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ABSTRACT
Embedded software must meet conflicting requirements such as be-
ing highly reliable, running on resource-constrained platforms, and
being developed rapidly. Static program analysis can help meet all
of these goals. People developing analyzers for embedded object
code face a difficult problem: writing an abstract version of each
instruction in the target architecture(s). This is currently done by
hand, resulting in abstract operations that are both buggy and im-
precise. We have developed Hoist: a novel system that solves these
problems by automatically constructing abstract operations using a
microprocessor (or simulator) as its own specification. With almost
no input from a human, Hoist generates a collection of C func-
tions that are ready to be linked into an abstract interpreter. We
demonstrate that Hoist generates abstract operations that are cor-
rect, having been extensively tested, sufficiently fast, and substan-
tially more precise than manually written abstract operations. Hoist
is currently limited to eight-bit machines due to costs exponential
in the word size of the target architecture. It is essential to be able
to analyze software running on these small processors: they are
important and ubiquitous, with many embedded and safety-critical
systems being based on them.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.2.4 [Software/Program Verifica-
tion]: Miscellaneous

General Terms
Reliability, languages, verification

Keywords
Abstract interpretation, static analysis, program verification, object
code
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1. INTRODUCTION
Static program analysis is a broadly useful technology that can

help developers create embedded software that meets the conflict-
ing goals of high reliability and minimal resource usage. In particu-
lar, dataflow analysis by abstract interpretation [10] is an important
analysis technique that is the basis for a wide variety of validation
and optimization algorithms. For example,constant propagation, a
simple analysis that discovers parts of a program’s execution dur-
ing which the value of a storage location does not change, has been
used to support sophisticated analyses such as bounding worst-case
execution time [27]. In this paper we are concerned with the anal-
ysis of object code, which is useful for discovering low-level prop-
erties of programs or analyzing systems where source code is un-
available.

An abstract interpreter executes a program symbolically by ma-
nipulating abstract values. For example, constant propagation re-
quires two kinds of abstract values: those that represent constants
(e.g., “4”) and one that represents values that cannot be proven to
be constant, denoted⊥. Operations on these values are easy to un-
derstand and implement: values representing constants are manipu-
lated just as they would be on a regular CPU, and⊥ is contagious—
any operation with a non-constant input produces⊥ as a result. The
problem with constant propagation is that it is a fairly weak anal-
ysis; when control-flow paths are merged it quickly loses informa-
tion due to conservative approximation.

The interval andbitwisedomains support stronger analyses that
are more resistant to losing information. The interval domain finds
cases where the value of a storage location can be shown to lie in-
side a sub-interval, e.g.,[2..5], of the natively supported range of
values. The bitwise domain is a ternary logic that models each bit
as having either a known or unknown value. For example, a 4-
bit register might hold the bitwise value01⊥⊥, indicating that its
top two bits contain constant values zero and one, while its bot-
tom two bits cannot be proven to be constant. These two domains
are more powerful than the constant propagation domain—in fact,
they both subsume it—and they have been used to analyze and op-
timize many aspects of embedded software (some are described in
Section 2). The problem with implementing abstract interpreters
based on these more sophisticated domains is that it is hard to im-
plement the abstract operations. Each abstract value corresponds
to some set of concrete values, and our experience is that it is dif-
ficult for programmers to reason about these sets. Each abstract
operation should be correct (returning a safe estimate of the pro-
cessor’s state), precise (losing as little information as possible), and
as efficient as possible. Particularly tedious tasks are implementing
abstract effects on a processor’s condition codes and creating ab-
stract versions of operations that do not match the domain, such as
a bitwise “add” or an interval “xor.”



This paper presentsHoist, a system that automates the imple-
mentation of abstract machine-level ALU operations for the inter-
val and bitwise domains. Hoist reduces developer effort to almost
nothing; it requires only a small amount of metadata about each
instruction—all other information is extracted from a microproces-
sor or simulator that supports the target instruction set. The second
main advantage of Hoist is that it produces abstract operations that
are trustworthy, having been subjected to an extensive battery of
tests. Third, Hoisted operations lose as little information as pos-
sible to conservative approximation; they are maximally precise
within the constraints of each domain. Hoist’s fourth advantage is
that it makes no assumptions about the function implemented by
an instruction; it works for arbitrary ALU operations. A limitation
of Hoist, on the other hand, is that it only generates code for arith-
metic and logical operations. We do not consider instructions that
manipulate specific hardware, e.g., those that reset the watchdog
timer or put the processor to sleep, or those that implement control
flow.

Abstract operations are necessary to support analyses, but they
are difficult to implement. As a basis for comparison with Hoist,
implementing the bitwise abstract interpreter in our stacktool [32]
took several weeks, followed by several months of sporadic de-
bugging and refinement before it became really useful. Further-
more, systematic testing of the hand-written abstract operations us-
ing Hoisted abstract operations as a reference turned up more than
half a dozen subtle errors.

Our work contrasts with other frameworks for easing the cre-
ation of object code analyzers such as the one by Fritz et al. [16].
They focus on generating the body of an abstract interpreter given a
high-level description of a processor architecture, but leave the im-
plementation of low-level transfer functions to the developer. Our
work is almost perfectly complementary; it does not facilitate port-
ing the body of the analyzer, but rather focuses on the derivation of
the abstract operations.

Hoist treats instructions as black boxes: they can be arbitrary
functions from bit-vectors to bit-vectors. This brute-force approach,
using no high-level symbolic representations, keeps developer ef-
fort low and exploits the large asymmetry that exists between the
capabilities of desktop processors and small embedded chips. Even
so, at present Hoist only supports architectures with word sizes of
eight or fewer bits due to costs exponential in the word size. These
small processors represent an important domain: they run safety-
critical applications and are ubiquitous. For example, out of the
71 microprocessors onboard a BMW 745i, 53 are 8-bit chips [23].
Programs running on small microprocessors are an ideal target for
static analysis since they are typically deployed in large numbers
in hard-to-reach areas (making bugs costly), they are highly re-
source constrained (making resource-bounding analyses desirable),
and they display relatively few of the dynamic behaviors like recur-
sion and heap allocation that complicate static analysis [14]. We
evaluate the effectiveness of our work using sensor network nodes:
a domain where 8-bit chips are commonly used because they are
inexpensive and energy-efficient.

