
Appeared inProceedings of the Seventh IEEE Real-Time Technology and Applica-
tions Symposium (RTAS 2001), pages 141–148, Taipei, Taiwan, May 30–June 1 2001.

Augmented CPU Reservations: Towards Predictable Execution on
General-Purpose Operating Systems

John Regehr John A. Stankovic
Department of Computer Science

Thornton Hall, University of Virginia
Charlottesville, VA 22903-2242, USA

john@regehr.org stankovic@cs.virginia.edu

Abstract

One problem with performing soft real-time computa-
tions on general-purpose operating systems is that these
OSs may spend significant amounts of time in the kernel in-
stead of performing work on behalf of the application that is
nominally scheduled: the OS effectively steals time from the
running application. Stolen time can be a significant obsta-
cle to predictable program execution on real-time versions
of Linux and Windows 2000, where it can cause applica-
tions to miss essentially all of their deadlines. We propose
augmented CPU reservations, a novel mechanism for us-
ing fine-grained accounting information about the amount
of stolen time to help the scheduler allow applications to
meet their deadlines. We have designed and implemented
Rez-C and Rez-FB, two schedulers that provide augmented
reservations, and we have tested them in Windows 2000,
showing that they can increase the predictability of CPU
reservations. We also experimentally quantify the severity
of stolen time caused by a variety of devices such as hard
disk controllers, a network interface, and a software modem
under real-time versions of Windows 2000 and Linux.

1. Introduction

Soft real-time applications with periodic CPU require-
ments are becoming an important part of the mix of pro-
grams that users run on general-purpose operating sys-
tems such as Linux and Windows 2000. These applica-
tions include simulation-based games, streaming audio and
video, voice recognition, and hardware requiring real-time
response from the OS. They are typically large and com-
plex, they cannot be easily decomposed into real-time and
non-real-time components, and they usually require the full
services of a general-purpose operating system. Therefore,
our work focuses on systems that predictably schedule user-
level applications by modifying the OS scheduler [3,7,10],

as opposed to systems that run a small hard real-time kernel
“underneath” a general-purpose OS [2,13].

The problem our work addresses is that low-level sys-
tem activity in a general-purpose operating system can ad-
versely affect the predictable scheduling of real-time appli-
cations. In effect, the OSstealstime from the application
that is currently scheduled.

Figures 1 and 2 illustrate the effects of stolen time. Each
figure shows an actual execution trace of a CPU reservation
that was granted by Rez, a new real-time scheduler we have
developed for Windows 2000. In both figures Thread 2 has
been granted a CPU reservation of 4 ms / 20 ms, meaning
that it is guaranteed to be scheduled for 4 ms during ev-
ery 20 ms interval. In the center of each figure is a single
4 ms block of time that Rez allocated to Thread 2. Each
millisecond appears to be divided into roughly four pieces
because the clock interrupt handler periodically steals time
from the running application—we ran the clock at 4096 Hz
to approximate precisely scheduled interrupts, which are
not available in Windows 2000.

In Figure 1 our test application has the machine to it-
self, and Thread 1 uses up all CPU time not reserved by
Thread 2. In Figure 2, the test application is running con-
currently with an instance of Netperf, a network bandwidth
measurement application that is receiving data from an-
other machine over 100 Mbps Ethernet. Thread 1, which
is running at low priority, gets less CPU time than it did
in Figure 1 because it is sharing the processor with Net-
perf. However, Netperf does not get to run during the block
of time reserved for Thread 2. There are gaps in the CPU
time received by Thread 2 because the machine continues
to receive data even when the Netperf application is not
being scheduled, and the kernel steals time from Thread 2
to process this data. This stolen time causes Thread 2 to
receive only about 82% of the CPU time that it reserved.
A real-time application running under these circumstances
will have difficulty meeting its deadlines.



4210 4212 4214 4216 4218 4220

Time (ms)

Thread 2
reserved 20% (4ms / 20ms)

Thread 1
no CPU reservation

Figure 1. Execution trace of a CPU reservation functioning correctly on an otherwise idle machine.

