. Implementation
We implemented Alive in Python and used the Z3 SMT solver [7]
to discharge both typing and refinement constraints. Alive is about
5,200 lines of open-source code.4

Typing constraints are over the QF LIA (quantifier-free linear
integer arithmetic) theory, and refinement constraints are either over
the BV or QF BV (quantified/quantifier-free bitvector) theories.
The number of possible type assignments for a transformation is
usually infinite. To ensure termination we constrain integer types to
have bitwidths in the range 1..64, and type nesting is limited to two
levels.

Constraints c1 to c4 (Section 3.1.2) are negated before query-
ing the SMT solver, effectively removing one quantifier alterna-
tion. Therefore, for transformations without undefined values in the
source template, we obtain quantifier-free formulas, and formulas
with a single quantifier otherwise. When performing attribute infer-
ence, formulas have either one or two sets of quantifiers.

Threats to validity. Alive tries to accurately reflect the semantics
described in the LLVM Language Reference [18]; there could be
differences between our formalization and the semantics intended
by the LLVM developers. Alive’s bounded verification could lead it
to incorrectly verify an optimization, though in our experience it is
uncommon to see operands wider than 64 bits in LLVM code.

6. Evaluation
We translated hundreds of peephole optimizations from LLVM
into Alive. We verified them, we inferred optimal nsw/nuw/exact
attributes for them, and we translated the Alive optimizations into
C++ that we linked into LLVM and then used the resulting optimizer
to build LLVM’s test suite and the SPEC INT 2000 and 2006
benchmarks.

6.1 Translating and Verifying InstCombine
LLVM’s InstCombine pass rewrites expression trees to reduce their
cost, but does not change the control-flow graph. Table 3 summa-
rizes the 334 InstCombine transformations that we translated to
Alive. Eight (2.4%) of these could not be proved correct; we re-
ported these erroneous transformations to the LLVM developers,
who confirmed and fixed them. We re-translated the fixed optimiza-
tions to Alive and proved them correct. Out of the remaining 694
transformations that we did not translate, some (such as those us-
ing vectors, call/return instructions, and floating point) cannot yet
be expressed in Alive and the rest we simply have not had time to
translate.

The buggiest InstCombine file that we found was MulDivRem,
which implements optimizations that have multiply, divide, and
remainder instructions as the root of expression trees. Out of the
44 translated optimizations, we found that six of them (14%) were
incorrect.

The most common kind of bug in InstCombine was the intro-
duction of undefined behavior, where an optimization replaces an

4 The version of Alive corresponding to this paper can be found at https:
//github.com/nunoplopes/alive/tree/pldi15.
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Name: PR20186
%a = sdiv %X, C
%r = sub 0, %a

=>
%r = sdiv %X, -C

Name: PR20189
%B = sub 0, %A
%C = sub nsw %x, %B

=>
%C = add nsw %x, %A

Name: PR21242
Pre: isPowerOf2(C1)
%r = mul nsw %x, C1

=>
%r = shl nsw %x, log2(C1)

Name: PR21243
Pre: !WillNotOverflowSignedMul(C1, C2)
%Op0 = sdiv %X, C1
%r = sdiv %Op0, C2

=>
%r = 0

Name: PR21245
Pre: C2 % (1<<C1) == 0
%s = shl nsw %X, C1
%r = sdiv %s, C2

=>
%r = sdiv %X, C2/(1<<C1)

Name: PR21255
%Op0 = lshr %X, C1
%r = udiv %Op0, C2

=>
%r = udiv %X, C2 << C1

Name: PR21256
%Op1 = sub 0, %X
%r = srem %Op0, %Op1

=>
%r = srem %Op0, %X

Name: PR21274
Pre: isPowerOf2(%Power) && hasOneUse(%Y)
%s = shl %Power, %A
%Y = lshr %s, %B
%r = udiv %X, %Y

=>
%sub = sub %A, %B
%Y = shl %Power, %sub
%r = udiv %X, %Y

Figure 8. We found eight incorrect InstCombine transformations during the development of Alive