The remainder of this paper is organized as follows. Section 2
provides background on abstract interpretation and the two domains
we consider. In Section 3 we present the key motivation for our
work: the difficulty of implementing precise abstract operations
manually. Section 4 describes Hoist in detail and Section 5 evalu-
ates its performance both at code generation time and at run time.
In Section 6 we discuss related work and in Section 7 we discuss
future work and scaling issues. Section 8 presents our conclusions.

2. BACKGROUND
This section motivates our work and briefly reviews abstract in-

terpretation and the standard analysis domains used in this paper.

2.1 Analyzing object code
Static analysis and transformation of object code has been used

to analyze worst-case execution time [27], show type safety [39],
insert dynamic safety checks [38], obfuscate programs [26], opti-
mize code generated by a compiler [19], analyze worst-case stack
depth [5, 32], validate compiler output [34], find viruses [6], and
decompile programs [7]. A few of the many specific reasons for
analyzing object code are that:

• Source code is often unavailable: it may be proprietary, may
have been lost, or may never have existed, for systems writ-
ten in assembly.

• Low-level properties such as stack usage and execution time
cannot be effectively analyzed at the source level because
compilers have considerable flexibility while performing the
translation.

• Embedded systems commonly interleave C or C++ with as-
sembly language. The semantics of mixed-language code
may be unclear, making it difficult to analyze.

• Specialized embedded processors often provide architectural
features that can speed up applications. It may be more cost-
effective to use post-pass optimization to rewrite binaries to
take advantage of these features rather than modifying a com-
plex compiler.

2.2 Abstract interpretation
Abstract interpretation [10] is a framework for static program

analysis. By manipulating abstract values, which represent sets of
concrete values, an abstract interpreter can compute the properties
of many program executions using relatively few analysis steps.
For example, rather than separately analyzing the behavior of an
embedded system for each of the possible values returned by a tem-
perature sensor, an abstract interpreter would simply analyze the
case where the sensor returns a single abstract value representing
the set of all possible temperature inputs. Abstract interpretations
deliberately make approximations to avoid undecidability and to
achieve reasonable space and time efficiency.

Abstract domains.Abstract values are modeled usingdomains,
or partially ordered lattices of abstract values, where each abstract
valuex corresponds to a unique set of concrete valuesγ(x) and,
conversely, each set of concrete valuesY corresponds to a (usually
not unique) abstract valueα(Y ). The smallest element of the lattice
⊥ represents a complete lack of information; its concretization is
the set of all possible values. The partial order of the lattice is
defined by:

x v y
def
= γ(x) ⊇ γ(y)

In other words, smaller abstract values represent larger sets of con-
crete values, and are consequently less precise estimations of the
contents of a storage location. The greatest lower bound operation
u is the largest (most precise) abstract value such that:

γ(x u y) ⊇ γ(x) ∪ γ(y)

In other words, the concretization of the greatest lower bound of
two values must be a superset of the union of the concretization of
the individual values. We refer tou as themergeoperator for two



abstract values; it is used to create a safe and precise estimate of the
state of the machine when two control-flow paths are merged, for
example after analyzing both branches of an if-then-else construct.

In this paper an “imprecise” result is technically correct but has
lost some information. It is important to distinguish between the
different kinds of imprecision that occur during abstract interpreta-
tion. First, an abstract value may be imprecise because the abstract
domain cannot represent a given concrete set. For example, con-
sider a program where a certain storage location contains only the
values “4” and “6” in all executions. A constant propagation anal-
ysis must conclude that the storage location contains the value⊥,
because this domain is inherently not expressive enough to return
a more precise result. Second, an abstract value may be imprecise
because of approximations made in the implementation of an ab-
stract interpreter. For example, assume that two different interval
domain analyzers for the program above respectively estimate the
storage location to contain[4..6] and [0..6]. Both results are cor-
rect but only[4..6] is maximally precise, given the constraints of
the interval domain. This paper is about avoiding this second kind
of imprecision. All other things being equal a more precise analy-
sis is preferable, but usually precision is gained at the expense of
memory and CPU consumption at analysis time.

Abstract operations.The focus of this paper is on deriving an
abstract operationg for every machine-level logical and arithmetic
operationf that is provided by a given processor architecture. An
abstract operation must satisfy:

γ(g(x)) ⊇ {f(y) | y ∈ γ(x)}
To understand this equation, consider an abstract valuex. We can
apply the concrete functionf to each member of the set of concrete
values represented byx. The set of concrete values so obtained
must be a subset of the concretization of the abstract value returned
by applying the abstract functiong to x.

The trivial abstract function, which always returns⊥, is correct—
but useless. The challenge, then, is to obtain a more precise abstract
function. In this paper, we usef ] to denote the most precise ab-
stract version of a concrete functionf for a given domain. The
maximally precise abstract function can be computed by:

f ](a)
def
= α(f(c1)) u . . . u α(f(cm)) if γ(a) = {c1, . . . , cm}

That is: concretize the abstract value that is the argument to the
function, apply the corresponding concrete function to each con-
crete value, and then merge the concrete results together to form an
abstract value. The maximal precision follows from the fact that we
are merging together only values that need to be merged, and the
facts thatu is commutative, associative, and maximally precise.

The straightforward implementation off ](a) is far too ineffi-
cient to use in a program analysis tool, even for 8-bit architectures.
On the other hand, the main contribution of Hoist is to derive a fast,
small implementation of the most precise abstract function for two
different domains.

2.3 Bitwise domain
The bitwise abstract domain is a ternary logic in which each bit

either has a concrete value or is unknown. Formally, each bit has a
value from the set{0, 1,⊥} and the concretization function is:

γ(0) = {0}
γ(1) = {1}
γ(⊥) = {0, 1}

⊥1⊥1⊥0

⊥⊥

0 ⊥

0100 10 11

Figure 1: The bitwise lattice for N = 2. In the general case this
lattice has heightN + 1 and contains3N elements.