4210 4212 4214 4216 4218 4220

Time (ms)

Thread 2
reserved 20% (4ms / 20ms)

Thread 1
no CPU reservation

Figure 2. Gaps in Thread 2’s execution indicate time being stolen from a CPU reservation.

The root of the problem is that although Rez ensures that
Thread 2 will be scheduled for a 4 ms interval (or for sev-
eral intervals adding up to 4 ms) during each 20 ms period,
it is not necessarily the case that Thread 2 will get to ex-
ecute for the entire 4 ms—stolen time is invisible to the
thread scheduler. To address this problem we have designed
and implemented two novel schedulers, Rez-C and Rez-FB,
that provideaugmented CPU reservationsby actively mea-
suring stolen time and counteracting its effects, permitting
deadlines to be met even when the OS steals a significant
amount of CPU time from real-time applications.

In Section 2 we present background material. Sections 3
and 4 describe the design, implementation, and evaluation
of Rez-C and Rez-FB.

Section 5 strengthens the case for augmented CPU reser-
vations by presenting the results of a study that quantifies
the amount of time that can be stolen by a number of differ-
ent device drivers in real-time versions of Linux and Win-
dows 2000. We learned, for example, that the default con-
figuration of the IDE disk driver in Linux can steal close to
50% of a CPU reservation.

2. Background

2.1. Characterization of Stolen Time

We definestolen timeto be CPU time spent doing some-
thing other than running the currently scheduled application
or performing services on its behalf. Time is stolen because
bottom-half device driver processingin general-purpose op-
erating systems is assigned a statically higher priority than
any application processing, and because this time is not ac-

counted for properly: it is “charged” to the application that
happens to be running when a device needs service.

Bottom-half processing occurs in the context of inter-
rupts anddeferred procedure calls. Interrupts are hardware-
supported high-priority routines invoked when an external
device requests service. Deferred procedure calls (DPCs),
which are analogous tobottom-half handlersin Linux
and other Unix variants, were designed to give device
drivers and other parts of the kernel access to high-priority,
lightweight asynchronous processing outside of interrupt
context [11, pp. 107–111].

In effect, Windows 2000 and similarly structured operat-
ing systems contain not one but three schedulers. Interrupts
take precedence over all other processing and are sched-
uled by a fixed-priority preemptive scheduler that is imple-
mented in hardware. DPCs take precedence over all thread
processing and are scheduled by a simple FIFO scheduler.
Finally, applications are scheduled at the lowest priority by
the OS thread scheduler.

2.2. Rez: A Reservation Scheduler

Rez is a new scheduler that we have implemented; it pro-
vides CPU reservations to Windows 2000 threads. That
is, it allows threads to run at an application-specified rate
and granularity. For example, a thread that was granted
a reservation of 0.75 ms / 8 ms would be guaranteed to run
for 0.75 ms during every 8 ms period. Rez supports a wide
range of reservation periods, between 1 ms and 1 s.

The Rez scheduling algorithm is similar to a number of
other reservation schedulers that have been described in the
literature, such as theconstant utilization serverdeveloped
by Deng et al. [3], theconstant bandwidth serverthat Abeni

2



and Buttazzo developed [1], and the Atropos scheduler de-
veloped for the Nemesis OS [9]. Rez assigns a budget to
each thread that has a CPU reservation. Budgets are decre-
mented in proportion to the CPU time allocated to the asso-
ciated thread, and are replenished at the beginning of each
period. Rez always schedules the thread that has the earli-
est deadline among all threads that are runnable and have
a positive budget. The deadline for each thread is always
taken to be the end of its current period.

Windows 2000 + Rez refers to the system composed of
Windows 2000 and our modified scheduler. This sys-
tem suffers from reduced predictability because bottom-half
mechanisms in Windows 2000 can steal time from real-time
applications. Our approach to improving predictability is
calledaugmented reservations. The basis of this approach
is to give the reservation scheduler access to fine-grained
accounting information about how long the kernel spends
running DPCs, allowing it to react accordingly. To this end
we implemented two additional versions of the Rez sched-
uler called Rez-C and Rez-FB.

