
A Practical Logic Framework for Verifying Safety
Properties of Executables

Lu Zhao Guodong Li
University of Utah

{luzhao,ligd,regehr}@cs.utah.edu

John Regehr

Abstract—We present a novel program logic,Lf , which is
designed on top of a Hoare logic, but is simpler, more flexible
and more scalable. Based onLf , we develop a framework
for automatically verifying safety properties of executables. It
utilizes a whole-program interprocedural abstract interpretation
to automatically discover the specifications needed byLf to prove
a program judgment. We implementedLf and the framework in
the HOL theorem prover.

I. I NTRODUCTION

It is challenging to formally reason about executable code,
because it lacks high-level abstractions such as types, data
structures and structured control flow. Some research has
addressed various issues in formally verifying machine code or
low-level code [2], [14], [15], [17], [20], [22], [24]. However,
it is still impractical or very inefficient to verify some critical
safety properties about executables emitted by a production
compiler such as GCC using theorem proving.

We present a novel program logic framework for automat-
ically proving safety properties about real-world executables.
Its theoretical foundation is a new program logic,Lf , designed
on top of a Hoare logic. A Hoare logic describes code with a
triplet judgment:{p} c {q}, wherep and q are the pre- and
post-conditions of codec, specifying the states before and after
the execution of the code, respectively [7], [10]. The reasoning
process is to compose the judgment of a piece of code from
judgments of smaller codes using inference rules, until the
judgment of an entire program is achieved.

It is simple to compose judgments of sequential code with
a sequencing rule [7]. However, it is difficult to handle un-
structured control flows, because for each type of control flow
transfers, it requires proving some inference rules and using
them interactively [13]. For example, in order to specify a
loop, it requires a loop rule and a termination proof; this isnot
acceptable for reasoning about embedded code where control
loops are often infinite. In addition, the goal of composing a
monolithic judgment for an entire program has not been shown
useful in practice, because it is not scalable.

Our idea is keeping the simple part of a Hoare logic: com-
position of code blocks, which only have sequential control
flows, such as a basic block or a super block; beyond code
blocks, we design a novel scalable logic structure which does
not require compositional rules and which makes it possible
to automate the entire proof of safety properties. This resulted
in Lf (a logic with hierarchical function judgments).

The structure ofLf has three layers. The bottom layer is
instruction semantics. In principle, any sound formal semantics
works, and there exists independently developed, well-vetted,
realistic formal semantics for common instruction set architec-
tures, such as ARM [4], [5] and x86 [18]. The middle layer is
Hoare judgments of code blocks. We implement this layer by
a Hoare logic that has compositional rules for code blocks.

The top layer, as the core ofLf , is hierarchical function
judgments. A function is roughly equivalent to a function
constructed by a binary rewriting/analysis tool. Such toolcan
decompile an executable, construct a conservative controlflow
graph, and build functions by using call/return conventions,
besides other functionalities [11], [23]. A function has code
blocks and calls to other functions. We abstract the calls
by well-formed nodes, which also have a precondition and
a postcondition: the precondition is the initial conditionof
a callee, and the postcondition is the condition that holds
when the callee returns. We define the relationship among the
Hoare judgments of the code blocks and the callee nodes:
for each node, the postconditions of its predecessors implyits
precondition. The final judgment of a program is the judgment
of the top-level or entry function.

The hierarchical function judgments have several advan-
tages over a traditional Hoare logic. First, it does not compose
over code blocks, so it does not need rules for loops or any
arbitrary jumps. Nor a termination proof. The definition of
the function judgment handles both infinite and finite loops.
Second, it naturally divides an executable into object-code
functions, and the reasoning process examines one function
at a time. As a result, it easily scales to an entire program.
Third, it facilitates proof automation in two ways. One is the
composition of judgments of code blocks, whose sequential
structure is simple enough that we automate the composition
by meta-language programming. The other is utilizing inter-
procedural abstract interpretations to automatically discover
the relationship among Hoare judgments in verifying shallow
safety properties.

The first two layers ofLf have been well studied in
literature, and in this paper, we focus on the hierarchical
function judgments (Section II) and an application ofLf :
automatic verification of safety properties with assistance of
interprocedural abstract interpretations (Section III).



<entryFun>
blk1: (0x0, 0xE3A0D441) //mov r13,#0x41000000

(0x4, 0xE3A00000) //mov r0,#0
(0x8, 0xE1A01000) //mov r1,r0
(0xC, 0xEB000000) //bl foo (branch to foo)

blk2: (0x10,0xEAFFFFFE) //b +#0 (branch to blk2)
<foo>
blk3: (0x14,0xE2411001) //sub r1,r1,#0x1

(0x18,0xE3320101) //teq r2,#0x40000000
(0x1C,0x11A0F00E) //movne pc,r14 (ret neq)

blk4: (0x20,0xE5C21000) //strb r1,[r2] (str byte)
(0x24,0xE3310000) //teq r1,#0x0 (test eq)
(0x28,0x1AFFFFF9) //bne foo (branch neq)

blk5: (0x2C,0xe1a0f00e) //mov pc,r14 (return)

(a) Program code

blk1-entryFun

blk3-foo

blk2-entryFun

blk4-foo

blk5-foo

bbl 0x0

fun 0x14 (foo)

bbl 0x10

(b) Program CFG (c) Abstracted function nodes

Fig. 1. An example

A. An Example

To explainLf and to show how it works, we take the exam-
ple of provingmemory safety: store operations are confined to
pre-defined regions, andcontrol flow integrity: execution may
not escape a pre-determined control flow graph (CFG), about
the ARM executable shown in Figure 1.