Consequently, the merge function for bits is:

a ubit b
def
=

{
a if a = b
⊥ if a 6= b

An abstract word is the composition of multiple bits. We useN
to denote the number of bits in a native machine word. The merge
function for words is simply:

a ubits b
def
= (a0 ubit b0, a1 ubit b1, . . . , aN−1 ubit bN−1)

The bitwise lattice, shown for two bits in Figure 1, is useful for
reasoning about partially unknown data that is manipulated using
bitmasks and other logical operations. For example, in our previ-
ous work on bounding the stack memory consumption of embedded
software in the presence of interrupts [32], the bitwise domain was
crucial for estimating the status of the interrupt mask at each pro-
gram point. The first use of the bitwise domain for analyzing soft-
ware that we are aware of is Razdan and Smith’s 1994 paper [31].

2.4 Interval domain
The interval domain exploits the fact that although many storage

locations contain values that change at run time, it is often the case
that these values can be proven to occupy a sub-interval of the entire
range of values that can be stored in a machine word. For example,
it might be expected that a variable used to index an array of size
i would never have a value outside the interval[0..i − 1]. In the
interval domain, abstract values are tuples[low, high] where low≤
high. The concretization function is:

γ([low, high])
def
= {low, low + 1, . . . , high}

Two intervals can be merged as follows:

[al, ah] uint [bl, bh]
def
= [min(al, bl), max(ah, bh)]

The interval lattice, shown for two-bit unsigned integers in Fig-
ure 2, is best used to model arithmetic operations. It has been used
as part of a strategy for eliminating array bounds checks [17], for
bounding worst-case execution time [15], and for synthesizing op-
timized hardware by statically showing that the high-order bits of
certain variables were constant at run time [36]. The interval do-
main appears to have been introduced by Cousot and Cousot [10].

3. IMPLEMENTING ABSTRACT
OPERATIONS MANUALLY

Consider anadd instruction that has the following assembly lan-
guage representation:

add dst, src



[0,1] [1,2] [2,3]

[0,2] [1,3]

[0,3]

[0,0] [1,1] [2,2] [3,3]

Figure 2: The unsigned interval lattice for N = 2. In the gen-
eral case this lattice has height2N and contains2N−1(2N + 1)
elements.

In a CPU simulator this might be implemented as:

reg[dst] = (reg[src]+reg[dst]) % (MAXUINT+1);

in addition to some code updating the condition code flags. We
assume that the processor running the simulator has a larger word
size than the processor being emulated, and henceMAXUINT+1
does not overflow.

An abstractadd in the unsigned interval domain is complicated
slightly by the case analysis necessitated by the potential for the
low and high ends of the result interval to independently wrap
around:

lo = reg[src].lo + reg[dst].lo;
hi = reg[src].hi + reg[dst].hi;
if ((lo > MAXUINT) ˆ (hi > MAXUINT)) {

reg[dst].lo = 0;
reg[dst].hi = MAXUINT;

} else {
reg[dst].lo = lo % (MAXUINT+1);
reg[dst].hi = hi % (MAXUINT+1);

}

Computing the abstract condition codes is also more difficult
than it is in the concrete case, and both result and condition codes
are even more painful for the signed interval domain where there
are more ways to wrap around.

A bitwise abstractadd is much trickier, and it is in situations
such as this where implementors often resort to crude approxima-
tions. For example, a first cut at the bitwiseadd might return an
entirely unknown result if any bit in any input is unknown. A better
approximation is to return a result withm known bits if the bottom
m bits of both arguments are known. For example, if bits 0–3 in
both arguments are known, then theadd functions normally in this
range and returns⊥ for bits 4 and higher. On the other hand, if
bits in position 4 are the only unknown bits in the inputs, and if
the bits in position 5 in both inputs contain zeros, then any possible
carry out of position 4 will be absorbed, and theadd can function
normally again in bits 6 throughN − 1. Further improvements
along these lines are possible but unattractive—the general case
where known and unknown bits are freely mixed is difficult to rea-
son about, as is the analogous case of computing thexor operation
precisely for arbitrary interval values. In practice, developing a suf-
ficiently good approximation for each machine-level operation is a
laborious and error-prone process requiring refinement of approxi-
mations when the analysis returns imprecise results. This difficulty
was the direct motivation for Hoist.

The necessity of precise abstract operations.One might
be tempted to believe that examples like the precise bitwiseadd

generate C code

BDD encode and optimize

probabilistic or exhaustive test

compact abstract result table

abstract result table

concrete result table

CPU or simulator

executable abstract operation

Hoist into abstract domain

extract and compute dependencies

validated abstract operation

Figure 3: The Hoist toolchain for deriving abstract operations

above are irrelevant because program variables tend to be manipu-
lated either arithmetically or logically, but not both. This is far from
being the case: compilers and skilled assembly language program-
mers take advantage of many low-level idioms and quirks in order
to create compact and efficient code, and a successful analysis of
object code must take this into account. For example, in machine
code it is common to multiply using a combination of shifting and
adding, clear a register using exclusive-or or subtract, move a flag
bit from a register into a condition code using add-with-carry, and
perform modular arithmetic using bitmasks. An additional benefit
of using Hoist is that, since the abstract operations have been thor-
oughly tested and are maximally precise, it makes development of
the remaining parts of an abstract interpreter easier by narrowing
down the places where problems are likely to be found.

4. DERIVING ABSTRACT OPERATIONS
AUTOMATICALLY

Hoist automates the derivation and efficient encoding of maxi-
mally precise abstract machine-level operations. Figure 3 shows
the toolchain that accomplishes this. For each instruction weex-
tract a concrete table of results (Section 4.1),lift the concrete ta-
ble into each abstract domain (Section 4.2), compactlyencodethe
abstract table as a binary decision diagram (BDD) (Section 4.3),
generateC code implementing the BDD (Section 4.4), andtestthe
abstract operation over a wide range of inputs (Section 4.5).

