
Random Testing of
Interrupt-Driven Software

John Regehr
University of Utah

Random
interrupt
testing

Source-source
transformation

Static
stack

analysis Genetic
algorithms

Semantics
of interrupts

Delta
debugging

Integrated stress testing and debugging

Goal: Stress testing and
debugging for interrupt-driven
embedded software
Why?

Interrupts hard to get right
Regular testing typically exercises
small part of state space
Stress testing tends to improve
software quality
Interrupt-driven software used in
safety-critical applications

Specific case: Sensor network
nodes running TinyOS

Strongly interrupt-driven
Application code runs in interrupt
mode
Highly resource constrained
Distributed and opaque –
magnifies effects of bugs

Obvious stress testing
technique:

Random interrupt testing – fire
interrupts at random times

Potential show stoppers:
Random interrupts can violate
application semantics
Interrupts can reenter and overflow
the stack

time

request
ADC

ADC
int.

random
ADC
int.

aberrant interrupt

cra
sh

!

time

random
network

interrupts

cra
sh

!

stack overflow

Many embedded systems permit
reentrant interrupts

Problem: Interrupts arriving at
inconvenient times break
applications
Solution: Restrict interrupt
arrivals
First classify each interrupt
vector

Requested – arrives in response to
an action taken by the system
Spontaneous – may arrive at any
time

Restricted Interrupt Discipline
(RID):

Requested interrupts – only permit
when a request is outstanding
Spontaneous interrupts – only
permit when the interrupt isn’t
already running

Implementing RID
1. Annotate interrupt requests
2. Ensure that device initialization

code leaves each interrupt
disabled

3. Run system through a source-
to-source translator

Enable interrupt upon request
Disable requested interrupts
upon interrupt
Suppress reentrant interrupts

RID in TinyOS
Implemented RID for five
interrupt vectors
Only bottom-level device driver
files modified

A few LOC modified per vector
Normal developers don’t touch
these files

Use custom CIL extension for
src-src translation of C code
output by nesC compiler

W
ith

ou
t R

ID
W

ith
 R

ID

RID Benefits

Enables random testing by
suppressing aberrant and
reentrant interrupts
Hardens embedded system with
respect to unexpected interrupts
after deployment

SW bugs can cause these
So can loose wires, EMI, or other
HW problems

Back to Random Testing

Generate interrupt schedule

Cycle accurate simulation with
interrupt scheduling support

Problem? Debug!No Yes

Interrupt Schedules

List of pairs
(vector #, firing time)

Schedule generator
parameterized by density for
each interrupt vector

Simulator Support

We hacked Avrora – sensor net
simulator from UCLA

Our interrupt scheduling patches
now included in the distribution

Detecting Failure

1. Ask the application – See if it
responds to network packets

2. Ask the simulator – Avrora
reports illegal memory access
and illegal instructions

TinyOS Oscilloscope Bug

time

ADC
request
and int.

dataTask

Interrupt stores data into array
dataTask resets buffer pointer
No interlock between interrupt
and task

TinyOS Oscilloscope Bug

time

random ADC
requests

and interrupts

cra
sh

!

Buffer overrun kills the system
unless dataTask runs on time

Original interrupt schedule that
triggers bug is > 300,000
interrupts

Hard to tell what went wrong!
Used “delta debugging”
algorithm to minimize schedule

Can trigger bug with just 75
interrupts
Bug much easier to find now

Fixing the bug: Easy – add array
bounds check

Problem: Stack overflow
kills sensor network
programs
Solution: Compute WC
stack depth through
static analysis of
binaries
Lingering questios:

Is the bound actually
conservative?
If so, how pessimistic is
the bound?

Answer: Testing

data,
BSS

stack

cra
sh

!

Stack Depth w/o Random

Stack Depth w/Random

Finding Deep Stacks
Pure random testing doesn’t cut it

Program behavior surprisingly
sensitive to interrupt schedule
density and structure
Even running overnight did not find
schedules that make deep stacks

Solution: Genetic algorithm
evolves better interrupt schedules

About 100 generations to find
deepest stack
3 hours CPU time

Revising a Stack Depth Bound

Conclusions

Random interrupt testing: Good
Restricted Interrupt Discipline
makes it work

Src-src transformation makes RID
easy to implement
GA does directed search for
interesting schedules
Delta finds interesting subsets of
large interrupt schedules