3. Coping with Stolen Time

Once a real-time scheduling abstraction such as CPU
reservations has been implemented within a general-
purpose operating system, the ways to increase predictabil-
ity with respect to stolen time form a continuum:

1. To avoid further modifications to the core OS, but to
manually move device driver code out of time-stealing
bottom-half contexts.

2. To instrument stolen time and feed the resulting infor-
mation into the real-time scheduler to allow it to com-
pensate.

3. To modify bottom-half mechanisms to put them un-
der control of the scheduler, eliminating this source of
stolen time.

The first option has been recently explored by Jones and
Saroiu [8] in the context of a software modem driver. Jeffay
et al. [5] chose the third option: they modified FreeBSD to
perform proportional-share scheduling of network protocol
processing. Our work is based on the second option.

3.1. Measuring Stolen Time

Of the two sources of stolen time in Windows 2000, in-
terrupts and DPCs, we have instrumented only DPCs. Al-
though it would be straightforward to instrument hardware
interrupt handlers as well, the time spent in DPCs serves as
a useful approximation of the true amount of stolen time be-
cause interrupt handlers in Windows 2000 were designed to

run very quickly: they perform critical processing and then
enqueue a DPC to perform any additional work.

To instrument DPCs we added code to the beginning and
end of the dispatch interrupt handler (a software interrupt
handler that dequeues and runs DPCs) to query the Pentium
timestamp counter (using therdtsc instruction) which re-
turns the number of cycles since the machine was turned
on. By taking the difference between these values the sys-
tem can accurately keep track of the amount of time spent
running DPCs.

The interface to stolen time accounting is theGet-
Stolen() function, which is available to code running in
the Windows 2000 kernel; it returns the amount of stolen
time since it was last called.

3.2. Rez-C: Increasing Predictability by Catching
Up

Rez-C gives threads the opportunity to catch up when
they have had time stolen from them. It does this by de-
ducting from budgets only the actual amount of CPU time
that threads have received, rather than deducting the length
of the time interval that they were nominally scheduled for,
which may include stolen time. For example, if a thread
with a reservation of 4 ms / 20 ms is runnable and will have
the earliest deadline during the next 4 ms, Rez-C schedules
the thread and arranges to regain control of the CPU in 4 ms
using a timer. When the timer expires, Rez-C checks how
much time was stolen during the 4 ms interval using the
GetStolen() function. If 1.2 ms were stolen, then Rez-
C deducts 2.8 ms from the thread’s budget. If the thread still
has the earliest deadline, Rez-C arranges to wake itself up
in 1.2 ms and allows the thread to keep running.

Rez-C uses accounting information about stolen time at
a low level, bypassing the admission controller. When there
is not sufficient slack in the schedule, allowing a thread to
catch up may cause other threads with reservations to miss
their deadlines or applications in the timesharing class to be
starved. These deficiencies motivated us to design Rez-FB.

3.3. Rez-FB: Increasing Predictability using Feed-
back Control

Our second strategy for coping with stolen time assumes
that the amount of stolen time in the near future will be sim-
ilar to what it was in the recent past. It uses a feedback loop
to minimize the difference between the amount of CPU time
that each application attempted to reserve and the amount of
CPU time that it actually receives. There is an instance of
the feedback controller for each thread that has a CPU reser-
vation. The parameters and variables used by the feedback
controller are:

3



� A set pointR, the amount of CPU time that an appli-
cation requested.

� A control variableC, the amount of CPU time reserved
by Rez-FB on behalf of an application.

� A process variableP , the amount of CPU time that an
application actually receives; this is calculated by sum-
ming the lengths of the time intervals during which the
application was scheduled and subtracting the amount
of time stolen during those intervals.

� A constant gainG � 1.

The feedback equation, which is evaluated for each
reservation each time its period starts, is:

Ct = Ct�1 +G(R � Pt�1)

In other words, at the beginning of a reservation’s period
the amount of CPU time requested by Rez-FB on behalf of
the application is adjusted to compensate for the difference
between the desired and actual amounts of CPU time during
the previous period. The gain helps prevent overshooting
and can be used to change how aggressively the controller
reacts to changing amounts of stolen time.