4.1 Extracting concrete result tables
The first stage of deriving an abstract operation is to exhaus-

tively establish the behavior of the corresponding concrete opera-
tion. This entails figuring out what parts of the machine state the
instruction reads and writes as well as finding the actual mapping
from inputs to outputs.

Extracting results.The most straightforward way of extracting
concrete results is to run a small assembly language program on the
microprocessor under study. The program enumerates all input val-
ues, applies each instruction to those values, and writes the results
to an output device. Since embedded processors are often slow and
have limited I/O capabilities, we found it to be faster and easier to



run the test program in a simulator for the processor. For example,
using the 57.6 kbps serial interface on a Berkeley mote (which is
typical of the degree of connectivity found on a small embedded
system) it takes about an hour and twenty minutes to gather up the
entire output for a single binary 8-bit operation. A simulator can
produce the same data in a matter of minutes. Simulators are freely
available for most embedded processors and can usually log writes
to output ports to a file. All four simulators for the Atmel AVR ar-
chitecture that we looked at provide this functionality. In this paper,
we used two AVR simulators: atemu [1] and simulavr [35]. The
other two simulators were heavily graphical, making it difficult to
use them in a programmatic way. Simulavr is designed to support
most members of the AVR family, while atemu focuses on accurate
emulation of a collection of mica2 sensor network nodes [20].

Extracting result tables from multiple simulators provides a use-
ful cross-check. In fact, comparing the result tables did find a subtle
bug in one of the simulators: thelsr (logical shift right) instruc-
tion in atemu was sometimes incorrectly setting a condition code
flag. This bug was confirmed by the atemu developers and fixed in
a subsequent release.

Computing dependencies.It would be possible to require that
developers specify the precise input and output fields for each in-
struction. For example, “thesbc instruction reads the carry flag,
zero flag, and two input registers, and writes the carry, zero, neg-
ative, overflow, sign, and half-carry flags, in addition to an output
register.” We found it more convenient and less error prone to spec-
ify a superset of each instruction’s dependencies and then to com-
pute the exact dependencies automatically. This permits all AVR
instructions that Hoist supports to be placed into four equivalence
classes: nullary, unary, binary register, and binary immediate. In-
structions in all four classes may read and write the processor status
register, which contains the condition codes.

We define a bit of machine state to be aninput dependencyif
changing the value of the bit affects the behavior of the instruction.
Similarly, a bit is anoutput dependencyif executing the instruc-
tion potentially changes the value of the bit. For every instruction,
each bit of machine state is either an input dependency, an output
dependency, both, or neither. It would have been perfectly possi-
ble to use BDDs (see Section 4.2) to compute these dependencies,
but since BDD operations are relatively expensive we do this in a
preprocessing step. In other words, we improve the performance
of Hoist by only presenting BDDs with inputs that are known to
actually be input dependencies, and only using them to generate
outputs that are actually known to be output dependencies. Most
mis-specifications of an instruction’s dependencies will be caught
early because the generated assembly language fragment will be
syntactically incorrect.

Pseudo-unary operations.Extra analysis precision can often
be obtained when both inputs to a binary instruction come from the
same storage location. A good example is exclusive-or: obviously,
for any concrete valuex, xor(x, x) = 0. However, the analogous
abstract relation xor](x, x) = 0 is false! Consider, for example,
computing xor([1, 10], [1, 10]). The abstract operation loses the in-
formation that both of its arguments represent the same concrete
value, forcing it to return a very imprecise result. This is harmful
in practice because compilers and programmers make such heavy
use of idioms like this that a static analysis of object code cannot
succeed without recognizing them. On many architectures, includ-
ing AVR, an exclusive-or instruction uses less code space than does
loading an immediate zero value, and so xor is the preferred method
for clearing a register.

f ](a) = f ]
0(a)

f ]
i (a) =




α(f(a)) if i = N ;

f ]
i+1(clri(a)) ubits f ]

i+1(seti(a)) if ai = ⊥;

f ]
i+1(a) otherwise.

Figure 4: Hoisting a concrete unary function into the bitwise
domain

To provide operators that take advantage of the knowledge that
their inputs are the same, we define a pseudo-unary operation corre-
sponding to each binary register operation; it can be safely invoked
when analyzing an instruction that specifies the same physical reg-
ister for both of its inputs. For example, corresponding to the binary
operationeor r3,r3 , we define a unary operationeor 1 r3

def
=

eor r3,r3 . (By convention, the AVR exclusive-or instruction
is calledeor .) This yields several useful pseudo-unary operations
such aseor 1 and sub 1 (zero a register),and 1 and or 1 (test a
value, setting condition codes appropriately), andadc 1 (rotate left
through carry), as well as a number of less compelling operations
such asmov1 (nop) andsbc 1 (set register to0xff if carry set—
sbc is the AVR subtract-with-carry instruction). From the point of
view of an abstract interpreter, it never hurts to use a pseudo-unary
abstract operation when the source and destination registers are the
same, and in many cases extra information can be gained.

4.2 Creating abstract result tables
The second step in our toolchain lifts a concrete result table into

an abstract domain. The maximally precise abstract version of
a concrete function can be computed directly from the definition
given in Section 2. A naive implementation for an operation with
two N -bit inputs can requireO(4N ) steps to compute a single ab-
stract result, where an abstract result table contains on the order of
4N results—prohibitively expensive even for an 8-bit architecture.

This section describes how to reduce these costs by using caches
and dynamic programming techniques. For both domains our strat-
egy depends on a recursive subdivision of abstract values using the
following equality which follows from the definition off ]:

f ](a) = f ](b) u f ](c) if γ(a) = γ(b) ∪ γ(c)

This allows us to computef ](a) in terms of two simpler calcula-
tionsf ](b) andf ](c). By choosingb andc carefully, we can cache
intermediate results effectively.

4.2.1 Unary operations
Elements of the bitwise abstract domain can be subdivided using

the following equality:

γ(a) = γ(seti(a)) ∪ γ(clri(a)) if ai = ⊥
where the functions seti(a) and clri(a) respectively return their in-
put a with bit i set or cleared. This yields the recursive algorithm
shown in Figure 4. It has the same complexity as a naive enumer-
ation, but is readily amenable to dynamic programming techniques
by caching the result of each recursive call tof ]. Using a cache
of 3N abstract results, each entry in the abstract result table can
be computed inO(1) amortized time; building the entire table re-
quiresO(3N ) time.