For memory safety, we want to prove that it only writes
to a memory sectionmem = {a|0x40000000 ≤ a ∧ a <

0x41000100}. For control flow integrity, we need a CFG
policy (Figure 1.b). The CFG policy of an executable may be
computed by a binary analysis tool, or by hand. How the CFG
policy is computed is irrelevant toLf ; what is critical is that
Lf verifies that the executable respects the given CFG policy.
We model the CFG policy by a functionsucc: given an
address of an instruction, it returns the set of addresses where
the control goes. Suppose the given CFG policy of the example
is (computed by hand):succ i = {0xC → {0x14}, 0x10 →

{0x10}, 0x1C → {0x20, 0x10}, 0x28 → {0x14, 0x2C}, 0x2C →

{0x10}, i → {i + 0x4}}, where→ means a parameter-return
value pair. For brevity, we usei → {i + 0x4} to denote the
PC relation inside a basic block without explicitly listingthem
(it is only used after other lookup fails).1

For this program,Lf establishes that the strb instruction in
blk4 does not violate the memory safety, and the two indirect
jumps at 0x1C and 0x2C follow the given CFG policy. We

1If the given CFG policy is too small, or does not coincide withthe
executable, a proof attempt will fail.

first compose the Hoare judgments of code blocks, and the
results show what conditions are required in order for a block
to execute safely. For example, blk4’s precondition requires
{r2} ⊆ mem, and blk5 requiresr14 ∈ succ(0x2C) (similar
to blk3). Next, we reason about the relationship among the
Hoare judgments of block 3, 4 and 5 (of functionfoo). We
follow and verify the CFG of the function and derive the fact
that the postcondition of blk3 (from 0x1C to 0x20) satisfies
that register R2 has value0x40000000, which discharges the
condition of blk4. However, the two assertions of the control
flow integrity of blk3 and blk5 can not be discharged inside
foo, and they are propagated to the precondition offoo
by an abstract interpretation. We next abstract the function
into a Hoare judgment, which can be fed into its caller,
entryFun, and which behaves like the judgments of blk1
and blk2 (Figure 1.c). We reason about the relationship among
the three Hoare judgments ofentryFun: of blk1, of blk2,
and of the abstractedfoo, and we are able to discharge the
two assertions offoo. The final result is a program judgment:

PROG_SPEC SAFE_INS entryFun 0x0 pred bspec

Informally, it means that the program holds its memory safety
and control flow integrity with respect to a given specifica-
tion. We will discuss in detail how we formally reach this
conclusion (Section IV).

It is worth to point out that verifying memory safety is
not always possible in real-world executables, because telling
that every store operation is confined to pre-defined regions
is undecidable in general. In order to make proof possi-
ble in practice, we insert necessary dynamic checks before
dangerous stores whose addresses can not be determined
statically, and this instrumentation is done by transforming
an executable with a binary rewriter. We also get the CFG
policy of the rewritten executable from the rewriter. These
practical considerations affect if a proof attempt succeeds. For
instance, if there was not blk3 in Figure 1.a, our proof of
the memory safety would simply fail (in fact, any kind of
verification attempt would fail), and we could not derive the
above program judgment. However, they are not irrelevant to
how Lf works, and we have omitted them.2

We implementedLf and the framework for verifying safety
properties in the HOL theorem prover [8]; we automatically
proved the memory safety and control flow integrity of rewrit-
ten ARM executables, including some MiBench programs [9].

II. Lf

We design the first layer ofLf to utilize an existing formal
ARM semantics, and it comes in as proven Hoare triples in the
HOL theorem prover [5], [13]. Figure 2 shows the semantics
for a store instruction: strb r1, [r2]. It says that after execution
of the instruction, the value at memory address r2 is updated
to the least significant byte of r1 (w2w converts a 32-bit word
into an 8-bit word), and the program counter (PC) increased

2Determining which stores are dangerous and inserting dynamic checks for
them are challenging by themselves and deserve their own research.



{PC p ∗ R 2 r2 ∗ R 1 r1 ∗ MEMORY dom f ∗ 〈r2 ∈ dom〉}

(p,0xE5C21000) // strb r1,[r2]

{PC (p + 4) ∗ R 2 r2 ∗ R 1 r1∗

MEMORY dom ((r2 7→ (w2w r1)) f)}

Fig. 2. Axiomatic semantics of strb r1, [r2]

by 4. From our perspective, those theorems are equivalent to
instruction axioms in an axiomatic semantics, since we take
those theorems as granted and build our logic on top of it. This
semantics has some important properties which we summarize
below. For a full treatment, interested readers may refer tothe
references mentioned above.

• Machine states include registers, memory cells, status
flags, and the current program status register. For exam-
ple, PC p in the precondition of Figure 2 asserts that
the program counter has valuep and thatp is word-
aligned;R 2 r2 andR 1 r1 assert that registers R2 and
R1 have valuesr2 andr1, respectively;MEMORY dom f

asserts that some set of memory addressesdom has
value f (these are symbolic values). The7→ operator
in the meta logic updates a function on a given value
while keeping other values unchanged, whose definition
is: a 7→ b = λf c. (if a = c thenb elsef c). Other
machine state assertions includeS t v: one of the status
flagst (carrysC, negativesN, overflowsV, or zerosZ)
has valuev.