Because Rez-FB applies accounting information to
reservation amounts rather than budgets, it does not bypass
the admission controller. Therefore, Rez-FB will not al-
low threads with CPU reservations to interfere with each
other, or with time-sharing applications. On the other hand,
Rez-FB reacts more slowly to stolen time than Rez-C, po-
tentially causing applications to miss more deadlines when
the amount of stolen time varies on a short time scale. The
feedback controller currently used by Rez-FB is a special
case of a PID (Proportional-Integral-Derivative) controller
that contains only the integral term. In the future we may
attempt to improve Rez-FB’s response to changes in the
amount of stolen time using more sophisticated controllers
that have proportional and derivative terms as well.

4. Experimental Evaluation of Rez-C and
Rez-FB

We now evaluate and compare Rez-C and Rez-FB ac-
cording to the following criteria: how well do augmented
reservations help applications meet their deadlines under
adverse conditions, and how efficient are they in terms of
run-time overhead?

The application scenarios that we will consider include
the following elements: a general-purpose operating sys-
tem, Windows 2000, that has been extended with Rez (as a
control), Rez-C, or Rez-FB; a soft real-time application that
uses a reservation to meet its periodic CPU requirements;

and a background workload that causes the OS to steal time
from the real-time application.

Unless otherwise stated, all data points in this section
and in Section 5 are averages of ten 10-second runs. Confi-
dence intervals are calculated at 95%.

4.1. Test Application

The soft real-time application used in our experiments is
a synthetic test application. The important qualities of this
application are: the ability to create multiple threads at dif-
ferent priorities with optional CPU reservations; the abil-
ity to detect stolen time by measuring exactly when these
threads are scheduled; and for threads with reservations, the
ability to determine if and when deadlines are missed.

To this end we started with a test application that was
originally developed for the Rialto operating system at Mi-
crosoft Research and later ported to Rialto/NT [6]. For
the work reported here we ported it to TimeSys Linux/RT
and Windows 2000 + Rez, and gave it the capacity to detect
deadline misses for threads with ongoing CPU reservations.

Rather than using the CPU accounting provided by the
operating system1 our test application repeatedly polls the
Pentium timestamp counter. When the difference between
two successive reads is longer than 2.2�s, time is assumed
to have been stolen from the application between the two
reads. This number was experimentally determined to be
significantly longer than the usual time between succes-
sive reads of the timestamp counter and significantly shorter
than common stolen time intervals. The duration of the
stolen time interval is taken to be the difference between
the two timer values minus the average time spent on the
code path between timer reads (550 ns). We believe that
this provides a highly accurate measure of the actual CPU
time received by the application.

Threads with reservations repeatedly check if the amount
of wall clock time that has elapsed since the reservation
was granted has passed a multiple of the reservation period.
Each time this happens (that is, each time a period ends)
they register a deadline hit if at least the reserved amount of
CPU time has been received during that period, or a dead-
line miss otherwise.

4.2. Test Workload and Platform

The workload used is an incoming TCP stream over
100 Mbps Ethernet (we characterize other sources of stolen
time in Section 5). We chose this workload because it is

1The statistical accounting performed by Windows 2000 and Linux is
particularly inappropriate for monitoring the usage of threads that have
CPU reservations: since accounting is periodic, the periods of reserva-
tions and accounting can resonate, causing threads to be drastically over-
or under-charged for their CPU usage.

4



-10 0 10 20 30

% over-reservation

0

20

40

60

80

100

%
 d

ea
dl

in
es

 m
is

se
d

1) Rez without stolen time
2) Rez with stolen time
3) Rez-C with stolen time
4) Rez-FB with stolen time

Figure 3. Predictability of Rez, Rez-C, and
Rez-FB.

entirely plausible that a desktop computer may be in the
middle of a real-time task such as playing a game or per-
forming voice recognition when high-bandwidth data (such
as a file transfer) arrives over a home or office network.

To actually transfer data we used the default mode of
Netperf [4] version 2.1, which establishes a TCP connection
between two machines and transfers data over it as rapidly
as possible.