File # opts. # translated # bugs
AddSub 67 49 2
AndOrXor 165 131 0
Calls 80 0 0
Casts 77 0 0
Combining 63 0 0
Compares 245 0 0
LoadStoreAlloca 28 17 0
MulDivRem 65 44 6
PHI 12 0 0
Select 74 52 0
Shifts 43 41 0
SimplifyDemanded 75 0 0
VectorOps 34 0 0
Total 1,028 334 8

Table 3. The total number of optimizations, the number of opti-
mizations that we translated into Alive, and the number of translated
optimizations that were wrong, for each file in InstCombine

expression with one that is defined for a smaller range of inputs than
was the original expression. There were four bugs in this category.
We also found two bugs where the value of an expression was incor-
rect for some inputs, and two bugs where a transformation would
generate a poison value for inputs that the original expression did
not. Figure 8 provides the Alive code and the bug report numbers
for the bugs that we discovered during our translation of LLVM
InstCombine optimizations into Alive.

Alive usually takes a few seconds to verify the correctness of a
transformation, during which time it may issue hundreds or thou-
sands of incremental solver calls. Unfortunately, for some transfor-
mations involving multiplication and division instructions, Alive
can take several hours or longer to verify the larger bitwidths. This
indicates that further improvements are needed in SMT solvers to
efficiently handle such formulas. In the meantime, we work around
slow verifications by limiting the bitwidths of operands.

6.2 Preventing New Bugs
A few LLVM developers are already using Alive to avoid intro-
ducing wrong-code bugs. Also, we have been monitoring proposed
LLVM patches and trying to catch incorrect transformations before
they are committed to the tree. For example, in August 2014 a de-
veloper submitted a patch that improved the performance of one of
the SPEC CPU 2000 benchmarks by 3.8%—this is obviously an
interesting addition to a compiler. We used Alive to find bugs in
the developer’s initial and second proposed patches, and we proved
that the third one was correct. This third and final patch retained the
performance improvement without compromising the correctness
of LLVM.
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Figure 9. The number of times each Alive optimization was in-
voked during compilation of the LLVM nightly suite and SPEC
2000 and 2006. The x-axis is the Alive optimization number, sorted
by decreasing number of invocations. The y-axis is the number of
invocations. Only 159 of these optimizations were triggered during
the experiment.

6.3 Inferring Instruction Attributes
Out of the 334 transformations we translated, Alive was able to
weaken the precondition for one transformation and strengthen the
postcondition for 70 (21%) transformations. The most strengthening
took place for transformations in AddSub, MulDivRem, and Shifts,
each with around 40% of transformations getting stronger postcon-
ditions. When a postcondition is strengthened, more instructions
retain undefined behavior attributes, permitting additional optimiza-
tions to be performed. We have not yet quantified this effect.

6.4 Generating C++
We removed the InstCombine optimizer from LLVM 3.6 and re-
placed it with C++ generated by Alive; we refer to the resulting com-
piler as LLVM+Alive. We used LLVM+Alive to build the LLVM
nightly test suite and also the SPEC 2000 and 2006 benchmarks,
compiling about a million lines of code overall. All experiments
were performed on an Intel x86-64 machine running Ubuntu 14.04.
The code compiled by LLVM+Alive did not have any unexpected
test case failures: as far as we can tell, it is free of miscompilation
bugs.

Figure 9 reports the number of times that each optimization fired
during compilation of the LLVM nightly test suite and SPEC bench-
marks using LLVM+Alive at -O3. Alive optimizations fired about
87,000 times in total. Figure 9 also illustrates that a small number
of optimizations are applied frequently. The top ten optimizations
account for approximately 70% of the total invocations and there is
a long tail of infrequently-used optimizations.

Compilation time. We measured the time to compile SPEC 2000
and SPEC 2006 using LLVM+Alive in comparison to LLVM 3.6
at -O3. Compilation using LLVM+Alive was on average 7% faster
than LLVM because it runs only a fraction of the total InstCombine
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optimizations. Our C++ code generator is a proof of concept imple-
mentation and we have not yet implemented many optimizations
such as reusing the results of redundant pattern-match calls.