• The ∗ operator is a version of separating conjunction
which has important properties as in the separation
logic [19]: (1) a triple only asserts the change of a local
state (the parts of state that are used by the instruction),
and a global version may be achieved by using the Frame
rule; (2) if a separating conjunction expression asserts
a machine resource more than once (excluding a pure
assertion), then its value isfalse.

• 〈〉 represents a pure assertion [19], i.e., it does not assert
any machine resource but serves as a predicate to specify
the boolean relationship between variables.〈r2 ∈ dom〉
says thatr2 has to be in the domain of the memory
function f in order for this transition to take place.

• The pair, (p,0xE5C21000), represents code assertion
for the instruction, meaning that the value0xE5C21000
is stored at the memory address ofp.

• Some boolean operators such as implication (⇒) and
disjunction (∨) are lifted to the separating conjunction
level. For example,p

∗

=⇒ q meansλs. (p s ⇒ q s); p ⊻ q

is λs. (p s ∨ q s).

A. Label Predicates

The assertion language inLf is a set of label predicates.
A label predicate is a pair of a label (instruction address)
and a predicate, interpreted as that the predicate holds at the
associated label. A set of label predicates means that thereis
a true label predicate in the set. Formally, the syntax of a label
predicate is

lp ∈ LabelPred = LabelExp × StatePred
l ∈ LabelExp = word32
p ∈ StatePred = separating conjunction expression

Its interpretation is defined by a semantic functionsLP2SP,
and another function,LPSET, interprets a set of label predi-
cates:

LP2SP (l, p) = PC l ∗ p

LPSET P = λs. (∃lp. lp ∈ P ∧ (LP2SP lp) s)

Let
lp
=⇒be the subsumption relation between two sets of label

predicates:

P
lp
=⇒ Q iff (LPSET P )

∗

=⇒ (LPSET Q)

We define the following rule in order to use the existing
semantics inLf , and it converts an instruction axiom to
another theorem that uses the syntax of label predicates. The
reason for the conversion is that it is easy for the meta logicto
operate on a pair, but it is difficult to operate on the∗ operator.
Another advantage of label predicates will become clear when
we define the function judgment later.

{PC l ∗ p} ins {PC l′ ∗ q}

ORG_INS (l, p) ins (l′, q)
Ins

B. A Hoare Logic
The middle layer ofLf is a multi-entry multi-exit Hoare

judgment with a set of label predicates as its assertion lan-
guage. We use astep relation to bridge state transitions in
Lf and the existing axiomatic semantics.

step ir i s t iff ∃p q. (ir p i q) ∧ (LP2SP p) s ∧ (LP2SP q) t

whereir is a parameterized relation of instruction transition,
namely, an instruction semantics. It can be the existing instruc-
tion semantics introduced above (ORG_INS), or an augmented
version for proving safety properties (to be described later). It
says that a transition from states to statet by instructioni

under a given semantics is equivalent to a transition froms to
t made by the instruction under the semantics.

Based on thestep relation, we implemented a Hoare logic.
Because Hoare logic has been well studied in literature, we
have omitted its details. We summarize the important results
below. Interested readers may refer to [6], [14] for detailed
discussions.

• We write a Hoare judgment asSPEC ir {P} C {Q},
where ir is the semantic parameter discussed above,P

and Q are sets of label predicates, andC is a set of
labeled instructions. Its interpretation is that if there exists
a true label predicate in the precondition, then there exists
a true label predicate in the postcondition some steps
later.

• We proved many useful inference rules including those
for composing code blocks, such as sequencing, frame,
and strengthen, etc. For example, the LPMerge rules
combine and split label predicate entries which have the
same label (Figure 3.a. We have omitted the leading
SPEC).

• The Hoare logic has only one role inLf : composing
judgments of code blocks, because it is simple and can be



ir {P ∪ {(l, p)} ∪ {(l, q)}} C {Q} = ir {P ∪ {(l, p ⊻ q)}} C {Q}

ir {P} C {Q ∪ {(l, p)} ∪ {(l, q)}} = ir {P} C {Q ∪ {(l, p ⊻ q)}}

(a) LPMerge rules

{(0x20, MEMORY dom df ∗ 〈r2 ∈ dom〉 ∗ 〈r1 6= 0〉 ∗ S sZ z ∗ a1)}

blk4 (1)

{(0x14, MEMORY dom ((r2 7→ (w2w r1)) df) ∗ a2)}

a1 = R 2 r2 ∗ R 1 r1, a2 = S sZ (r1 = 0) ∗ a1

{(0x20, MEMORY dom df ∗ 〈r2 ∈ dom〉 ∗ 〈r1 = 0〉 ∗ S sZ z ∗ a1)}

blk4 (2)

{(0x2C, MEMORY dom ((r2 7→ (w2w r1)) df) ∗ a2)}

(b) The Hoare judgments of blk4

Fig. 3. Hoare logic rules and judgments

automated by meta-language programming. For example,
Figure 3.b gives the Hoare judgments of blk4 of Fig-
ure 1.a.3 Blk4 has two separate judgments with each for
a branch condition, and the branch conditions,〈r1 6= 0〉
and 〈r1 = 0〉, originate from the branch instructionbne
foo, which has two separate axioms [13]. The value of
the sZ flag is set to(r1 = 0) in the postconditions (we
have omitted the assertions for other status flags).

