
Preventing Interrupt Overload

John Regehr Usit Duongsaa
School of Computing, University of Utah

{regehr,duongsaa}@cs.utah.edu

Abstract
Performance guarantees can be given to tasks in an embedded sys-
tem by ensuring that access to each shared resource is mediated
by an appropriate scheduler. However, almost all previous work on
CPU scheduling has focused on thread-level scheduling, resulting
in systems that are vulnerable to a lower-level form of overload that
occurs when too many interrupts arrive. This paper describes three
new techniques, two software-based and one hardware-based, for
creating systems that delay or drop excessive interrupt requests be-
fore they can overload a processor. Our interrupt schedulers bound
both the amount of work performed in interrupt context and its
granularity, making it possible to provide strong progress guaran-
tees to thread-level processing. We show that our solutions work
and are efficient when implemented on embedded processors. We
have also taken a description for a microprocessor in VHDL, modi-
fied it to include logic that prevents interrupt overload, synthesized
the processor, and verified that it works using simulation. By allow-
ing developers to avoid making assumptions about the worst-case
interrupt rates of peripherals, our work fills an important gap in the
chain of reasoning leading to a validated system. These techniques
cannot replace careful system design, but they do provide a last-
ditch safety guarantee in the presence of a serious malfunction.

Categories and Subject DescriptorsC.3 [SPECIAL-PURPOSE
AND APPLICATION-BASED SYSTEMS]: Real-time and embed-
ded systems; D.4 [OPERATING SYSTEMS]: Process manage-
ment; B.8 [PERFORMANCE AND RELIABILITY]: Performance
analysis and design aids

General Terms Performance, design, reliability

Keywords Interrupts, overload, scheduling, embedded

1. Introduction
Many interrupt-driven embedded systems are vulnerable tointer-
rupt overload: the condition where external interrupts are signaled
frequently enough that other activities running on a processor are
starved. Interrupts are dangerous because they are implicitly given
higher priority than processing done in other contexts such as
threads. Also, as we show in Section 2, some common interrupt
sources have very high maximum arrival rates. Neglecting to bound

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’05 June 15–17, 2005, Chicago, Illinois, USA.
Copyright c© 2005 ACM 1-59593-018-3/05/0006. . . $5.00.

maximum interrupt arrival rates creates an important gap in the
chain of assumptions leading to a high-assurance system.

This paper presents a collection of techniques that can lead
to systems that actively prevent interrupt overload. Our specific
goals were to develop interrupt schedulers that have the following
properties:

• Average processor load must be proportional to the interrupt
arrival rate during underload.

• Average processor load must be bounded by a constant during
overload.

• It must be possible to quantify the worst-case delays incurred
by low-priority interrupts and non-interrupt work, in order to
give them performance guarantees.

• The schedulers should be dynamically parameterizable, in or-
der to permit systems to flexibly choose appropriate levels of
protection from interrupt overload.

• Overhead must be reasonable.

Interrupt schedulers meeting these goals could be implemented in
software or hardware; we explore both strategies. All of our sched-
ulers should work smoothly in concert with other schedulers such
as network bandwidth reservations or thread-level CPU reserva-
tions.

Our approach to eliminating interrupt overload is motivated by
three main characteristics of embedded systems. First, embedded
systems are often highly resource-limited. In fact, due to memory
constraints, many small embedded systems such as energy-efficient
sensor network nodes based on 8-bit microcontrollers lack high-
level schedulable contexts like threads and processes. This limits
the utility of the many reservation-based abstractions that have been
developed to prevent CPU overload [12, 15, 18] in open systems.
Also, thread-level reservations cannot directly prevent interrupt
overload, though they can delay its onset if as much interrupt-
mode code as possible is migrated into threads. However, adding
thread dispatches to the critical path for interrupt handling is itself
a problem on slow processors where thread dispatch is relatively
expensive. For example, as part of a previous research effort [23]
we attempted to run some TinyOS [10] radio interrupt code in
thread mode. We found that this unacceptably delayed time-critical
radio processing and, in addition, the next interrupt request would
arrive before the previous thread invocation completed, leading
to persistent CPU overload. Our solutions to interrupt overload
directly throttle interrupt arrivals; they do not require code to be
moved into different execution contexts.

Second, embedded systems tend to have strict timing require-
ments due to tight coupling between software and hardware. For ex-
ample, sensor/actuator feedback loops can become unstable if soft-
ware execution is delayed for too long, leading to system failure.
Also, inexpensive embedded peripherals such as serial ports often
impose real-time requirements on a system due to limited buffer
size. Existing techniques for preventing overload in interrupt-

LCTES’05 1 2005/5/2

driven network subsystems [5, 19] drop excess packets as early
as possible and switch from interrupt-driven to polling mode dur-
ing overload. Dropping packets early—before copying them into a
buffer, for example—can delay the onset of interrupt overload but
cannot prevent it. Adaptively switching between interrupt-driven
and polling I/O is not a generally suitable strategy for embedded
systems with tight response time requirements: it does not offer any
guarantees about progress between the time when overload begins
and the time when the system responds. Our solutions focus on
predictability and responsiveness: they permit strong performance
guarantees to be made to non-interrupt work.

The third characteristic of embedded systems that motivates our
work is their extreme cost sensitivity, which often leads them to use
cheap peripherals with little or no onboard processing power. This
implies that for most embedded systems, developers will not be
able to modify device firmware to ensure that the main processor is
not overloaded by interrupts. Our solutions to interrupt overload—
in both software and hardware—all run on the main processor. In
contrast, Druschel and Banga [5] and Dannowski and Härtig [4]
have prevented interrupt overload by changing the firmware run-
ning on high-end NICs.

In the next section we describe potential causes for inter-
rupt overload. We present our solutions to interrupt overload in
Section 3, discuss additional interrupt scheduling issues in Sec-
tion 4, and analyze the schedulers’ behavior in Section 5. Section 6
presents the results of an experimental validation and evaluation of
our schedulers and Section 7 describes a case study in protecting an
embedded Ethernet device against network interrupt overload. Sec-
tion 8 describes an experiment in synthesizing a hardware-based
interrupt scheduler. We compare our work to related research in
Section 9 and conclude in Section 10.