Elements of the interval domain can be subdivided using the fol-
lowing equality:

f ]([lo, hi]) = f ]([lo, m − 1]) u f ]([m, hi]) if lo ≤ m ≤ hi

This yields the recursive algorithm illustrated in Figure 5. The al-



f ]([lo, hi]) =

{
α(f(lo)) if lo = hi;
f ]([lo, m − 1]) uint f ]([m, hi]) otherwise.

where
j = blog2(hi − lo + 1)c
m = b hi

2j c · 2j

Figure 5: Hoisting a concrete unary function into the interval
domain

gorithm choosesm to be of the forma · 2j , wherea and j are
chosen to maximize the size ofj.

For a unary operation, the complexity of this recursive function
is O(2N ), but it allows an efficient implementation by caching the
result off ] over all intervals of the form:

[a · 2j , (a + 1) · 2j − 1]
where
(a + 1) · 2j ≤ 2N

A cache of this form has2N+1−1 entries. For example, for N=8,
the cache has just511 entries. Using this function, the worst case
computation time per result isO(N) and the entire table can be
computed inO(4N ) time. An alternative cache design would be to
cache the result over all intervals, yielding a faster implementation—
constant amortized time per result—but requiring much more space.

4.2.2 Binary operations
We have presented algorithms and caching techniques for unary

operations, but the important cases to handle are binary operations
for which a naive algorithm would requireO(16N ) time per en-
try andO(64N ) to compute the entire table. To adapt these algo-
rithms to the binary case, we recursively subdivide one argument at
a time. When the first argument is reduced to either a cache lookup
or a concrete operation, we invoke a second recursive function to
subdivide the second argument. This doubles the runtime of the
operations and squares the sizes of the caches. That is, an abstract
bitwise operation requires a cache of sizeO(9N ), O(1) time per
result, andO(9N ) time for the entire table. An abstract interval op-
eration requires a cache of sizeO(4N ), requiresO(2N) time per
entry, andO(16N ) time for the entire table.

4.3 Encoding result tables using BDDs
The abstract result tables may be inconveniently large. Using a

straightforward encoding, the results for a binary 8-bit instruction
require 82 MB for the bitwise domain and 2 GB for the interval
domain. Clearly a better encoding is necessary; for this purpose we
use binary decision diagrams (BDDs). We used BuDDy, a BDD
package from the IT-University of Copenhagen [25].

A binary decision diagram [4] represents a Boolean function as
a decision graph. That is, a BDD is a directed acyclic graph with a
single root node, each terminal node labeled with zero or one, and
each nonterminal node labeled by a variable and having two outgo-
ing edges corresponding to the cases where the variable evaluates
to zero or to one. For any assignment of the variables, the function
value is determined by tracing a path from the root to a terminal
node following the appropriate branch from each node. A function
with m input bits andn output bits can be represented by a vector
of n BDDs, each withm variables.

An ordered binary decision diagram (OBDD) imposes an order
on variables such that all paths from the root to a terminal encounter
the variables in ascending order. OBDDs can represent many com-
mon functions compactly, though they require nodes exponential in

the number of inputs to represent certain functions such as integer
multiplication.

We used standard techniques to construct the BDDs for each
function. Each value in the bitwise domain is represented by two
bit-vectors in the BDD: one vector determines whether each bit is
known or unknown, and the other determines the concrete value, if
known. Similarly, intervals are represented by a pair of bit-vectors:
one holds the lower bound and one holds the upper bound. The
choice of variable ordering can have a significant impact on the
size of an OBDD. After some experimentation, we settled on an
ordering that interleaves bits from both bit-vectors so that bitsi
from both vectors are adjacent. For binary functions, the best re-
sults were obtained by interleaving bits from all four input vectors.

To construct a BDD representation of a function, we enumerate
all inputs, compute the corresponding results, and add the appropri-
ate elements to the BDD. The runtime of this step, and of Hoist as a
whole, is dominated by the relatively slow BDD operations which
we invoke a large number of times.

Optimizing the encoding.We found it useful to perform an
optimization step after constructing each BDD. Concrete opera-
tions return a valid result for all possible inputs; this is not true for
our encoding of the abstract operations. For example, one would
never try to computef ]([x, y]) with x > y. Impossible bitwise val-
ues are those that have an unknown bit whose value field is set to
one. The practical consequence of impossible values is that the ab-
stract result table has many unused entries; this overconstrains the
BDD which, by default, returns zero when presented with an im-
possible input. These zeros are not free: BDD nodes are required
to produce them. The solution is to use Coudert and Madre’s min-
imization procedure [9] to make the output of the BDD a “don’t
care” for impossible input values. This simplifies the BDD, reduc-
ing BDD sizes by 42–85%. The BDD outputs for don’t-care inputs
are not harmful because a correct abstract interpreter will never pro-
duce impossible abstract values as inputs to a function, and in any
case impossible values can be detected using simple tests.

4.4 Converting BDDs into C
Although translating a BDD into C code computing the corre-

sponding Boolean function is conceptually trivial (each node in the
BDD becomes a test of an input variable), generating efficient code
requires some care. We found little literature on this topic, prob-
ably because BDDs are usually used directly, to answer questions
about a system, rather than indirectly, to produce code that will be
used to answer questions about a system.

Our first observation was that there is considerable sharing be-
tween BDDs implementing the output bits for an abstract operation.
Therefore, any subexpression of the overall BDD computation that
is used more than once is assigned a name and placed in separate
expression. Once-used expressions, on the other hand, are inlined
into their referencing expression. Second, eagerly evaluating all
intermediate expressions is inefficient: they should instead be eval-
uated on demand. Finally, we found that gcc 3.3.2 has problems
compiling the generated code when aggressive optimizations are
enabled: the optimizer displays pathological behavior and has not
been observed to terminate in reasonable time. To achieve good
results we had to turn off the more aggressive optimizations while
compiling the generated C code.