• After composition, the assertion of a safety property is
“pushed up” to the precondition of the code block con-
taining the instruction, becoming the block’s condition,
e.g. 〈r2 ∈ dom〉 is now an assertion of the judgments
of blk4. Branch conditions are a little different, because
when we merge Judgments 1 and 2 with LPMerge rules,
the two branch conditions become tautology〈(r1 6=
0) ∨ (r1 = 0)〉 and can be removed from the merged
judgment.

C. Well-Formed Hoare Judgments
In order to model a code block which has only one entry

address, we define awell-formedHoare judgment as a single-
entry multi-exit Hoare judgment by imposing two constraints:
(1) there is only one entry address for the code; (2) the labelof
a label predicate in the precondition must be the entry address.
Formally, it is

WF_SPEC ir P C Q iff

(SPEC ir {P} C {Q}) ∧ (∀(l, p) ∈ P. l = L(C))

whereL(C) returns the entry address of a code block.

D. Hierarchical Function Judgments
The central structure ofLf is recursive function judgments.

The idea is that a function consists of code blocks and function
calls; code blocks are specified by the well-formed Hoare judg-
ment described above; we abstract a callee as a well-formed
node, which behaves like a well-formed Hoare judgment in the
caller, having a single-entry precondition, abstract codeand a

3A Hoare triple is written as{P} C {Q}, and ourP , C and Q are sets
which also use braces by convention. For clarity, we only useone pair of
braces in writing pre- and post-conditions and do not use braces for the code.

postcondition. We specify the relationship among these Hoare
judgments as the following: for each node, the postcondition of
its predecessor “implies” its precondition. The implication idea
comes from Floyd’s inductive assertion [3], and we formalize
it here in order to define the function judgment:

Q
P
=⇒ R iff ∀(l, p) ∈ R. ∀(k, q) ∈ Q.

(k = l) ⇒
“

{(k, q)}
lp
=⇒ {(l, p)}

”

It reads that a set of label predicatesQ implies another set
of label predicatesR (at the function level) if and only if for
every label predicatelp in R, if a label predicatekq in Q has
the same label withlp, then the singleton set ofkq should
imply the singleton set oflp.

1) Function Judgments:We define the function judgment
in Figure 4.a, wherewf is a well-formed node relation, and it
includes Hoare judgments of code blocks and Hoare abstrac-
tions of function calls. Figure 4.b defines such a relation.Ir

is the parameterized instruction semantics discussed before,
andprog is a set of nodes of a function, including nodes of
code blocks and nodes of callee abstractions. The definition
requires that each node is well-formed (the second to the last
line). Entry is the entry address of the function, andinit is
the initial condition of the function.Exits is a set of pairs with
each pair being an exit node and its associated exit condition.
Predecessor models the CFG policy at the node level by
a function: given a node, it returns the set of predecessor
nodes.Bspec andkspec are two specifications for all nodes
of the function; the former is a mapping from nodes to their
preconditions, and the latter is a mapping from nodes to their
postconditions. The last line of the definition requires that if a
node is a predecessor of another node, then the postcondition
of the former implies the precondition of the latter. The first
line of the definition body specifies that the initial condition
of the function subsumes thebspec at the entry node, and
the second line stipulates that for every exit node, itskspec

subsumes the exit condition associated with that node. In a
simple case,{(entry, init)} is (bspec (bbl entry)), and
(kspec e) is q.
Bbl is one of the two constructors for a user-defined data

type fun_node, which represents the code of a code block
or a function by its entry label:

bbl,fun: word32 → fun_node

We use two constructors for human readability indicating that
a node is a code block or a function abstraction; from the
perspective of a type system, one constructor is enough.

2) Well-formed Nodes:The concept of a well-formed node
plays a very important role inLf , and we define it in
Figure 4.b by using the inductive relation definition of the
meta-logic [12]. The Base rule says that the well-formed Hoare
judgment of a code block is a well-formed node. The Induction
rule says that from a function judgment (whose nodes are
well-formed), we can get a new well-formed node whose
precondition is the initial condition of the function, and whose
postcondition is the big union of its exit conditions.image
is a function defined asimage f s = {f x|x ∈ s}, andsnd



FUN_SPEC wf ir prog entry init exits predecessor bspec kspec iff

({(entry, init)}
lp
=⇒ (bspec (bbl entry)))∧

(∀(e, q) ∈ exits. (kspec e)
lp
=⇒ q)∧

∀node ∈ prog.

(wf ir (bspec node) node (kspec node))∧

(∀pre ∈ (predecessor node). (kspec pre)
P
=⇒ (bspec node))

(a) Function judgment

WF_SPEC ir {(l, p)} C {Q}

WF_NODE ir {(l, p)} (bbl l) {Q}
Base

FUN_SPEC WF_NODE ir prog entry init exits predecessor bspec kspec

WF_NODE ir {(entry, init)} (fun entry) (
S

(image snd exits))
Induction

(b) Well-formed node

PROG_SPEC ir prog entryProg predecessor bspec iff

∃kspec exits. FUN_SPEC WF_NODE ir prog entryProg (λs.T) exits predecessor bspec kspec

(c) Program judgment as the judgment of the top-level function

Fig. 4. Definitions of function judgments

returns the second element of a tuple. In the call graph of a
program, the leaf functions, which do not have a callee, only
have thebbl nodes; other functions have bothbbl andfun
nodes (Figure 1.c).

Figure 4.c defines the judgment of a program, which is sim-
ply the judgment of the top-level function. We have simplified
the initial condition to (λs.T) by focusing on the predicate of
states instead of the contents of states.