2. Interrupt Overload
The first moon landing was nearly aborted when a flood of radar
data overloaded a CPU on the Lunar Landing Module, resulting
in guidance computer resets [20, pp. 345–355]. The problem on
Apollo 11 appears to have been caused by spurious signals coming
from a disconnected device. It would not have been severe had the
system been designed so that a single erroneous interrupt source
was not permitted to overload the computer.

Embedded systems tend to be particularly interrupt-driven. One
reason is that embedded systems are usually very cost-sensitive.
This leads to the use of cheap, dumb peripherals that require con-
stant micromanagement, with an extreme case being the canonical
“bit-banged” network interface where each bit is sent over the wire
using explicit software control. A second reason that interrupts are
used heavily is that many processors are capable of going to sleep,
greatly reducing power consumption, until an interrupt arrives. This
is an important energy optimization for devices that rely on batter-
ies. The obvious alternative to interrupts, polling, performs well
during overload but degrades performance and consumes power
during underload by generating useless work.

Interrupt overload is not necessarily caused by high interrupt
loads, but rather by unexpectedly high interrupt loads. For exam-
ple, a fast processor running software that performs minimal work
in interrupt mode can easily handle hundreds of thousands of in-
terrupts per second. On the other hand, a slow processor running
lengthy interrupt code can be overwhelmed by merely hundreds of
interrupts per second.

Computing a reliable maximum request rate for an interrupt
source in an embedded system is difficult, often requiring reasoning
about complex physical systems. For example, consider an optical
shaft encoder used to measure wheel speed on a robot. The maxi-
mum interrupt rate of the encoder depends on the maximum speed
of the robot and the design of the encoder wheel. However, what

Source Max. Interrupt Freq. (Hz)
knife switch bounce 333
loose wire 500
toggle switch bounce 1 000
rocker switch bounce 1 300
serial port @115 kbps 11 500
10 Mbps Ethernet 14 880
CAN bus 15 000
I2C bus 50 000
USB 90 000
100 Mbps Ethernet 148 800
Gigabit Ethernet 1 488 000

Table 1. Potential sources of excessive interrupts for embedded
processors. The top part of the table reflects the results of experi-
ments and the bottom part presents numbers that we computed or
found in the literature.

happens if the robot exceeds its maximum design speed, for ex-
ample while going downhill? What if the encoder wheel gets dirty,
causing it to deliver pulses too often?

The data in Table 1 show some measured and computed worst-
case interrupt rates. Even innocuous-seeming hardware, such as
switches, can display interesting electrical behavior. For exam-
ple, during the transition from open to closed and closed to open,
switches that we measured (using a logic analyzer) created tran-
sient signals that an embedded processor would interpret as inter-
rupt requests exceeding 1 kHz. This could easily cause problems
for a system designed to handle only tens of switch transitions per
second. The traditional way to debounce a switch is to implement
a low-pass filter either in hardware or software. Although debounc-
ing techniques are well-known to embedded systems designers, it
is not enough just to debounce all switches: new and unforeseen
“switches” can appear at run-time as a result of loose contacts or
damaged wires. Both of these problems are more likely in embed-
ded systems that operate in difficult environmental conditions with
heat and vibration, and without routine maintenance. These condi-
tions are, of course, very common—for example, in automobiles.

Network interfaces represent another potential source for inter-
rupt overload. For example, consider an embedded CPU that ex-
changes data with other processors over 10 Mbps Ethernet using
a specialized protocol that specifies 1000-byte packets. If the net-
work interface interrupts on packet arrival, the maximum interrupt
rate is 1.25 kHz. However, if a malfunctioning or malicious node
sends minimum-sized (72 byte) packets, the interrupt rate increases
to nearly 15 kHz [13], potentially starving important processing.

3. Preventing Interrupt Overload
This section briefly reviews interrupt handling and then presents
our techniques for preventing interrupt overload. Two of these
schemes operate entirely in software, and can be run on off-the-
shelf microprocessors. The third technique is implemented in hard-
ware.

3.1 Interrupt background

There is variation in the details of interrupt implementations: we
describe the behavior of the Atmel AVR family of microcontrollers
as it is typical and these are the processors that we use to evaluate
our work in Section 6. Each interrupt has two special hardware bits
associated with it: an enable bit and a pending bit. Also, there is a
global interrupt enable bit that can be used to disable all interrupt
handlers.

LCTES’05 2 2005/5/2

The CPU asynchronously polls the status of each interrupt re-
quest line. For an interrupt line whose firing condition is met—
interrupts may be edge-triggered or level-triggered—the interrupt’s
pending bit is set. Then, before executing each instruction, the CPU
checks the status of each interrupt’s pending bit. If the global in-
terrupt enable bit is cleared, the processor continues executing its
normal instruction stream. If this bit is set, the lowest-numbered
pending interrupt whose enable bit is set is selected for execution.
The processor then atomically:

• clears the interrupt’s pending bit,
• clears the global interrupt enable bit,
• pushes the program counter and processor status word onto the

stack, and
• loads the address of the selected interrupt’s vector into the

program counter.

The CPU is now executing in interrupt mode and will continue to
do so until a return-from-interrupt instruction is executed.

Interrupt requests may be lost in two ways. First, if an interrupt
is triggered (that is, its firing condition is met) when its pending bit
is already set, then the new interrupt request is lost. Second, some
interrupt sources have no pending bit: if their triggering condition
becomes false before the interrupt is handled, the interrupt request
is lost.

Preventing interrupt overload amounts to stopping the processor
from handling interrupts when developer-specified conditions are
met. Although discarding some interrupts may result in poorer
quality of service for the subsystem driven by that interrupt, we
claim that this is the best option in the presence of erroneously
high arrival rate. In other words, if it is advantageous to overall
application performance to handle a higher rate of interrupts than
the rate limit, then the limit should simply be increased.

A hardware-based implementation can simply filter undesirable
signals out of the wire. Scheduling interrupts in software, on the
other hand, must reduce to twiddling an interrupt’s enable bit,
as this is the only available scheduling mechanism. So, the basic
difference between the hardware and software schedulers is that
the former is logically outside the processor’s interrupt arbitration
logic while the latter is logically inside it.