4.5 Testing
Our experience in staring at the results of static analyses of ob-

ject codes suggested that spotting errors in the result of an abstract
function is hard and that spotting suboptimal results is virtually im-



possible. Partially unknown data is nonintuitive and the sheer num-
ber of abstract values is overwhelming. Consequently, we wrote
several test harnesses while creating Hoist.

Low-level tests.On every run of our BDD construction pro-
gram we check that all concrete inputs have the expected concrete
output and that several million randomly generated abstract inputs
have the expected abstract output, where the expected output is
computed by brute-force enumeration. This approach caught many
errors early in development and has greatly increased our confi-
dence in the correctness and accuracy of the final results. It is also
possible to test a generated abstract operation exhaustively, but in
practice we seldom do so because exhaustive tests are slow and we
have never observed one to find an error where the probabilistic test
did not.

Higher-level tests.Out of a sense of professional paranoia we
tested Hoist in three additional ways. The first test validates an
abstract operation in addition to the glue code that makes it avail-
able to an actual program analyzer; this is useful because there is
potential for errors in the glue, in the dependency-testing code de-
scribed in Section 4.1, and in the dependencies specified by devel-
opers. The second test ensures that each abstract result returned by
a Hoisted function is always at least as precise as the result returned
by a corresponding hand-written abstract function. This was in-
tended as a sanity check for Hoist, but instead of finding bugs in the
automatically generated functions, it revealed about half a dozen
subtle errors in our hand-written abstract condition code computa-
tions. Our final test is an end-to-end validation of an entire abstract
interpreter. We analyze a test program and dump the analyzed state
of the machine at each program point. Then, we run the same pro-
gram in a CPU simulator that has been modified to ensure, after
executing each instruction, that the current concrete machine state
is a member of the set of machine states obtained by applying the
concretization function to the abstract machine state at that address.

In summary, in Figure 3 we describe a tested abstract operation
as “validated” because we have used several independent tests to
check its behavior against ground-truth: an actual CPU or simulator
for the target architecture. A bug anywhere in our toolchain, even
in BDD code not developed by us, will be detected if it results in
incorrect output.

5. RESULTS
This section evaluates Hoist by answering the following ques-

tions: How precise are the generated abstract operations? How
long does it take to generate them? How large is the generated
code? How fast do the operations run? All measurements were
performed on a 1533 MHz AMD Athlon with 512 MB RAM, using
gcc 3.3.2 and BuDDy 2.2.

Our target architecture is Atmel’s AVR: a modern, compiler-
friendly family of embedded processors that provides 32 8-bit reg-
isters and variable amounts of other storage. For example, the AT-
mega128 chips [2] found on the Berkeley mica2 motes [20] have
128 KB of flash memory for program storage and 4 KB of SRAM.

Our basis for comparison is the stacktool, a program analyzer
that we previously developed [32]. The purpose of the stacktool
is to estimate the worst-case stack memory usage of an embed-
ded system, in order to avoid the possibility of memory corrup-
tion through stack overflow. A major component of stacktool is
an abstract interpreter for AVR binaries, where each abstract op-
eration had been implemented by hand and subsequently refined
to obtain sufficiently accurate results across a broad range of pro-

bitwise interval
arith logical arith logical

unary 0.25 s 0.30 s 1.5 s 1.8 s
binary 0.63 h 0.68 h 33.7 h 22.4 h

Figure 6: Time to build BDDs for a typical abstract function in
each category

bitwise interval
arith logical arith logical

unary 1.4 1.4 6.0 3.0
binary 14 4.9 103 32

Figure 7: Size of generated code in KB of x86 object code for a
typical abstract function in each category

grams. We were able to obtain tight bounds on the stack depth even
when this depended on analyzing data flow through multiple regis-
ters and many instructions. All comparisons with stacktool are for
the bitwise domain because stacktool does not support intervals.

5.1 Microbenchmarks
Deriving abstract operations.Figure 6 shows the time taken
for Hoist to construct typical 8-bit arithmetic and logical operations
for each abstract domain. In general it takes much longer to con-
struct a BDD for a binary operation, and considerably longer to
construct a BDD for an operation over the interval domain than for
an operation over the bitwise domain. The time taken to build a
BDD representation of an abstract binary operation for the interval
domain is large (approximately 1.5 days) but tolerable since each
BDD only has to be built once to create an abstract interpreter for a
new processor architecture. We discuss scaling issues in Section 7.

Size of generated code.Figure 7 shows the size, in kilobytes
of x86 object code, of compiled BDDs for typical 8-bit arithmetic
and logical operations for each abstract domain. The trend is that
binary and interval operations are larger, but the size of even the
largest is quite reasonable compared to explicitly storing 43 million
abstract values. The total amount of code added to stacktool when
using Hoist-generated bitwise versions of all 34 ALU instructions
is 272 KB.

Precision of the derived operations.By construction (and
extensive testing), we know that the abstract operations generated
by Hoist are maximally precise for each domain. To quantify the
benefits of this increased precision, we compared the Hoisted op-
erations against operations that we factored out of the stacktool so
they could be invoked separately. We define the “precision” of an
operation as the average number of bits of information in the result
of the operation when it is supplied with all possible abstract in-
puts. For the numbers reported here we approximate this value by
testing many randomly generated abstract values. For the bitwise
domain, the precision is the average number of known bits in the re-
sults. Figure 8 compares the precision of Hoisted operations against
hand-written stacktool operations, measuring the effect on the re-
sult register and condition code register separately. Despite having
written stacktool, we had not realized that stacktool almost always
returns a completely undefined result register value for arithmetic
operations. On inspection, we found that the result register was de-
fined only if all bits of both inputs were defined. This only happens
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Figure 8: Precision of Hoisted and hand-written abstract oper-
ations for the bitwise domain. All figures are the average per-
centage of known bits in the outputs for 50 million random ab-
stract inputs. Note that the hand-written operations lose almost
all precision for the result register for arithmetic operations.

in a small part of the input space. The precision of arithmetic op-
erations can easily be improved by returning anm-bit result if the
bottomm-bits of both arguments are defined. This implementation
improves the precision of most arithmetic operations to roughly 0.8
bits, which is still less than half as accurate as the Hoisted opera-
tions. Overall, Hoist increases the number of known bits in the
result by 59% and in the condition codes by 130%.