Execution time of compiled code. We measured the execution
time of the SPEC 2000 and 2006 benchmarks on their reference
inputs. Code compiled with LLVM+Alive is (averaged across all
SPEC benchmarks) 3% slower than code compiled with LLVM 3.6
-O3. Among these benchmarks, LLVM+Alive provides a speedup
of 7% with gcc, and suffers a slowdown of 10% in the equake
benchmark. The code generated with LLVM+Alive is slower with
some benchmarks because we have only translated a third of the
InstCombine optimizations.

7. Related Work
Prior research on improving compiler correctness can be broadly
classified into compiler testing tools, formal reasoning frameworks
for compilers, and domain specific languages (DSLs). DSLs for
compiler optimizations are the most closely related work to Alive.
These include languages based on graph rewriting [2, 21, 27],
regular expressions [12], computation tree logic (CTL) [14], type
systems [28], and rewrite rules [16, 36]. While Alive is perhaps
most similar to high-level rewrite patterns [13, 20], it differs in
its extensive treatment of undefined behavior, which is heavily
exploited by LLVM and other aggressive modern compilers.

Peephole optimization patterns for a particular ISA can be
generated from an ISA specification [6]. In contrast to compiler
optimizations, optimized code sequences can be synthesized ei-
ther with peephole pattern generation or through superoptimiza-
tion [3, 11, 22, 30, 33].

Optgen [4] automatically generates peephole optimizations.
Like Alive, Optgen operates at the IR level and uses SMT solvers to
verify the proposed optimizations. While Alive focuses on verifying
developer-created optimizations, Optgen generates all possible opti-
mizations up to a specified cost and can generate a test suite to check
optimizations not implemented in a given compiler. In contrast to
Alive, Optgen handles only integer operations and does not handle
memory operations, poison values, support any operation producing
undefined behavior, or abstraction over bitwidths/types.

Random testing tools [15, 24, 37] have discovered numerous
bugs in LLVM optimizations both for sequential programs and
concurrent programs. These tools are not complete, as was shown
by the bugs we found in optimizations that had previously been
fuzzed.

An alternative approach to compiler correctness is translation
validation [25, 26, 29] where, for each compilation, it is proved that
the optimized code refines the unoptimized code. Many techniques
and tools have been developed [10, 31, 32, 34, 38]. Translation
validation appears to be a very promising approach, but it suffers
from the drawback of requiring proof machinery to execute during
every compilation. Our judgment was that the LLVM developers
would not tolerate this, so Alive instead aims for once-and-for-all
proof of correctness of a limited slice of the compiler.

The CompCert [17] compiler, for a subset of C, is an end-to-
end verified compiler developed with the interactive proof assistant
Coq. Vellvm [39, 40] formalizes the semantics of LLVM IR, SSA
properties, and optimizations in Coq. Alive’s treatment of undef
values mirrors the treatment in Vellvm. In contrast to Vellvm,
which concretizes values in memory, Alive maintains undef values
in memory, handles poison attributes, and automates reasoning
with an SMT solver. Recent efforts have explored formalizing the
relations of optimizations with weak memory models in Coq [35].
Proving the correctness of trace optimizations (as used in, e.g., JIT
compilers) has also been attempted recently [8].

8. Conclusion
We have shown that an important class of optimizations in LLVM—
peephole optimizations—can be formalized in Alive, a new lan-
guage that makes optimizations much more concise than when they
are embedded in C++ code, while also supporting automated proofs
of correctness. We designed Alive to resemble LLVM’s textual for-
mat while also supporting abstraction over constant values, over
bitwidths of operands, and over the presence of LLVM’s undefined
behavior attributes that modify instruction behavior. After an Alive
transformation has been proved correct, it can be automatically
translated into C++ that can be included in an optimization pass.
Our first goal was to create a tool that is useful for LLVM develop-
ers. We believe this goal has been accomplished. Second, we would
like to see a large part of InstCombine replaced with code generated
by Alive; we are still working towards that goal.
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