3.2 Strict software scheduler

Our first technique for scheduling interrupt arrivals is implemented
in software and isstrict: it enforces a minimum interarrival time
between interrupts. The minimum interarrival time or its inverse,
the maximum interrupt frequency, is specified by system designers.

The algorithm is simple: the interrupt prologue is modified to in-
clude code clearing the interrupt’s enable bit and setting a one-shot
timer to expire one interarrival time in the future. When the timer
expires, its handler re-enables the interrupt. Conflicting access to
the timer (i.e., setting it when it is already set) is impossible. This
solution works on unmodified hardware but incurs some overhead,
doubling the number of interrupts handled.

3.3 Bursty software scheduler

The second software-based interrupt scheduler that we developed
has lower overhead than the strict scheduler but provides weaker
isolation. In effect, it is lazier, disabling an interrupt only after a
burst of interrupt requests has been observed. This scheduler has
two inputs: a maximum burst size and a maximum arrival rate
for bursts of interrupts (as opposed to a maximum arrival rate for
individual interrupt requests, as in the previous scheduler).

To implement this scheduler, the interrupt prologue is modified
to increment a counter and, if the counter is greater than or equal to
the burst size, clear the interrupt’s enable bit because there is danger
of overload. The interrupt counter is cleared by a periodic timer

that runs asynchronously with respect to the interrupt workload;
the frequency of this timer is the burst arrival rate. This timer also
sets the interrupt enable bit if it was previously cleared.

A useful performance optimization is to leave the periodic timer
interrupt disabled as long as the counter is below the threshold,
avoiding timer overhead in the expected case where the threshold
is seldom exceeded. This only works when a dedicated hardware
timer is available for the interrupt scheduler; during underload
its effect is to leave the timer interrupt pending almost all of the
time. It is also necessary to clear the timer interrupt’s pending bit
just before enabling the timer interrupt, in order to avoid a bad
case where three back-to-back bursts of device interrupts could
otherwise occur.

The maximum burst size and the burst arrival rate can be tuned
to produce different performance tradeoffs. For example, it is pos-
sible to maintain a constant asymptotic maximum interrupt arrival
rate by increasing burst size and reducing burst arrival rate. This
reduces overhead but, by permitting longer bursts, increases the
amount of time that other code running in the system may be de-
layed.

An advantage of the bursty scheduler is that it permits the
cost of timer interrupts to be amortized over a number of device
interrupts, reducing overhead. A second, distinct, benefit is that
some devices, such as network interfaces, are inherently bursty. It
may be desirable to attempt to handle an entire burst, rather than
handling only the first interrupt in a burst, or the first few, and
dropping the rest, as the strict scheduler would do.

3.4 Hardware scheduler

Our final scheduling technique filters interrupt signals out of an
interrupt request line before they ever reach the CPU’s interrupt
controller. In a sense this was the simplest of the three interrupt
schedulers to design: since it runs in parallel with the main CPU,
efficiency is not a major concern. We have two prototype imple-
mentations of the hardware scheduler: one on a second microcon-
troller, the other as a modified version of an embedded processor
that is implemented as an FPGA (field programmable gate array)
configuration. The algorithm described in this section applies to
both prototypes.

The hardware scheduler uses a counter that is automatically
decremented at a fixed rate. When an interrupt arrives, there are
two possibilities:

1. The counter is at zero. In this case the counter is reset to an
initial value and the interrupt is propagated to the CPU.

2. The counter is not at zero. In this case the interrupt arrival is
merely noted. When the counter reaches zero, we are back to
case one. There is no additional queuing: if several interrupts
arrive while the counter is counting down, only one interrupt
is delivered to the CPU when the counter reaches zero. Both
the countdown frequency and the counter’s initial value can be
changed by the software.

The software overhead of this solution is zero: enforcement of
minimum interarrival times is completely free. We will show in
Section 8 that implementing a scheduler in hardware is cheap in
terms of chip area.

3.5 Scheduling multiple interrupt sources

Scheduling multiple interrupt sources using a strict scheduler is as
simple as replicating the hardware or software for each interrupt
line. The bursty scheduler, on the other hand, presents interesting
opportunities for optimization by using a single periodic timer to
clear the counters for multiple interrupt sources.

Earlier we noted that for a bursty scheduler, it is important to
choose a burst size that strikes the right balance between overhead

LCTES’05 3 2005/5/2

and protection from overload. There are more choices to make in
a system with multiple interrupt sources. Simply picking the least
common multiple (LCM) of the burst arrival rates for all interrupt
sources is likely to result in a very high frequency and thus poor
overall performance.

We can round up the maximum allowed rates to some multiples
of a large number, allowing a single slow timer to service them
all and still maintain reasonable protection. For example, a system
with three sources with maximum arrival rates of 324, 200, and
754 Hz can be serviced by a single timer of 110 Hz and have a
maximum burst size of 3, 2, and 7, respectively.

Also, note that the hardware timers provided by an embedded
processor natively support only certain frequencies, so it is likely
that some rounding will be required anyway.

4. Discussion
This section discusses a few additional issues in preventing inter-
rupt overload.

Design space issuesAlthough it would not be difficult to imple-
ment a bursty scheduler in hardware, we have not done so. The
choices of strict vs. bursty and hardware vs. software are orthog-
onal: it is unlikely that we would have learned anything new by
doing this. Similarly, we could have implemented a bursty sched-
uler that uses a one-shot timer, instead of a periodic timer, to reset
the burst counter. Again, our judgment was that we wouldn’t have
learned anything new.

Interface issues A drawback of a software-based interrupt sched-
uler is that asynchronously modifying interrupt enable bits from
timer callbacks is an inconvenience to developers who want to dis-
able an individual interrupt source as a strategy for implementing
mutual exclusion. In other words, we have made the interrupt en-
able bit into a shared variable, inviting race conditions. There are
two solutions to this problem. The first is a hardware solution: each
interrupt line could be outfitted with two enable bits, one that is
set and cleared by the interrupt scheduling logic, the other being
reserved for programmers. The interrupt would be permitted to fire
only when both bits (and also the global interrupt enable bit) are set.
The second solution is a software-based implementation equivalent
to having two interrupt enable bits: the interrupt bit must be modi-
fied using function calls that only set the hardware interrupt enable
bit when both the interrupt scheduler and user code want to do so.
This is simple to implement but adds time and space overhead.