To provide some indication of the precision of the generated in-
terval operations, we wrote our own interval operations. For ex-
ample, our hand-written interval “add” operation is shown in Sec-
tion 3. Our hand-written interval “and” operation converts its argu-
ments to the bitwise domain, performs a (completely precise) ab-
stract “and” operation in that domain, and then converts the result
back to an interval. We did not attempt to compute the condition
codes. The precision metric for the interval domain isN−log2(|x|)
where|x| is the size of an interval. Since the interval domain is
well suited for arithmetic operations, it is unsurprising that both
versions of “add” are equally precise, at 6.4%. The Hoisted version
of “and,” on the other hand, is almost four times as precise than the
hand-written version (16% vs. 4.1%).

Time to evaluate abstract operations.Figure 9 compares
the throughput, in thousands of operations per second, of four dif-
ferent implementations of each type of abstract operation: naive
use of the definition off ](a) from Section 2, using the caching
schemes described in Section 4.2, using functions generated by
Hoist, and using functions written by hand. Throughput is com-
puted by measuring how long it takes to apply the operation to
10 million randomly chosen abstract values. The main point to no-
tice is that the hand-written and the BDD-based versions give com-
parable performance (though the BDD version is usually slower).
The cached operations used to generate the BDDs perform ade-
quately for unary operations but are prohibitively slow for binary
operations despite using a cache of over 1 MB each.

bitwise interval
arith logical arith logical

naive 73 71 172 171
naive+cache 1,069 1,000 573 563

unary Hoist 1,189 1,132 2,127 2,069
manual 1,230 1,209 3,409 3,409
naive 1.75 1.66 0.25 0.25
naive+cache 155 139 60 60

binary Hoist 819 820 1,351 1,355
manual 833 840 2,192 1,199

Figure 9: Throughput of naive, cached, Hoisted, and hand-
written abstract operators in thousands of operations per sec-
ond
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Figure 10: Precision of abstract interpreter using hand-written
and automatically generated abstract operations

5.2 Macrobenchmarks
To ascertain the large-scale impact of using abstract operations

derived using Hoist, we linked them into the stacktool, replacing
the hand-written ALU operations. Stacktool can be configured
to perform either a context sensitive or insensitive analysis; we
present only the context sensitive results since they are the most
useful in practice, and since the effect of using Hoisted abstract op-
erations does not seem to vary between the context sensitive and
insensitive analyses. Our test suite is a collection of 26 TinyOS
programs [20]: embedded codes for networked sensor nodes that
were compiled from up to about 30,000 lines of C.

Precision of stacktool.Our metric for precision is the percent-
age of static bits of machine state that stacktool can prove hold con-
stant values over all executions. We present two precision results:
one for the entire machine state modeled by stacktool, which con-
sists of 32 registers plus the status register (containing the condition
code flags), and one for just the status register. It is particularly
important that the status register be modeled precisely because it is
critical to identifying dead branches in the code, as well as comput-
ing a precise estimate of the global interrupt preemption graph—the
interrupt mask bit is also contained in the status register.

Figure 10 presents the results of this experiment. On average,
the overall precision is improved by a respectable 8% while the
precision of the status register is improved by a significant 40%.



These improvements are lower than the 59% and 130% improve-
ments seen in some of the microbenchmarks for several reasons.
First, only a small fraction of the operations in a program are binary
arithmetic operations (i.e., those most improved under the bitwise
domain). Second, many variables encountered in embedded sys-
tems have a very limited range [36] and the difference in precision
is less pronounced for smaller values.

Speed of stacktool.The original stacktool takes between 0.03
and 8.3 s to run, depending on which of our 26 test cases it is an-
alyzing. The stacktool that is based on Hoisted operations takes
between 0.03 and 8.9 s, exhibiting a mean 22% slowdown and a
very modest maximum increase in run time: less than 1 s. There
are two distinct causes for the slowdown. First, the individual ab-
stract operations are slower, as shown by the microbenchmarks.
Second, the increased precision of the Hoisted abstract operations
causes the stacktool’s abstract interpreter to take longer to reach a
fixpoint—in fact, it executes about 50% more abstract operations
than the original version for a given input.

Anecdotal results.For several months we have been using the
Hoisted AVR operations in day-to-day development of the stack-
tool. Although the old hand-written operations are still available
via a compile-time switch, our experiences with the new opera-
tions have been uniformly positive. For example, we have recently
started to experiment with pointer analysis in the stacktool. Us-
ing the Hoisted operations, we can often substantially narrow down
the set of possible targets for store instructions. The hand-written
abstract operations, on the other hand, usually lose all precision
when analyzing the index registers that contain memory addresses.
Similarly, we added a feature to the stacktool giving it a first-class
model of the stack pointer; here again, the added precision of the
Hoisted operations relative to the hand-written operations was in-
valuable. In summary, although our original hand-written abstract
operations had been tuned until they could effectively model the
interrupt mask for many AVR programs, even more tuning would
have been required to support the new analysis features described
here. Hoist, on the other hand, gives us this precision for free and
eliminates the question of whether a little more tuning might im-
prove the results, permitting us to concentrate on more interesting
tasks.

6. RELATED WORK
Perhaps the closest work to Hoist is that of Yorsh, Reps, and

Sagiv [33, 41], which takes a completely different approach to
computing maximally precise abstract operations. Their problem is
both easier and harder than ours. It is harder because their abstract
values are represented symbolically and are manipulated using a
theorem prover. They generate a sequence of approximations to
the answer, using counterexamples to find weaknesses of the cur-
rent approximation. Their approach is easier than ours in that we
produce a symbolic representation off ] whereas they only pro-
duce a symbolic representation off ](a) for some specific value
a. A significant difference between the two approaches lies in the
tradeoff between power and performance. Their use of a theorem
prover and symbolic representations lets them tackle complex do-
mains such as those supporting shape analysis. However, it takes
27 s to computef ](a) for a given value ofa; our use of BDDs and
simpler representations limits us to simpler domains, but it takes
just 1–2 microseconds to computef ](a).