3) Soundness:Our soundness proof says that a program
never gets stuck under a given semantics throughout its exe-
cution. An intuitive argument is that when control reaches the
end of a code block, it resumes on one of its successor blocks
(including jumping to the entry block of another function)
because of the implication relation. Formally, we may derive
a function specificationFUN_SPEC if and only if: starting
from its initial states, if the execution reaches the label of a
code block,L(n), then the precondition defined bybspec on
the block is ensured to be true. We have omitted the theorem
itself, since it uses some definitions of our Hoare logic which
we did not show (We will have a detailed technical report
available on-line if this paper is published).

III. A UTOMATIC VERIFICATION OF SAFETY PROPERTIES

We describe a specific application ofLf : verifying safety
properties. We present a framework that takes advantage of the
hierarchical structure ofLf and that utilizes an interprocedural
abstract interpretation to automate the verification. For the
example of Figure 1, we first make assertions about the
memory safety and the control flow integrity by defining a
safe instruction semanticsSAFE_INS and use it to instantiate
the semantic parameterir.

A. Safe Instruction Semantics

We augment an exiting instruction axiom to the following
by asserting the safety properties mentioned before:

{PC l ∗ MEMORY mem df ∗ MEMORY cm cf∗

〈ms(ins) ⊆ mem〉 ∗ 〈l′ ∈ succ(l)〉 ∗ p}

(l, ins) (3)

{PC l
′ ∗ MEMORY mem df

′ ∗ MEMORY cm cf ∗ p
′}

wherel is the value of the PC,p represents other assertions
that are not explicitly written out, and corresponding values
in the postcondition are marked with a prime′.

1) Safety Assertions:Recall thatmem is the set of pre-
defined memory region mentioned in Section I-A, andsucc
is the CFG policy.ms(ins) is the set of memory addresses that
an instruction,ins, writes to.〈ms(ins) ⊆ mem〉 is the assertion
for memory safety, and〈l′ ∈ succ(l)〉 is the assertion for the
control flow integrity. The memory assertion is true for non
store instructions, becausems(ins) = {}. MEMORY cm cf

asserts the data pool of ARM executables. A data pool is a set
of memory addresses in the text section for storing constants,
and our augmented theorem says that it cannot be changed
(cf ′ = cf ). The purpose of modeling the data pool is that some
constants are useful in proving some properties. Figure 5.a
shows the augmented theorem for the axiom in Figure 2.

2) The Safe Instruction Rule:We define a safe instruction
rule, whose antecedent is the augmented theorem, and whose
conclusion is a new relationSAFE_INS:

theorem 3
SAFE_INS (l, MEMORY mem df ∗ MEMORY cm cf∗

〈ms(ins) ⊆ mem〉 ∗ 〈l′ ∈ succ(l)〉 ∗ p)

(l, ins)

(l′,MEMORY mem df
′ ∗ MEMORY cm cf ∗ p

′)

SafeIns



{PC p ∗ MEMORY mem df ∗ MEMORY cm cf∗

〈ms(0xE5C21000) ⊆ mem〉 ∗ 〈(p + 4) ∈ succ(p)〉 ∗ a1}

(p,0xE5C21000) // strb r1,[r2]

{PC (p + 4) ∗ MEMORY mem ((r2 7→ (w2w r1)) df) ∗

MEMORY cm cf ∗ a1}

a1 = R 2 r2 ∗ R 1 r1

(a) The augmented semantics of strb r1, [r2]

SAFE_INS (p, 〈(p + 4) ∈ succ(p)〉 ∗ 〈{r2} ⊆ mem〉 ∗ · · · )

(p,0xE5C21000) // strb r1,[r2]

(p + 4, · · · )

(b) Safe instruction semantics of strb r1, [r2]

Fig. 5. Safe instruction rule in action

This rule is critical, because if we directly use an instruction
semantic with safety assertions in a logic, when the safety
assertions are simplified totrue and removed from the
precondition, it is not clear what causes the absence of the
assertions: that the axiom does not have the assertions at all,
or that they have been discharged. With the new relation,
SAFE_INS, we are always assured that they have been
discharged; there is no instruction without having the safety
assertions in this relation.

After applying this rule to the augmented theorem in Fig-
ure 5.a, we get the safe instruction semantics for the store
strb r1, [r2], in Figure 5.b (We have omitted the assertions for
memory, R2 and R1, since they are the same as in (a)).

It is noteworthy that this rule also provides flexibility in
proving safety properties. For example, if we want to prove a
different property, say, memory reads being confined to pre-
defined regions, then we only need to formalize it as assertions
in the augmented theorem. All the proven rules and definitions
stay unchanged.

3) Instantiating the Semantic Parameter:We use the
SAFE_INS relation to instantiate the semantic parameterir

in Lf . This instantiation means that every instruction of a
program over all possible executions has been asserted for the
safety properties defined by the SafeIns rule. For example, the
program judgment in Section I-A has this relation, indicating
that every instruction of the program has been asserted for
memory safety and control flow integrity.

By the definition ofPROG_SPEC SAFE_INS, proving it
boils down to finding the

P
=⇒ relation among nodes inside func-

tions, which in turn reduces to finding global invariants that
can discharge the safety assertions that theSAFE_INS relation
has. There are two processes inLf that discharge these safety
assertions. One is the composition process (Section II-B).For
example, the assertion〈(p+4) ∈ succ(p)〉 in Figure 5.b can
be discharged for the instruction at address 0x20 (Figure 1.a)
after we instantiatep to 0x20 in composing. For the assertions
that cannot be discharged by composition, they are pushed up
to the precondition of the Hoare judgments of code blocks, and
we use another method presented below to discharge them.