Implications of dropping interrupts A potential problem with
scheduling interrupts is that during overload the CPU may miss
some interrupts that otherwise would have been processed. This
could lead to degraded quality of service or even system failure.
The rationale for using interrupt schedulers is as follows. When
interrupt overload occurs there is no way to avoid making a difficult
tradeoff—either interrupts must be dropped or else other processing
will starve. Our work makes an implicit assumption that a system’s
core processing is more important than, for example, receiving
every network packet that arrives. Clearly this assumption could be
incorrect for a particular system. In general, however, we strongly
belive that failures should be forced to occur in a predictable,
bounded manner, with as little impact on the rest of the system
as possible. Interrupt schedulers can help achieve this goal.

5. Performance Analysis
Interrupt controllers implicitly run interrupts at a higher priority
than non-interrupt work. It is well-known that static priority sched-
ulers have poor fairness characteristics during overload: low prior-
ity work is starved [21]. The goal of our work is to avoid this kind

Parameter Cost (cycles)
tint 79
tpoll 4
tsetup 5
texpire 79
tflip 5
tcount 12
tclear 5

Table 2. Overhead constants for the ATmega103L with TinyOS. A
cycle is 250 ns.

of starvation by applying reservation-like scheduling techniques to
interrupts. In this section we show how to make quantitative perfor-
mance guarantees to low-priority work in the presence of scheduled
interrupts—this cannot be done otherwise, except by making risky
assumptions about maximum interrupt arrival rates.

5.1 Static priority analysis

There are many different priority-based real-time analyses [8, 16,
26, 29, 25]. The common idea across all of this work is that given
a worst-case execution time (WCET), a minimum interarrival time,
and a priority for each member of a collection of tasks, the worst-
case completion time of each task instance, relative to the time it
became ready, can be efficiently computed. In the next section we
show how to compute WCET (denotedC) and minimum interar-
rival time (denotedT) for each interrupt in an embedded system.
Our work does not address the problem of computing the WCET of
generic code; this is a well-studied static analysis problem [6, 17].
Rather, given some basic system overheads and a WCET for the
user-specified part of the interrupt, we show how to put these num-
bers together into an aggregate WCET that includes all overheads.
OnceC andT have been computed for all tasks, an appropriate
real-time analysis can be run to find out if a system is schedulable.
The details of the analysis chosen are irrelevant: we simply focus
on deriving inputs that are common across real-time analyses.

5.2 Modeling interrupt schedulers

Consider a system with a single interrupt handler that is connected
to an external device. We want to ensure that every pair of inter-
rupts processed by the CPU is separated by at least the minimum
interarrival timetarrival. Let twork be the worst-case execution time
of processing a unit of work generated by the device,tint be the
overhead of taking an interrupt as opposed to polling (usually just
the cost of the interrupt prologue and epilogue), andtpoll be the cost
of polling: determining if the device has any new work that needs
processing. Furthermore, lettsetup be the time taken to arrange for
a one-shot timer interrupt to arrive in the future andtexpire be the
overhead to take either a periodic or one-shot timer interrupt. For
the bursty scheduler, lettcount be the overhead of incrementing the
interrupt counter and checking it against the threshold value, and
let tclear be the cost of clearing this counter. Finally, lettflip be the
overhead for either setting or clearing an interrupt enable flag. Of
these overheads, it is usually the case that onlytwork is under con-
trol of the developer—the other constants are determined by the
platform: the hardware and RTOS. For example, the values of these
constants on our test platform (described in Section 6) are given
in Table 2. We computed these values empirically by counting in-
structions; they are approximate.

The rest of this section shows how to compute the important
real-time parametersC andT for each interrupt source.

LCTES’05 4 2005/5/2

Pure interrupts In the worst case, interarrival time of interrupts is
zero, and low-priority work is starved. This condition corresponds
to a stuck level-triggered interrupt.

Pure polling Polling is driven by a timer that expires once every
minimum interarrival time, and in the worst case work from the
device must be processed at each expiration. This situation can be
modeled as a periodic task withT = tarrival andC = texpire+ tpoll +
twork.

Strict software scheduler This scheduler can be modeled as a pair
of tasks, one representing the interrupt handler, the other represent-
ing the timer interrupt that re-enables the device interrupt, both with
T = tarrival. To see that this is correct, first notice that since the
timer interrupt is always set to expire one interarrival time in the
future, it cannot recur more often than this. Second, the interrupt
itself cannot recur more often than once everytarrival because each
time it arrives, its enable bit is cleared for one interarrival time.
The worst-case execution times are as follows: for the interrupt
C = tint + tflip + tsetup+ twork, and for the timerC = texpire + tflip .

Bursty software scheduler Again, we model the interrupt and
timer tasks separately. The burst sizeN can take any value, and
the periodT of the timer and interrupt are both equal to minimum
interarrival time for bursts of interrupts. Then, for the timer,C =
texpire+tclear+tflip and for the interruptC = N(tint+twork+tcount)+
tflip . In other words, for purposes of real-time analysis, we model a
worst-case burst of interrupts as a single task arrival.

When using this scheduler it is possible for a burst of interrupts
to arrive just before the periodic timer interrupt, and then for a
second burst to arrive immediately after. Many real-time analyses
can deal correctly with this case: the key is to avoid making any
assumption about when, within its period, a task will run; this is
handed by arelease jitterterm in the schedulability equations [29].
The jitter for a burst of interrupts should be set toT − C. An
alternate approach, also correct but more pessimistic, is to double
the WCET of the task representing the burst of interrupts.

Hardware scheduler The interrupt scheduler permits at most one
interrupt per interarrival time, and therefore it can be modeled as a
periodic task withT = tarrival andC = tint + twork.

6. Experimental Evaluation
The analytical results in the previous section can be used to com-
pute lower bounds on the rate of progress of low-priority work in an
embedded system. These bounds are best computed using schedul-
ing theory as they are not easy to determine empirically. This sec-
tion uses experiments run on a real system—no simulation results
are used—to show that our techniques work and to evaluate their
overhead in practice. In each case, our hardware-based interrupt
scheduler that is implemented on a second microcontroller repre-
sents the “gold standard” against which the software schedulers
should be compared: it provides perfect protection with zero soft-
ware overhead.