A second area of research related to ours is concerned with gen-
erating program analyzers. These projects have generally focused

on choosing appropriate domains, on frameworks for performing
fixpoint computations, and on handling control flow [13, 24, 37,
40]. Our work is complementary to nearly all of this work and,
as far as we know, is the first project to generate abstract opera-
tions for analyzing object code. For example, PROPAN [16, 22] by
Kästner et al. is a system designed to support rapid retargeting of a
machine-code analyzer, and yet its capabilities are complementary
to those of Hoist since it requires manual specification of abstract
operations.

The third body of research related to ours focuses on extracting
metadata or other high-level information by observing the behav-
ior of an existing artifact such as a compiler or assembler. For
example, Derive [21] infers the encoding of instructions by sup-
plying appropriate inputs to an assembler and observing its output.
The superoptimizer [28] tries to find a minimum-length sequence
of instructions implementing a function using exhaustive search.
Finally, Collberg [8] feeds carefully chosen code fragments to an
existing compiler and uses the results to derive a new code gener-
ator for his compiler. The idea that these projects have in common
with Hoist is the use of implicit specifications: finding a semanti-
cally simple interface to a complex system and exploiting it to infer
useful properties about the system’s behavior.

7. FUTURE WORK
Although Hoist is already useful, there are many possible direc-

tions for future work.

Supporting additional abstract domains.Simple abstract
domains, such as those that track the sign or the even/odd status of
storage locations, could be easily handled within the Hoist frame-
work. We have not bothered with them because they are proba-
bly too simple to be useful, and in any case they are subsumed
by the bitwise and interval domains. Useful abstract domains that
could be supported in Hoist, that are not subsumed by the interval
and bitwise domains, include mod-k residues [12], reduced interval
congruences [3], and anti-intervals that can represent the knowl-
edge that, for example,x 6= 0. On the other hand, Hoist proba-
bly cannot supportrelational abstract domains, even for 8-bit ar-
chitectures: they contain too many elements. Relational domains
describe relationships between collections of variables and include
the octagon [29] and polyhedron [11] domains.

Supporting additional architectures.The Hoist technique
is extremely general: operations can be arbitrary functions from
bit-vectors to bit-vectors. Clearly the instructions for architectures
other than AVR fit into this model. However, we have not yet
Hoisted other instruction sets because there is a fair amount of
AVR-specific glue code built into our framework. We are in the
process of factoring out the non-portable code.

Supporting additional kinds of instructions.In principle
there is no problem Hoisting control flow instructions as well as the
logical and arithmetic instructions that we already handle. We have
not yet done so for two reasons. First, in our experience abstract
control flow is not very difficult to implement manually. Second,
the interface between control flow instructions and the rest of the
abstract interpreter is substantially more complex than the interface
for instructions that only manipulate data.

Exploiting interactions between domains.When a pro-
gram is analyzed using two or more abstract domains, the whole is
often more than the sum of the parts. For example, if a storage lo-



cation is known to be approximated by the interval[160, 210] and
also by the bitwise value⊥⊥⊥11011, then an analyzer can infer
that the location contains the concrete value187. We have used
Hoist to create a maximally precise combiner for the bitwise and
interval domains. Due to scalability problems we probably cannot
optimally combine more than two or three domains. We plan to
use Granger’s domain product operation [18], which iteratively re-
fines many-way combinations using pair-wise operations as build-
ing blocks.

Improving scalability.The Hoist system is the product of a
particular set of tradeoffs. One consequence of these tradeoffs is
that it is currently not practical to generate operations for architec-
tures with word sizes larger than eight bits. We intend to achieve
scalability by making different tradeoffs between build time, preci-
sion, run time, and developer effort.

To trade precision for build time we can reduce the size of a
domain. For example, for the 16-bit bitwise domain, we could omit
all values with 12 or more unknown bits. That is, we would leave
somewhat precise values alone but decrease analysis resolution for
values that are already imprecise. If the result of an operation is
one of these missing values, it can be approximated by rounding
down to⊥.

To trade run time for build time we can construct a BDD repre-
senting one of the caches described in Section 4.2. This will reduce
BDD construction time if the cache is significantly smaller than the
final result, as it is for the interval domain.

To trade human effort for build time we could use symbolic rep-
resentations of instructions, dropping our assumption that instruc-
tions are black boxes. We are working towards Hoisting both the
bitwise and interval domains using symbolic representations that
are at roughly the level of detail found in a typical reference man-
ual for a processor. An alternative to having developers type in
formulas would be to reuse an existing machine description for-
mat such asλ-RTL [30]. Symbolic instructions also make it easier
to exploit redundancies between instruction sets. For example, if
the shift-left instruction behaves the same across a number of 16-
bit architectures, we only have to generate code implementing this
operation once. In the long run we hope that Hoisting an instruc-
tion set into an abstract domain will simply entail piecing together
appropriate previously-generated results.

A final way to improve Hoist’s scalability would be to parallelize
the generation of abstract operations; this would be easy since there
are no dependencies between operations.

8. CONCLUSIONS
Abstract versions of machine instructions are needed to support

a wide variety of important analyses and optimizations for object
code, and yet implementing these operations is tedious and error-
prone. The contribution of this paper is Hoist, a toolchain that gives
developers a better alternative: supply a small amount of metadata
about each instruction, run Hoist, and then simply link the gener-
ated code into an abstract interpreter. In addition to automating
a difficult programming task, Hoist has achieved a significant in-
crease in analysis precision and it also validates its own output us-
ing an extensive array of tests. Our experience in comparing Hoist
with a set of hand-written abstract operations has provided evidence
that the developers of operations like this should test them either
exhaustively or with random inputs in order to detect errors and
operations that are excessively imprecise.

We have made the Hoisted AVR operations freely available:
http://www.cs.utah.edu/˜regehr/hoist/
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