B. Interprocedural Safety Assertion Analysis

This is a backward context-sensitive and flow-sensitive
analysis. Its domain is the power set of all concrete safety
assertions occurring in the Hoare judgments of code blocks.
It runs on a function at a time and computes, for a set of
incoming safety assertions, the set of assertions that goes
out of the function. A function has two types of nodes:
block nodes: Hoare judgments of code blocks, andfunction
nodes: abstract nodes for function calls. The transfer function
works differently on a block node and a function node. For a
block node, it runs as follows: when a node has an incoming
safety assertion, it tries to derive the assertion from the label
predicates in the postcondition whose labels are the same
as the incoming assertion; if it succeeds, which means the
assertion is true, it does nothing; otherwise, it propagates the
assertion along the flow, hoping that other nodes can discharge
the assertion. For a function node, it suspends the computation
in the caller and “dives into” the code of the callee. It merges
the incoming assertions to the in-configuration of each exit
node of the callee and computes the outgoing assertions for the
callee. It takes the assertions going out of the callee as thenew
configuration of the function node and resumes the analysis in
the caller. If the callee has other callees, it recursively dives
into these callees to compute their outgoing configurations.

In simplified pseudo-code, the transfer functions are (Σin

andΣout are the in- and out-configurations of a function):

transfer block (bnode, Σin):
foreach(l, assert) in Σin(bnode)

foreach(l′, p) ∈ postcondition(bnode)
if l′ = l and (not (p implies assert)) then

Σout(bnode) = Σout(bnode)∪{(L(bnode), assert)}

transfer fun (fnode, Σin):
mergeΣin(fnode) to the in-configuration

of exit nodes of function offnode (fun of fnode);
compute the states of funof fnode until fixed point;
Σout(fnode) = the out-configuration of the entry

node of fun of fnode

This algorithm computes the global invariants—where a
safety assertion can be discharged—in depth first search. In
theory, it is exponential, but in practice, we use a cache
for each function that records the outgoing assertion for a
given incoming assertion. This makes an assertion traversea
function only once, reducing the complexity to polynomial.
Our implementation also records or computes the following
information:

• The location where a safety assertion is originated in
a context-sensitive call graph and the path it traverses
through;

• the location where a safety assertion gets discharged;
• for each block node, which safety assertions traverse

along which call paths and their conversion theorems
(equations that connect incoming assertions to corre-



sponding outgoing assertions).

This information is necessary for later proof automation that
constructs function abstractions in depth first search for the
top-level function. The automation is implemented by meta-
language programming, in which we take the safety assertions
that are propagated by a block node and use the Frame rule to
add them to the node, generating a context-sensitive judgment
along a call path. The framed Hoare judgments are able
to imply the precondition of its successor nodes from their
postcondition.

IV. PROVING THE EXAMPLE

We illustrate the verification process by proving the example
in Figure 1. First, we compose Hoare judgments of code blocks
by instantiating the semantic parameterir with SAFE_INS
and use the Frame rule to convert the local judgments to the
global version. The results are shown below. For clarity, we
have omitted the leading relation markerSPEC SAFE_INS.
In addition, we have not explicitly written out unchanged
assertions and less important assertions such as assertions of
status flags; they are represented by· · · .

{(0x0, REG rf ∗ · · · )}

blk1 (4)

{(0x14, REG rf
′ ∗ · · · )}

{(0x10, REG rf ∗ · · · )}

blk2 (5)

{(0x10, REG rf ∗ · · · )}
whereREG rf collectively asserts the values of registers from R1
to R14 (similar toMEMORY), and rf ′ = ((R14 7→ 0x10) ((R0 7→
0) ((R1 7→ 0) ((R13 7→ 0x41000000) rf)))).

{(0x14, REG rf ∗ S sZ z ∗ 〈rf R14 ∈ succ(0x1C)〉∗

〈rf R2 6= 0x40000000〉 ∗ · · · )}

blk3 (6)

{(rf R14,REG ((R1 7→ (rf R1 − 1)) rf) ∗ s1 ∗ · · · )}

s1 = S sZ ((rf R2) = 0x40000000)

{(0x14, REG rf ∗ S sZ z ∗ 〈rf R2 = 0x40000000〉 ∗ · · · )}

blk3 (7)

{(0x20, REG ((R1 7→ (rf R1 − 1)) rf) ∗ s1 ∗ · · · )}

{(0x20, MEMORY mem df ∗ REG rf ∗ S sZ z ∗

〈{rf R2} ⊆ mem〉 ∗ 〈rf R1 6= 0x0〉 ∗ · · · )}

blk4 (8)

{(0x14, MEMORY mem ((rf R2 7→ w2w(rf R1)) df) ∗ s2 ∗ · · · )}

s2 = REG rf ∗ S sZ ((rf R1) = 0x0)

{(0x20, MEMORY mem df ∗ REG rf ∗ S sZ z ∗

〈{rf R2} ⊆ mem〉 ∗ 〈rf R1 = 0x0〉 ∗ · · · )}

blk4 (9)

{(0x2C,MEMORY mem ((rf R2 7→ w2w(rf R1)) df) ∗ s2 ∗ · · · )}

{(0x2C, REG rf ∗ 〈rf R14 ∈ succ(0x2C)〉 ∗ · · · )}

blk5 (10)

{(rf R14,REG rf ∗ · · · )}

There are safety assertions that are not discharged dur-
ing composition:〈rf R14 ∈ succ(0x1C)〉 (Judgment 6),

〈rf R14 ∈ succ(0x2C)〉 (Judgment 10), and〈{rf R2} ⊆
mem〉 (Judgments 8 and 9).