Our test machine was a dual 500 MHz Pentium III with
256 MB of RAM. It ran in uniprocessor mode for all ex-
periments. It was connected to the network using an Intel
EtherExpress Pro/100B PCI Ethernet adapter. For all ex-
periments in this section the machine ran one of our modi-
fied Windows 2000 kernels, and had a timer interrupt period
(and therefore a minimum enforceable scheduling granular-
ity) of 244�s.

4.3. Reducing Deadline Misses using Rez-C and
Rez-FB

Figure 3 shows the number of deadline misses detected
by our test application with a reservation of 4 ms / 20 ms un-
der four different conditions:

1. Scheduled by Rez, on an otherwise idle machine.

2. Scheduled by Rez, while the test machine received a
TCP stream over 100 Mbps Ethernet.

3. Scheduled by Rez-C, while the test machine received
a TCP stream over 100 Mbps Ethernet.

4. Scheduled by Rez-FB, while the test machine received
a TCP stream over 100 Mbps Ethernet.

To meet each deadline, the test application needed to re-
ceive 4 ms of CPU time during a 20 ms period. In order
to demonstrate the effect of statically over-reserving as a
hedge against stolen time, for each of the four conditions
we had Rez actually reserve more or less than the 4 ms that
was requested. So, if Rez were set to over-reserve by 50%,
it would actually reserve 6 ms / 20 ms when requested to re-
serve 4 ms / 20 ms.

Line 1 shows that on an idle machine, any amount of
under-reservation will cause most deadlines to be missed,
and that no deadlines are missed by the test application
when it reserves at least the required amount of CPU time.
This control shows that Rez is implementing CPU reserva-
tions correctly.

Line 2 (the rightmost line on the graph) illustrates the
effect of time stolen by network receive processing. To
avoid missing deadlines, Rez must over-reserve by about
24%. This is quite a large amount, and would not prevent
the application from missing deadlines in the case that sev-
eral drivers steal time simultaneously.

Lines 3 and 4 are very similar, and show that both Rez-C
and Rez-FB increase the predictability of CPU reservations
when the OS is stealing time from applications. Notice that
a small amount of over-reservation (about 6%) is required
before the percentage of missed deadlines goes to nearly
zero. Some deadlines are missed in the 0% over-reservation
case because we only instrumented DPCs, and not hardware
interrupt handlers.

We calculated confidence intervals for the data points in
Figure 3 but omitted them from the graph because they were
visually distracting. The 95% confidence interval was al-
ways within 4% of the means reported here, and was much
closer than that for most data points.

4.4. Response of Rez-FB to Variations in Load

Rez-C is very simple and retains no information about
stolen time between periods of a reservation. However, as
we described in Section 3.3, Rez-FB uses a feedback loop
that compares its current performance to performance in the
previous period. This raises questions about stability, over-
shoot, and reaction time. The intuition behind the feedback
loop is straightforward and we believe that Rez-FB is sta-
ble and predictable, and that it will quickly converge on the
correct amount of CPU time to allocate. However, we have
performed an experiment under changing load in order to
test this hypothesis. Figure 4 shows the response of Rez-FB
to a 1-second burst of network traffic, which arrives between
times 1000 and 2000. The test application has created a sin-
gle thread with a CPU reservation of 4 ms / 20 ms. So,R =
4.0 ms. This graph contains no confidence intervals since

5



0
5

10
15
20
25

%
 s

to
le

n

0
1
2
3
4
5
6

m
s 

re
qu

es
te

d
by

 R
ez

-F
B

0 1000 2000 3000

Time (ms)

0
1
2
3
4
5
6

m
s 

re
ce

iv
ed

by
 te

st
 a

pp
.

Figure 4. Performance of Rez-FB under
changing load.

the data come from a single execution. Each point on the
graph represents a single 20 ms period.

