
1

HOIST: A System for
Automatically Deriving

Static Analyzers for
Embedded Systems

John Regehr Alastair Reid
School of Computing, University of Utah

2

• Hoist makes it significantly easier to do
static analysis of embedded software
– E.g. TinyOS

• Automatically derives transfer functions for
analyzing object code
– This is new
– Hoisted transfer functions are maximally

precise
– Brute-force approach that works well for small

architectures

3

///////

////

///////

///////

///////

///////

///////

///////

//////

SFTWTMS

☺☺☺☺☺☺☺

☺☺☺☺

☺☺☺☺☺☺☺

☺☺☺☺☺☺☺

☺☺☺☺☺☺☺

☺☺☺☺☺☺☺

☺☺☺☺☺☺☺

☺☺☺☺☺☺☺

☺☺☺

SFTWTMS

Before Hoist: After:

4

Use Static Analysis to Eliminate...
• Concurrency errors
• Deadline misses
• Stack overflow
• Language-level errors

– Array bound violations
– Null pointer dereferences
– Numerical problems

• Everything else Jim Larus talked about!

5

and r0, r1

r0 = ??11?001
r1 = …

??0?
?101
0000
?10&

r0 = ??11?001
r1 = ?00110??

r0 = ??11?001
r1 = ?001?00?

Transfer
Function

6

Abstract Transfer Functions

Bitwise Interval

??11?001
& ?00110??
= ?001?00?

??11?001
+ ?00110??
= …

[3.. 6]
+ [36..60]
= [39..66]

[3.. 6]
& [36..60]
= …

7

Transfer Functions can be Hard

• Domain / operation mismatch
• Condition codes – input and output
• Hard to know where precision matters
• Lots of transfer functions:

domains * # instructions * # architectures

• Result: Wasted time, bugs, imprecision

8

Hoist Contributions

• Derive transfer functions with
– Near-zero developer effort
– Maximal precision
– Sufficient performance
– High confidence in correctness

9

• Extract complete
result table for
instruction
– Dest register +

cond codes
• Ideas:

– No high-level model of
instruction

– Brute force

Extract results

Hoist into
abstract domain

Encode as BDD

Generate code

Test

10

• Generate complete
abstract transfer
function

• Ideas:
– Recursive

decomposition of
abstract domain

– Speedup through
dynamic programming

Extract results

Hoist into
abstract domain

Encode as BDD

Generate code

Test

11

• Binary decision
diagrams can compactly
represent many
functions

• Encode transfer function
as vector of BDDs

• Ideas:
– Variable ordering matters
– Operation ordering

matters

Extract results

Hoist into
abstract domain

Encode as BDD

Generate code

Test

12

• Turn BDD into code
implementing the
transfer function

Extract results

Hoist into
abstract domain

Encode as BDD

Generate code

Test

13

• Probabilistically or
exhaustively verify
– Correctness
– Maximal precision

• Original result table is
ground-truth

Extract results

Hoist into
abstract domain

Encode as BDD

Generate code

Test

14

Hoisting Atmel AVR Architecture

• Up to 45 minutes to Hoist a bitwise
operation

• Up to 34 hours to Hoist an interval
operation

• Dominated by BDD library
• Parallelizes trivially across operations

15

Performance at Analysis Time

• Analyze programs that ship with TinyOS
for worst-case stack depth
– Analysis time increases from 8.3s to 8.9s for

the program that takes longest to analyze

16

Precision in Bitwise Domain

• Fed random bitwise values to Hoisted and
hand-written operations
– 59% more known bits in result register
– 130% more known bits in condition codes

• Analyzed 26 TinyOS programs
– 8% more known bits in result register
– 40% more known bits in condition codes

• Hand-written operations had been tuned for
months

17

Twist #1: Pseudo-Unary Ops
• Problem:

– xor 0?10??11, 0?10??11 == 0?00??00
However:
– xor r3, r3 == 00000000
– Oops! Maximal precision doesn’t help here

• Solution: Create a pseudo-unary version
of each binary operation
– E.g. xor1, sub1, and1, or1
– Without these, analysis fails miserably
– Not fun to implement these by hand

18

Twist #2: Interacting Domains

• If a register contains
[160..210] and ???11011

• We can show that it actually contains
[187..187] and 10111011

• In general: Use Hoist to create a reduced
product of the interval and bitwise domains
– [Cousot & Cousot 79] says this is impossible
– For finite domains we can brute-force it
– Maximally precise

19

Elephant in the Closet

• Hoist does not scale to machines bigger
than 8 bits
– 8 bit is important: Many architectures, huge

sales volume, used in critical systems
• Current work

– Replace BDDs with high-level symbolic
representation

– Gain scalability but lose many other
advantages of Hoist

20

Conclusions

• Reduce barriers to entry for analyzing
embedded software

• Hoist generates transfer functions for
interval and bitwise domains
– Near-zero specification effort, maximal precision

• We use Hoisted operations in day-to-day
development / use of our static analyzer
– Biggest benefit is never wondering if the

transfer functions are the problem