6.1 Methodology and equipment

To evaluate our three interrupt schedulers, we implemented the
software schedulers on Berkeley “Mica” motes [10], sensor net-
work nodes based on Atmel’s ATmega103L microcontroller. These
processors run at 4 MHz and have 4 KB of SRAM for data stor-
age. Because of their small size, they almost always run only one
application, allowing the application to have full control over the
interrupt arrival rate restrictions. Our prototype hardware scheduler
is implemented as a special-purpose program running on a second
microcontroller.

In the experiments in Sections 6.2 and 6.3, the mote was pre-
sented with externally generated periodic interrupts at frequencies

100 1000 10000 100000
Offered interrupt load (Hz)

0

10

20

30

40

50

%
 C

PU
 u

se
d

by
 in

te
rr

up
ts

 a
nd

 in
te

rr
up

t s
ch

ed
ul

er
s

pure polling
pure interrupts
emulated hardware scheduler
strict software scheduler
bursty software scheduler N=4
bursty software scheduler N=16

underload overload

maximum allowed interrupt
arrival rate: 4 kHz

Figure 1. Comparing the performance of different interrupt sched-
ulers when interrupt handlers perform no work

between 0.26 kHz and 16 kHz. Interrupt schedulers were set to en-
force a maximum arrival rate of 4 kHz. We inferred the CPU over-
head of scheduling and handling the interrupts by observing the
rate of progress of a background task running on the mote. There
was very little variation across repetitions of the experiments and
so we omit confidence intervals.

Although 16 kHz is a high frequency, it is not uncommon for
embedded systems, especially those connected to “dumb” hard-
ware, to deal with lots of interrupts, as indicated in Table 1. Also,
for example, the TinyOS motes, during the start symbol detection
phase of wireless radio communication, take interrupts every 50µs,
a 20 kHz arrival rate.

6.2 Overhead of scheduling interrupts

In our first experiment, the interrupt handler returns without per-
forming any real work. This, coupled with the high maximum in-
terrupt rate, was designed to avoid masking any overheads asso-
ciated with our interrupt scheduling techniques. The results of this
experiment are shown in Figure 1. The “pure polling” and “pure in-
terrupts” lines were the controls in this experiment, and their over-
heads are as expected: polling has constant overhead that is inde-
pendent of the interrupt arrival rate, while the overhead of handling
interrupts in the standard way is linear in the interrupt arrival rate.

In contrast with polling, all of our interrupt scheduling tech-
niques approach zero CPU overhead when interrupts are infre-
quent. In contrast with interrupts, the overhead of all of our tech-
niques flattens out even in the presence of very high frequency in-
terrupts. Thus, all of our schemes achieve our goals of low over-
head in the expected case while avoiding CPU overload under high
interrupt loads.

The interrupt schedulers implemented in software incur some
overhead. Figure 1 shows that each of the software schedulers ap-
proximates the ideal performance of the hardware interrupt sched-
uler more or less closely. In terms of lost CPU capacity relative
to the hardware interrupt scheduler, the strict software scheduler

LCTES’05 5 2005/5/2

100 1000 10000 100000
Offered interrupt load (Hz)

0

20

40

60

80

100

%
 C

PU
 u

se
d

by
 in

te
rr

up
ts

 a
nd

 in
te

rr
up

t s
ch

ed
ul

er
s

pure polling
pure interrupts
emulated hardware scheduler
strict software scheduler
bursty software scheduler N=4
bursty software scheduler N=16

underload overload

maximum allowed interrupt
arrival rate: 4 kHz

Figure 2. Comparing the performance of different interrupt sched-
ulers when interrupt handlers perform 250 cycles (62.5µs) of work

has at most 10% overhead, the bursty scheduler withN = 4 has
at most 5.0% overhead, and the bursty scheduler withN = 16
has at most 2.2% overhead. The hardware interrupt scheduler, as
expected, incurs no software overhead: its performance is indistin-
guishable from pure interrupts when the system is underloaded, and
its CPU load is perfectly flat during overload.

6.3 Scheduling interrupts that perform work

Above, we examined the performance of interrupt scheduling tech-
niques in the extreme case where the interrupt handler does not do
any real work. While this helps us clearly identify the performance
strengths and limitations of each scheduling technique by exagger-
ating its overhead, it is not realistic. In Figure 2 we present the re-
sults of a similar experiment where the interrupt handlers perform
250 cycles of busy-work. We chose 250 cycles because measure-
ments of two simple but representative TinyOS kernels, CntToLed-
sAndRfm and RfmToLeds, showed that they spent approximately
this much time handling each interrupt, on average.

Figure 2 shows that the performance penalty for limiting inter-
rupt arrival rates using software-based schedulers is relatively small
when the interrupt handler performs a realistic amount of work.
Note that the “pure polling” data points in this figure, unlike Fig-
ure 1, show CPU utilization that increases with offered interrupt
load. This happens because when there are few interrupt arrivals,
the polling task has little work to do; when there are many inter-
rupt arrivals, it is frequently or always forced to spend 250 cycles
performing work.

6.4 Scheduling multiple interrupt sources

We performed an experiment to look at the effect of running mul-
tiple interrupt schedulers in the same system, to ensure that they
compose properly and to investigate amortizing scheduling over-
head across several interrupt sources.

Figure 3. Aggregate CPU usage of two interrupt sources with and
without overload protection

Figure 3 shows the aggregate CPU utilization of two interrupt
sources, first without any protection, then with bursty interrupt
schedulers that share a common 200 Hz timer interrupt for clear-
ing their burst counts. The maximum burst size for source A is
five interrupts and the maximum burst size of source B is seven,
resulting in maximum average arrival rates of 1 kHz and 1.4 kHz,
respectively.