Next, we examine the judgments of nodes in functionfoo
(Judgments 6, 7, 8, 9, and 10) to see if these assertions can
be discharged.〈{rf R2} ⊆ mem〉 can be discharged by the
postcondition of Judgment 7, because it has the branch con-
dition of 〈(rf R2) = 0x40000000〉, and ({0x40000000} ⊆
mem) = true. In order to get it formally, we frame the branch
condition to the judgment itself. As a result, the assertionin the
postcondition has〈(rf R2) = 0x40000000〉, which implies
the memory assertion of blk4. In our framework, this work is
done by the abstract interpretation described in Section III-B.

The other two assertions cannot be discharged insidefoo
and are propagated to the judgment of blk3 by the analysis.
After the analysis, we take the safety assertions propagated by
a block node and frame them to the node judgment. We also
merge the two judgments of the same block with the LPMerge
rules. For example, we get the framed and merged judgment
of blk3 in (11) (similar to blk4). The branch conditions
form tautology after merging and are removed. The merged
judgments have one entry in the precondition and two entries
in the postcondition. It is easy to prove that they are well-
formed Hoare judgments by definition (Section II-C).

{(0x14, REG rf ∗ S sZ z ∗ 〈rf R14 ∈ succ(0x1C)〉∗

〈rf R14 ∈ succ(0x2C)〉 ∗ · · · )}

blk3 (11)

{(rf R14, REG ((R1 7→ (rf R1 − 1)) rf) ∗ s1 ∗ · · · ),

(0x20, REG ((R1 7→ (rf R1 − 1)) rf) ∗ s1 ∗

〈rf R2 = 0x40000000〉 ∗ 〈rf R14 ∈ succ(0x2C)〉 ∗ · · · )}

Next, we construct the terms needed for proving the function
judgment offoo. Let Pi and Qi be the precondition and
postcondition of blki. After using the Base rule (Figure 4.b),
we get three well-formed nodes, whose code is:foo =
{bbl 0x14, bbl 0x20, bbl 0x2C}. We construct the
two specifications of the function as:foo_bspec = {(bbl
0x14) → P1, (bbl 0x20) → P2, (bbl 0x2C) → P3}, and
foo_kspec = {(bbl 0x14) → Q1, (bbl 0x20) → Q2,
(bbl 0x2C) → Q3}. The exit specification isfoo_exits
= {(bbl 0x14, Q1), (bbl 0x2C, Q3) }. The initial condi-
tion has the two assertions that are not discharged by foo:
foo_init = 〈rf R14 ∈ succ(0x1C)〉 ∗ 〈rf R14 ∈
succ(0x2C)〉 ∗ · · · . With these terms, we are able to prove
the judgment of functionfoo:

FUN_SPEC WF_NODE SAFE_INS foo 0x14 foo_init

foo_exits foo_predecessor foo_bspec foo_kspec

wherefoo_predecessor is the predecessor relation of
nodes: {bbl 0x14 → {bbl 0x20}, bbl 0x20 → {bbl

0x14}, bbl 0x2C → {bbl 0x20}}.
By applying the Induction rule (Figure 4.b), we get the well-

formed node of functionfoo, whose three label predicate
entries in the postcondition come from the postconditions of
blk5 and blk3 (we only write out state predicates for clarity):

WF_NODE SAFE_INS

{(0x14, 〈rf R14 ∈ succ(0x1C)〉 ∗ 〈rf R14 ∈ succ(0x2C)〉)}

fun 0x14 // foo (12)

{(rf R14, · · · ), (rf R14, · · · ),

(0x20, 〈rf R2 = 0x40000000〉 ∗ 〈rf R14 ∈ succ(0x2C)〉 ∗ · · · )}



With this Hoare judgment offoo, we repeat the above rea-
soning process for functionentryFun. Inside this function,
the two assertions offoo are discharged by the postcondition
of blk1, where R14 is 0x10. As a result, we are able to
prove thePROG_SPEC judgment given in Section I-A, where
entryFun is the set of nodes of entryFun,pred is the
predecessor relation of these nodes (Figure 1.c gives the
pictorial representation of these two terms), andbspec is
the mapping from the nodes to their preconditions.

V. RELATED WORK

Boyer and Yu made the first attempt to verify small real-
world executables with symbolic execution, but their spec-
ifications and proofs were done manually [1]. Myreen et
al. developed a traditional Hoare logic for machine code
programs [14] and a decompiler to reuse proofs for multiple ar-
chitectures [15]. Both the logic and the decompilation require
structured code in order to compose a judgment or to develop
a function. Tan and Appel developed a compositional logic
for reasoning about arbitrary control flows and proved typing
rules for the foundational proof-carrying code project [22].
Their logic requires a complicated semantics and soundness
proof.

Proof-carrying code uses a VCG-based approach to verify
programs without formalizing the method itself [16].

Shao’s group developed certified assembly programming
to verify low-level code [17], [24]. It requires manually
provided specifications of code, and the verification process is
interactive. This is similar to the last step in our framework,
in which the specifications are instantiated and verified.