The top graph in Figure 4 shows the amount of stolen
time reported to Rez-FB by each call toGetStolen() ,
expressed as a percentage of 4 ms. It shows that there is
a small base amount of time stolen by background system
activity, and that stolen time increases dramatically during
network activity. This is exactly what we would expect. The
middle graph showsCt, the amount of CPU time requested
by Rez-FB during each period. As expected, Rez-FB re-
quests more CPU time when more time is being stolen by
the kernel. Although the amount of stolen time at the start of
Netperf’s run is noisy (probably due to TCP slow start and
other factors), its finish is abrupt and around time 2000Ct

drops from its elevated level back to about 4.0, cushioned
by the gainG. Although we tried several different values
forG, all experiments reported here used a value of 0.5. We
did not look into the sensitivity of this parameter in detail,
but values between 0.5 and 1 appeared to produce about the
same number of missed deadlines.

The bottom graph showsPt, the actual amount of CPU
time received by our test application during each period.
While the machine is quiet (in ranges 0-1000 and 2000-
3000) the values ofPt are quantized because the scheduling
enforcement granularity is limited to 244�s. A deadline is
missed wheneverPt is below 4.0; this happened 22 times
during the test. This is due to unaccounted stolen time from
the network interrupt handler and also to lag in the feedback
loop. While missing 22 deadlines may be a problem for

some applications, this is significantly better than missing
most of the 500 deadlines between times 1000 and 2000, as
would have happened with Rez under the same conditions.
To support applications that cannot tolerate a few missed
deadlines, the system would need to instrument stolen time
more comprehensively or statically over-reserve by a small
amount.

4.5. Run-Time Overhead of Rez-C and Rez-FB

Both Rez-C and Rez-FB add very little overhead to the
scheduler. The overhead of instrumenting DPCs (incurred
each time the kernel drains the DPC queue) is twice the time
taken to read the Pentium timestamp counter and write its
result to memory, plus the time taken by a few arithmetic
operations. Similarly, the overhead of theGetStolen()
call is the time taken to run a handful of instructions.

To verify that the augmented reservation schedulers add
little overhead we measured how much CPU time was lost
to a reservation running under Rez-C and Rez-FB as com-
pared to the basic Windows 2000 + Rez. This revealed that
Rez-C adds 0.012%�0.0028 overhead and Rez-FB adds
0.017%�0.0024 overhead. We would have been tempted to
assume that these differences were noise but the confidence
intervals indicate that they are robust.

5. Stolen Time in Other Systems and by Other
Devices

In this section we provide additional motivation for aug-
mented CPU reservations by presenting the results of a
study of the amount of time that can be stolen by the Linux
and Windows 2000 kernels when they receive asynchronous
data from a number of different external devices. For the
Linux tests we used TimeSys Linux/RT [12], which adds
resource kernel functionality [10] such as CPU reservations
and precise timer interrupts to Linux.

Our goal was not to compare the real-time performance
of Linux/RT and Windows 2000 + Rez, but rather to shed
light on the phenomenon of stolen time and to find out
how much time can be stolen by the drivers for various de-
vices on two completely different operating systems. In-
deed, these results will generalize to any operating system
that processes asynchronous data in high-priority, bottom-
half contexts without proper accounting. As far as we know,
these are the first published results of this type.

For Linux tests we used TimeSys Linux/RT version
1.1A, which is based on version 2.2.14 of the Linux kernel.
All Linux tests ran on the same machine that ran all of our
Windows 2000 tests (a dual 500 MHz Pentium III booted in
uniprocessor mode).

6



0 2 4 6 8 10

milliseconds reserved (out of 20ms)

0

10

20

30

%
 o

f C
P

U
 ti

m
e 

st
ol

en
Windows 2000 + Rez
TimeSys Linux/RT

Figure 5. Time stolen by the kernel to process
an incoming TCP stream.

5.1. Effect of Reservation Amount on Time-Stealing
by Network Processing

Figure 5 shows how the amount of time stolen from
a CPU reservation by network receive processing changes
with the amount of the reservation. The test application re-
served between 1 ms and 10 ms out of 20 ms. The reason
that the proportion of stolen time decreases as the size of
the block of reserved time increases can be seen by looking
closely at Figure 2: towards the end of the reserved block
of time (after time 4216) there is little stolen time. This is
because the Netperf application does not get to run during
time reserved by the real-time application; therefore, kernel
network buffers are not drained and packets are not acked,
causing the sender to stop sending after a few milliseconds.