By comparing CPU utilizations before and after adding the
schedulers, we can estimate their aggregate overhead. When the
arrival rates of sources A and B are 400 and 781 Hz, respectively,
the difference in utilization between the scheduled and unscheduled
systems is 1.1%. In contrast, adding a bursty scheduler to a system
with a single interrupt source results in 4.1% overhead when the
burst size is 4, and 2.1% overhead when the burst size is 16.
These measurements were taken for a system with a single interrupt
source running at 1 kHz, which is slightly less than the combined
frequencies of the two-source system. The two-source system is
more efficient because the overhead of the timer is amortized across
the two interrupt sources. Extrapolating these results, we believe
that adding a third interrupt source would result in less than 1%
additional overhead.

7. Case Study: Protecting Against Network
Overload

As a further demonstration of the utility of interrupt overload pro-
tection, we implemented an interrupt scheduler on an Ethernut [7]
node. The Ethernut board version 1.3f is an embedded device con-
taining a 10 Mbps Ethernet interface and an AVR ATmega128
processor running at 16 MHz. The Nut/OS software for Ethernut
boards provides basic RTOS services such as threads and timers,
in addition to a full TCP/IP stack with associated protocols such as
DHCP. Figure 4 shows our experimental setup.

We started with an example Ethernut application that provides
a web server, and we added functionality that plays a tone by bit-
banging a digital output line that we connected to a speaker. The

LCTES’05 6 2005/5/2

Figure 4. Experimental setup for Section 7. The Ethernut board
(center) drives a piezo speaker on a breadboard (top), and is con-
nected to a laptop through an Ethernet switch.

speaker-driving code ran in thread context at maximum priority,
using an Ethernut timer to schedule itself every 2 ms. Each time
it ran, it flipped the sense of the output wire; the resulting square-
wave produced a 250 Hz tone.

Next, we subjected the Ethernut board to increasing packet
loads. The packets were minimum-sized Ethernet frames sent by
a PC. At a few hundred packets per second (PPS) the tone being
played by the Ethernut board was audibly distorted, and finally
between 1500 and 1600 PPS interrupt overload occurred: the board
stopped producing sound for the duration of the packet flood.

We added a bursty interrupt scheduler to limit the Ethernet in-
terrupts to at most a burst of 15 interrupts every 25 ms, correspond-
ing to a maximum packet arrival rate of 600 PPS. The choice of 15
for burst size was domain-specific: on this platform a typical small
web transaction generates 14 interrupts, and it did not seem to make
sense to consider overload to be occurring while processing a sin-
gle web request. With the interrupt scheduler enabled, the board
continues to produce a tone even when subjected to heavy packet
loads of more than 10,000 PPS. Finally, note that the 10 Mbps NIC
is quite slow—more recent versions of the Ethernut hardware con-
tain a 100 Mbps interface that can overwhelm the AVR processor
with interrupts when receiving only a small fraction of its maxi-
mum packet load.

8. Interrupt Overload Protection in Hardware
In Section 6 we evaluated a prototype hardware interrupt scheduler
implemented using a separate microcontroller. Our second proto-
type interrupt scheduler is implemented in VLSI logic. We started
with a design, in VHDL, for an AVR-like processor provided by
OpenCores [22], a collection of free hardware design files. The core
is not an authentic Atmel core, but it implements the same archi-
tecture and instruction set as the ATmega103, the chip used in the
Berkeley Mica motes. It is missing some features found on the real
Atmel chips, but none that we needed.

We added logic implementing the functionality described in
Section 3.4: a memory-mapped control register for the interrupt
scheduler, an internal count-down register, and associated control
logic. The maximum allowed rate can be set to any of the 256 non-
uniformly distributed values in the range of 500 Hz and 256 kHz.
Figure 5 shows a high-level schematic view of the added logic.

Clock Divider Count-Down
Counter

Control
Register

Is cnt
zero

?

System
Clk/64 decrement

rate

External Interrupt Signal
M

em
ory

B
u

s

Initial value Reset
counter

True:
pass along to AVR core

False:
set pending flag

Figure 5. Schematic view of the hardware interrupt scheduler
added to an AVR-like core

Parameter Original Modified Change
lines of VHDL code 5 847 5 951 1.8%
4-LUTs used 2 966 2 983 0.6%
cells used 3 468 3 527 1.7%
max. frequency 37.6 MHz 36.3 MHz -3.5%

Table 3. Comparison of the original OpenCores AVR and one
augmented with an interrupt scheduler

Adding an interrupt scheduler to the AVR-like core required
adding about 100 lines of VHDL. We synthesized the origi-
nal OpenCores AVR and our augmented AVR for the Spartan-3
XC3S400, a 400,000-gate FPGA. Some statistics about the two
designs are shown in Table 3. A 4-LUT is a basic building block
that can implement any four-input Boolean function and a cell is
a generic term for all basic building blocks, including 4-LUTs as
well as other digital gates. We found that adding a hardware in-
terrupt scheduler for a single external interrupt line increases the
number of logic units used by 1.7%, or approximately 600 tran-
sistors. These costs are modest and also reflect an unoptimized
implementation; we believe they could be reduced.

We tested the hardware interrupt scheduler in simulation and
verified that the hardware-based scheduler behaves correctly. The
simulation was done at the behavioral VHDL level. Direct per-
formance comparisons between this hardware scheduler and the
schedulers that we evaluated in Section 6 would not be meaningful—
the chips have different pipelines and, hence, different performance
characteristics.

Many embedded developers do not have the luxury of doing
VLSI design as part of creating an embedded system. However,
FPGA-based systems are growing in popularity, as are system-on-
chip and network-on-chip designs, which emphasize parameterized
reuse of existing designs, in order to create embedded computers
that provide exactly the right amount of functionality for a partic-
ular application, minimizing waste. Our hardware interrupt sched-
uler could be added to one of these designs in a straightforward
way. Furthermore, there is increasing interest in hybrid platforms
such as Atmel’s family of AT94S devices, which combine an AVR
processor and a small FPGA in a single package. Chips in this fam-
ily cost only a few dollars; they would make an ideal platform for
our hardware interrupt scheduler. Finally, we believe that hardware
vendors could add interrupt schedulers to embedded processors at
negligible cost, making it easy for users of these platforms to create
software with strong protection from interrupt overload.