Seo et al. used the result of an abstract interpretation to ap-
proximately guide the construction of Hoare logic proofs [21],
but the abstract interpreter generated redundant information
that needed to be removed manually.

VI. I MPLEMENTATION AND CONCLUSION

We implementedLf and the framework for verifying safety
properties in the HOL theorem prover and applied it to
automatically prove the memory safety and the control flow
integrity of rewritten ARM executables. The definition of our
logic is about 60 lines in HOL, proof scripts of useful theorems
are about 600 lines, and automating libraries are about 8000
lines including the interprocedural interpreter.

The ARM executables we proved include our test programs
and MiBench programs [9]. The proven MiBench programs
have text sections over hundreds of machine instructions, e.g.
StringSearch has 1104 machine words. These programs can
run on a development board based on the NXP LPC2129 chip,
which contains an ARM7TDMI core and targets industrial
automation.

REFERENCES

[1] R. S. Boyer and Y. Yu. Automated proofs of object code for awidely
used microprocessor.J. ACM, 43:166–192, January 1996.

[2] X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni. Modularverification
of assembly code with stack-based control abstractions. InProc. of
the ACM SIGPLAN 2006 Conf. on Programming Language Design and
Implementation (PLDI), pages 401–414, June 2006.

[3] R. W. Floyd. Assigning meaning to programs. InMathematical Aspects
of Computer Science, volume 19, pages 19–32, 1967.

[4] A. Fox. Formal specification and verification of ARM6. InProc. of the
16th Intl. Conf. on Theorem Proving in Higher Order Logics (TPHOLs),
pages 25–40, Rome, Italy, Sept. 2003.

[5] A. Fox and M. O. Myreen. A trustworthy monadic formalization of
the ARMv7 instruction set architecture. InProc. of the Intl. Conf. on
Interactive Theorem Proving (ITP), Edinburgh, UK, July 2010.

[6] M. J. C. Gordon. Mechanizing programming logics in higher order
logic. In G. Birtwistle and P. A. Subrahmanyam, editors,Current Trends
in Hardware Verification and Automated Theorem Proving, pages 387–
439. Springer-Verlag, 1989.

[7] M. J. C. Gordon.A Mechanized Hoare Logic of State Transitions, pages
143–159. Prentice Hall International (UK) Ltd., 1994.

[8] M. J. C. Gordon and T. F. Melham, editors.Introduction to HOL:
A Theorem Proving Environment for Higher Order Logic. Cambridge
University Press, 1993.

[9] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.Mudge, and
R. B. Brown. MiBench: A free, commercially representative embedded
benchmark suite. InProc. of Workshop on Workload Characteriza-
tion, pages 3–14, Austin, TX, Dec. 2001. http://www.eecs.umich.edu/
mibench.

[10] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, Oct. 1969.

[11] I. Jager, T. Avgerinos, E. Schwartz, and D. Brumley. Bap: Binary
analysis platform. InCAV, 2011.

[12] T. F. Melham. A package for inductive relation definitions in HOL. In
Proc. of the 1991 International Workshop on the HOL Theorem Proving
System and its Applications, pages 350–357, 1992.

[13] M. O. Myreen, A. C. J. Fox, and M. J. C. Gordon. A Hoare logic for
ARM machine code. InProc. of the IPM Intl. Symp. on Fundamentals
of Software Engineering (FSEN), 2007.

[14] M. O. Myreen and M. J. C. Gordon. A Hoare logic for realistically
modelled machine code. InProc. of the Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), pages 568–582, 2007.

[15] M. O. Myreen, K. Slind, and M. J. C. Gordon. Machine-codeverification
for multiple architectures—An application of decompilation into logic.
In Proc. of the Formal Methods in Computer-Aided Design, 2008.

[16] G. C. Necula. Proof-carrying code. InProc. of the 24th Symp. on
Principles of Programming Languages (POPL), pages 106–119, Paris,
France, Jan. 1997.

[17] Z. Ni and Z. Shao. Certified assembly programming with embedded
code pointers. InProc. of the 33rd Symp. on Principles of Programming
Languages (POPL), pages 320–333, Charleston, SC, USA, Jan. 2006.

[18] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-
TSO. In Proc. of the 22nd Intl. Conf. on Theorem Proving in Higher
Order Logics (TPHOLs), pages 391–407, 2009.

[19] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. InProc. of the 17th IEEE Symp. on Logic in Computer
Science (LICS), pages 55–74, 2002.

[20] A. Saabas and T. Uustalu. A compositional natural semantics and
Hoare logic for low-level languages.Theoretical Computer Science,
373(3):273–302, Mar. 2007.

[21] S. Seo, H. Yang, and K. Yi. Automatic construction of hoare proofs
from abstract interpretation results. InProc. of the 1st Asian Symp. on
Programming Languages and Systems, volume 2895 ofLecture Notes
in Computer Science, pages 230–245. Springer-Verlag, 2003.

[22] G. Tan and A. W. Appel. A compositional logic for controlflow. In
Proc. of the 7th Intl. Conf. on Verification, Model Checking and Abstract
Interpretation (VMCAI), pages 80–94, 2006.

[23] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De Bosschere.
Diablo: A reliable, retargetable and extensible link-timerewriting frame-
work. In Proc. of the 2005 IEEE International Symposium On Signal
Processing And Information Technology, pages 7–12, Athens, 12 2005.

[24] D. Yu, N. A. Hamid, and Z. Shao. Building certified libraries for PCC:
Dynamic storage allocation.Science of Computer Programming, 50(1-
3):101–127, 2004.