5.2. Hard Disk Controllers

Table 1 shows the amount of time that was stolen from
CPU reservations of 4 ms / 20 ms by OS kernels as they pro-
cessed data coming from hard disks. We show measure-
ments for both Linux/RT and Windows 2000 + Rez, for a
SCSI and an IDE disk, and using both direct memory ac-
cess (DMA) and programmed I/O (PIO) to move data to the
host, when possible.

The SCSI disk used in this test is a Seagate Barracuda
36, connected to the host over an Ultra2 SCSI bus; it can
sustain a bandwidth of 18.5 MB/s while reading large files.
The IDE disk is an older model (a Seagate 1270SL) that can
sustain a bandwidth of only about 2.35 MB/s.

From this table we conclude that disk transfers that use
DMA cause the OS to steal only a small amount of time

OS disk / driver % time stolen
IDE / DMA 0.78�0.052

Windows 2000 IDE / PIO n/a
+ Rez SCSI / DMA 0.55�0.026

SCSI / PIO n/a
IDE / DMA 1.1 �0.28
IDE / PIO 49.0 �3.5Linux/RT
SCSI / DMA 0.74�0.20
SCSI / PIO n/a

Table 1. Amount of time stolen from a CPU
reservation by disk device drivers.

1404 1406 1408 1410 1412 1414

Time (ms)

Thread 2
reserved 20%
(4ms / 20ms)

Thread 1
no CPU res.

Figure 6. Time stolen from a Linux/RT CPU
reservation by the IDE disk driver.

from real-time applications (the confidence intervals indi-
cate that the differences, though small, are real). However,
even a slow disk can severely hurt real-time performance if
its driver uses PIO: in our test it caused the Linux kernel to
steal nearly half of the CPU time that a real-time application
reserved. Therefore, it is imperative that real-time systems
avoid using PIO-based drivers for medium- and high-speed
devices. The large gap in Thread 2’s block of reserved time
in Figure 6 illustrates the problem.

Unfortunately, Linux distributions continue to ship with
PIO as the default data transfer mode for IDE disks. For
example, we recently installed Redhat Linux 7.0 on a new
machine equipped with a high-performance IDE disk. Due
to overhead of PIO transfers, the machine was barely usable
while large files were being read from the hard disk. Inter-
active performance improved dramatically when we turned
on DMA for the hard disk using thehdparm command.
Windows 2000 uses DMA by default for both SCSI and IDE
disks.

5.3. Software-Based Modems

Software-based modemscontain minimal hardware sup-
port: they perform all signal processing in software on the
main CPU. Connecting a software modem at 45333bps

7



(the highest our local lines would support) caused Windows
2000 + Rez to steal 9.87%�0.15 from a CPU reservation of
4 ms / 20 ms. We did not test the soft modem under Linux
because driver support was not available.

As Jones and Saroiu [8] mention, software-based imple-
mentations of Digital Subscriber Line (DSL) will require
large amounts of CPU time: 25% or more of a 600 MHz
Pentium III. Obviously a soft DSL driver will steal signif-
icant amounts of CPU time from applications if its signal
processing is performed in a bottom-half context.

5.4. USB Ports

While retrieving a large file over USB (the file was
stored on a CompactFlash memory card), a reservation of
4 ms / 20 ms under Windows 2000 + Rez had 5.7%�0.032
of its reservation stolen. USB could become a much
more serious source of stolen time in the future as USB
2.0 becomes popular—it is 40 times faster than USB 1.1
(480 Mbps instead of 12 Mbps). Finally, while we did not
test Firewire devices, at 400 Mbps it is a potentially serious
source of stolen time.

6. Conclusion

Our contributions have been:

� To design, implement, and evaluate two novel sched-
ulers that provideaugmented CPU reservations, in-
creasing predictability when time is stolen from appli-
cations that they schedule. We believe that Rez-C and
Rez-FB provide large gains in predictability for small
additional cost.