LCTES’05 7 2005/5/2

9. Related Work
Receive livelock is the condition where a network server is over-
whelmed by arriving packets and spends most or all of its time
processing interrupts. Mogul and Ramakrishnan [19] designed a
network subsystem that switches from interrupt-driven to polling
when the system appears to be overloaded. Similarly, lazy receiver
processing [5] provides early demultiplexing of network traffic and
proper accounting of time spent processing it. These efforts fo-
cus on maximizing throughput and on achieving long-term fair-
ness, without making any specific guarantees about timely execu-
tion to applications. On the other hand, we focus on predictability
and responsiveness, making strong performance guarantees to non-
interrupt work. Also, receive livelock solutions tend at be network-
specific, for example inferring livelock due to input queue overflow.
Little has been done to address the more general interrupt overload
problem.

Hardware assistance can help avoid interrupt overload. For ex-
ample, interrupt mitigation techniques, such as those provided by
the Intel 21143 Ethernet controller [3], can delay the onset of inter-
rupt overload or prevent it. More flexible solutions are provided by
lazy receiver processing [5] and Dannowski and Härtig’s work [4],
which modify NIC firmware to drop packets in order to prevent net-
work interfaces from overloading hosts. Again, however, the focus
is on maximizing throughput: the NIC’s goal is to ensure that the
host is keeping up, rather than ensuring that incoming flows respect
a given maximum packet rate. These approaches could be modified
to better support embedded concerns but even so, their applicability
would be limited: most embedded peripherals do not have enough
processing resources to run their own interrupt-limiting code. Our
hardware interrupt scheduler, on the other hand, does not require
smart peripherals; rather, a few hundred transistors worth of logic
must be added to the main CPU.

QNX [9], TimeSys Linux [28], and a number of other systems,
such as those we cited in Section 2, run as much “interrupt” code
in thread mode as possible—the actual handler for each interrupt
then becomes a stub that awakens the corresponding thread. This
approach can delay, but not prevent, interrupt overload, unless two
conditions are met. First, the interrupt must remain disabled until
the thread has finished its processing. Second, the thread sched-
uler must not blindly give interrupt threads higher priority than
non-interrupt work: it needs to use some sort of reservation-based
scheduling policy. Nemesis is the only OS that we are aware of
that meets both criteria. However, even when implemented prop-
erly, scheduling interrupts as threads increases overhead by adding
context switches to the critical path for interrupt handling. This
overhead may be acceptable on fast systems, but thread dispatch is
relatively expensive on small embedded processors. Furthermore,
many small embedded devices, such as the TinyOS motes [10], are
so resource-limited that they do not even have a thread scheduler.

The operating systems and real-time communities have pro-
duced many results on scheduling strategies that provide isola-
tion between concurrent tasks, protecting against tasks that ar-
rive too often or run for too long. These results include aperi-
odic servers [27], processor reservations [12, 18], and rate-based
scheduling techniques [11]. While these results are useful, our work
is different in that we are focusing on low-level scheduling mech-
anisms that can efficiently throttle interrupt arrivals, rather than fo-
cusing on high-level scheduling policies at the level of threads or
processes. It is not straightforward to use a standard scheduling
algorithm to schedule interrupts because interrupt arrivals are ef-
fectively scheduled in hardware by the interrupt controller, out of
control of systems software.

Abeni and Lipari [1] and Regehr and Stankovic [24] have inves-
tigated adaptive schemes that compensate user-level tasks for CPU
time that is “stolen” from them by interrupts. However, neither of

these solutions throttles interrupt arrivals and so they will not work
when interrupt load is too high.

The time-triggered architecture [14] advocates avoiding inter-
rupts in favor of a polling-based approach to interaction with de-
vices. Our work shows that interrupts need not introduce the pos-
sibility of starvation or unacceptable delays in embedded systems.
There is no inherent problem with using rate-limited interrupts in
safety critical systems.

Finally, in networked embedded systems the babbling idiot
problem [2] occurs when a node begins sending too much traf-
fic onto a network. Avoiding interrupt overload, then, is basically
the inverse babbling idiot problem: protection is implemented on
the input side rather than on the output side.

10. Conclusions
While the research community has spent a great deal of effort on
providing processor isolation between threads and processes, little
work has been done on providing strong performance guarantees to
embedded software in the presence of interrupt overload. We have
developed, implemented, and evaluated two software-based mech-
anisms for protecting embedded systems against interrupt overload.
We have shown their worst-case overheads are modest, on the order
of 2%–10% of lost processor capacity for a fairly high frequency
interrupt source (4 kHz) on weak processors: 4 MHz Atmel AVRs.
Furthermore, overhead is quite small when interrupts arrive infre-
quently. We have also implemented and evaluated two interrupt
schedulers in hardware: one is implemented on a second micro-
controller, the other is added to an existing processor by modifying
its description in VHDL. The latter has small overhead in terms
of chip area, and we believe it shows that embedded chip vendors
could provide interrupt overload protection as an added feature at
little extra cost. Both hardware solutions add zero overhead to soft-
ware running on the main processor in all cases.

Designers of embedded systems usually have an intuitive idea
about the maximum rate of interrupt requests to expect from each
interrupt source. However, with no way to enforce these maximum
rates, the specifications lack teeth. Our work can encourage de-
velopers to answer a more pointed question about each interrupt
source: “Under what circumstances is it better to drop interrupt re-
quests than to attempt to process them?” The resulting system can
be tested at and above the maximum interrupt rate; we believe this
will lead to more robust embedded systems based on more guaran-
tees and less guesswork.

Acknowledgments
The authors would like to thank Luca Abeni, Ian Broster, Jay
Lepreau, and Alastair Reid for their helpful comments on drafts
of this paper. This material is based upon work supported by the
National Science Foundation under Grant No. 0209185.

References
[1] Luca Abeni and Giuseppe Lipari. Compensating for interrupt process

times in real-time multimedia systems. InProc. of the 3rd Real-Time
Linux Workshop, Work in Progress Session, Milan, Italy, November
2001.

[2] Ian Broster and Alan Burns. An analysable bus-guardian for event-
triggered communication. InProc. of the 24th IEEE Real-Time
Systems Symp. (RTSS), pages 410–419, Cancun, Mexico, December
2003.

[3] Intel Corporation. 21143 PCI/CardBus 10/100Mb/s Ethernet LAN
Controller, October 1998.ftp://download.intel.com/design/
network/manuals/27807401.pdf.

LCTES’05 8 2005/5/2

ftp://download.intel.com/design/network/manuals/27807401.pdf
ftp://download.intel.com/design/network/manuals/27807401.pdf

[4] Uwe Dannowski and Hermann Härtig. Policing offloaded. InProc. of
the 6th IEEE Real-Time Technology and Applications Symp. (RTAS),
pages 218–227, Washington, DC, May 2000.

[5] Peter Druschel and Gaurav Banga. Lazy Receiver Processing (LRP):
A network subsystem architecture for server systems. InProc. of the
2nd Symp. on Operating Systems Design and Implementation, pages
261–276, Seattle, WA, October 1996.

[6] Jakob Engblom, Andreas Ermedahl, Mikael Nolin, Jan Gustafsson,
and Hans Hansson. Worst-case execution-time analysis for embedded
real-time systems.Journal of Software Tool and Transfer Technology
(STTT), 4(4):437–455, August 2003.

[7] Ethernut: Tiny embedded Ethernet devices.http://www.
ethernut.de.

[8] Laurent George, Nicolas Rivierre, and Marco Spuri. Preemptive and
non-preemptive real-time uni-processor scheduling. Technical Report
2966, INRIA, Rocquencourt, France, September 1996.

[9] Dan Hildebrand. An architectural overview of QNX. InProc. of the
USENIX Workshop on Micro-kernels and Other Kernel Architectures,
pages 113–126, Seattle, WA, April 1992.

[10] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler,
and Kristofer Pister. System architecture directions for networked
sensors. InProc. of the 9th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages
93–104, Cambridge, MA, November 2000.

[11] Kevin Jeffay and Steve Goddard. A theory of rate-based execution.
In Proc. of the 20th IEEE Real-Time Systems Symp. (RTSS), pages
304–314, Phoenix, AZ, December 1999.

[12] Michael B. Jones, Daniela Roşu, and Marcel-Căt̆alin Roşu. CPU
Reservations and Time Constraints: Efficient, predictable scheduling
of independent activities. InProc. of the 16th ACM Symp. on
Operating Systems Principles (SOSP), pages 198–211, Saint-Malô,
France, October 1997.

[13] Scott Karlin and Larry Peterson. Maximum packet rates for full-
duplex Ethernet. Technical Report TR-645-02, Princeton University,
February 2002.

[14] Hermann Kopetz. The time-triggered model of computation. InProc.
of the 19th IEEE Real-Time Systems Symp. (RTSS), pages 168–177,
Madrid, Spain, December 1998.

[15] Ian Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul
Barham, David Evers, Robin Fairbairns, and Eoin Hyden. The design
and implementation of an operating system to support distributed
multimedia applications. IEEE Journal on Selected Areas in

Communications, 14(7):1280–1297, September 1996.
[16] C. L. Liu and James W. Layland. Scheduling algorithms for

multiprogramming in a hard-real-time environment.Journal of the
ACM, 20(1):46–61, January 1973.

[17] Thomas Lundqvist and Per Stenström. An integrated path and timing
analysis method based on cycle-level symbolic execution.Journal of
Real-Time Systems, 17(2/3):183–207, November 1999.

[18] Clifford W. Mercer, Stefan Savage, and Hideyuki Tokuda. Processor
capacity reserves for multimedia operating systems. InProc. of the
IEEE Intl. Conf. on Multimedia Computing and Systems, May 1994.

[19] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating receive
livelock in an interrupt-driven kernel. ACM Transactions on
Computer Systems, 15(3):217–252, August 1997.

[20] Charles Murray and Catherine Bly Cox.Apollo: The Race to the
Moon. Simon and Schuster, 1989.

[21] Jason Nieh, James G. Hanko, J. Duane Northcutt, and Gerard A. Wall.
SVR4 UNIX scheduler unacceptable for multimedia applications. In
Proc. of the 4th Intl. Workshop on Network and Operating System
Support for Digital Audio and Video (NOSSDAV), November 1993.

[22] OpenCores.http://www.opencores.org.
[23] John Regehr, Alastair Reid, Kirk Webb, Michael Parker, and Jay

Lepreau. Evolving real-time systems using hierarchical scheduling
and concurrency analysis. InProc. of the 24th IEEE Real-Time
Systems Symp. (RTSS), Cancun, Mexico, December 2003.

[24] John Regehr and John A. Stankovic. Augmented CPU reservations:
Towards predictable execution on general-purpose operating systems.
In Proc. of the 7th IEEE Real-Time Technology and Applications
Symp. (RTAS), pages 141–148, Taipei, Taiwan, May 2001.

[25] Manas Saksena and Yun Wang. Scalable real-time system design
using preemption thresholds. InProc. of the 21st IEEE Real-Time
Systems Symp. (RTSS), Orlando, FL, November 2000.

[26] Lui Sha, Ragunathan Rajkumar, and Shirish S. Sathaye. Generalized
rate-monotonic scheduling theory: A framework for developing real-
time systems.Proc. of the IEEE, 82(1):68–82, January 1994.

[27] Brinkley Sprunt, Lui Sha, and John P. Lehoczky. Aperiodic task
scheduling for hard real-time systems.Real-Time Systems Journal,
1(1):27–60, June 1989.

[28] TimeSys Corporation. TimeSys Linux.http://timesys.com/.
[29] Ken Tindell, Alan Burns, and Andy J. Wellings. An extendible

approach for analysing fixed priority hard real-time tasks.Real-Time
Systems Journal, 6(2):133–151, March 1994.

LCTES’05 9 2005/5/2

http://www.ethernut.de
http://www.ethernut.de
http://www.opencores.org
http://timesys.com/

	Introduction
	Interrupt Overload
	Preventing Interrupt Overload
	Interrupt background
	Strict software scheduler
	Bursty software scheduler
	Hardware scheduler
	Scheduling multiple interrupt sources

	Discussion
	Performance Analysis
	Static priority analysis
	Modeling interrupt schedulers

	Experimental Evaluation
	Methodology and equipment
	Overhead of scheduling interrupts
	Scheduling interrupts that perform work
	Scheduling multiple interrupt sources

	Case Study: Protecting Against Network Overload
	Interrupt Overload Protection in Hardware
	Related Work
	Conclusions