� To quantify the amount of time that can be stolen by
the drivers for a number of common devices on Linux
and Windows 2000. We believe that the results of this
study will be useful in a variety of situations: it should
serve as a warning to people developing real-time ap-
plications that may run on busy machines, it could
help developers who are moving code from bottom-
half contexts into threads decide which drivers should
be targeted first, and it should aid the intuitions of sys-
tem designers who are deciding what kinds of system
services to put in schedulable contexts.

Acknowledgments

The authors would like to thank Marty Humphrey, Mike
Jones, Chenyang Lu, and Stefan Saroiu for their helpful
comments on drafts of this paper. This work was funded,
in part, by Microsoft Research and by NSF grant number
NSF CCR-9901706.

References

[1] Luca Abeni and Giorgio Buttazzo. Integrating Multime-
dia Applications in Hard Real-Time Systems. InProc. of
the 19th IEEE Real-Time Systems Symposium, pages 4–13,
Madrid, Spain, December 1998.

[2] Gregory Bollella and Kevin Jeffay. Support For Real-
Time Computing Within General Purpose Operating Sys-
tems: Supporting Co-Resident Operating Systems. InProc.
of the 1st IEEE Real-Time Technology and Applications Sym-
posium, pages 4–14, Chicago, IL, May 1995.

[3] Zhong Deng, Jane W.-S. Liu, Lynn Zhang, Seri Mouna, and
Alban Frei. An Open Environment for Real-Time Appli-
cations.Real-Time Systems Journal, 16(2/3):165–185, May
1999.

[4] Hewlett-Packard Company Information Networks Divi-
sion. Netperf: A Network Performance Bench-
mark, 1995. http://www.netperf.org/netperf/
training/Netperf.html .

[5] Kevin Jeffay, F. Donelson Smith, Arun Moorthy, and James
Anderson. Proportional Share Scheduling of Operating Sys-
tem Services for Real-Time Applications. InProc. of the
19th IEEE Real-Time Systems Symposium, pages 480–491,
Madrid, Spain, December 1998.

[6] Michael B. Jones and John Regehr. CPU Reservations and
Time Constraints: Implementation Experience on Windows
NT. In Proc. of the 3rd USENIX Windows NT Symposium,
pages 93–102, Seattle, WA, July 1999.

[7] Michael B. Jones, Daniela Ros¸u, and Marcel-C˘atălin Roşu.
CPU Reservations and Time Constraints: Efficient, Pre-
dictable Scheduling of Independent Activities. InProc. of
the 16th ACM Symposium on Operating Systems Principles,
pages 198–211, Saint-Malˆo, France, October 1997.

[8] Michael B. Jones and Stefan Saroiu. Predictability Require-
ments of a Soft Modem. InProc. of the ACM SIGMETRICS
Conf. on Measurement and Modeling of Computer Systems,
Cambridge, MA, June 2001.

[9] Ian Leslie, Derek McAuley, Richard Black, Timothy Roscoe,
Paul Barham, David Evers, Robin Fairbairns, and Eoin Hy-
den. The Design and Implementation of an Operating Sys-
tem to Support Distributed Multimedia Applications.IEEE
Journal on Selected Areas in Communications, 14(7):1280–
1297, September 1996.

[10] Shuichi Oikawa and Ragunathan Rajkumar. Portable RK: A
Portable Resource Kernel for Guaranteed and Enforced Tim-
ing Behavior. InProc. of the 5th IEEE Real-Time Technol-
ogy and Applications Symposium, pages 111–120, Vancou-
ver, BC, Canada, June 1999.

[11] David A. Solomon and Mark E. Russinovich.Inside Mi-
crosoft Windows 2000. Microsoft Press, third edition, 2000.

[12] TimeSys. The Concise Handbook of Linux for Embedded
Real-Time Systems, 2000.ftp://ftp.timesys.com/
pub/docs/LinuxRTHandbook.pdf .

[13] Victor Yodaiken. The RTLinux Manifesto. InProc. of The
5th Linux Expo, Raleigh, NC, March 1999.

8


