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* Hoist makes it significantly easier to do
static analysis of embedded software

— E.g. TinyOS
« Automatically derives transfer functions for
analyzing object code

— This Is new

— Hoisted transfer functions are maximally
precise

— Brute-force approach that works well for small
architectures
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Before Holst:




Use Static Analysis to Eliminate...

e Concurrency errors

e Deadline misses
e Stack overflow

 Language-level errors
— Array bound violations
— Null pointer dereferences _
— Numerical problems sl PR

e Everything else Jim Larus talked about!
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Abstract Transfer Functions
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Transfer Functions can be Hard

Domain / operation mismatch
Condition codes — input and output
Hard to know where precision matters

Lots of transfer functions:
# domains * # Iinstructions * # architectures

Result: Wasted time, bugs, imprecision




Hoist Contributions

e Derive transfer functions with
— Near-zero developer effort
— Maximal precision
— Sufficient performance
— High confidence in correctness
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Hoisting Atmel AVR Architecture

Up to 45 minutes to Hoist a bitwise
operation
U
0

p to 34 hours to Hoist an interval
peration

Dominated by BDD library
Parallelizes trivially across operations




Performance at Analysis Time

* Analyze programs that ship with TinyOS
for worst-case stack depth

— Analysis time increases from 8.3s to 8.9s for
the program that takes longest to analyze




Precision 1n Bitwise Domain

 Fed random bitwise values to Hoisted and
hand-written operations
— 59% more known bits in result register
— 130% more known bits in condition codes

 Analyzed 26 TinyOS programs
— 8% more known bits In result register
— 40% more known bits in condition codes
 Hand-written operations had been tuned for
months
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Twist #1: Pseudo-Unary Ops

* Problem:
—xor 0710?77?11, 0710?77?11 == 0?00?7700
However:
—Xor r3, r3 == 00000000
— Oops! Maximal precision doesn'’t help here
e Solution: Create a pseudo-unary version
of each binary operation
— E.g. xor,, sub,, and,, or,
— Without these, analysis fails miserably
— Not fun to implement these by hand




Twist #2: Interacting Domains

* If a register contains
[160..210] and ???711011

* \We can show that it actually contains
[187..187] and 10111011

* In general: Use Hoist to create a reduced
product of the interval and bitwise domains

— [Cousot & Cousot 79] says this Is Impossible
— For finite domains we can brute-force it
— Maximally precise




Elephant in the Closet

 Hoist does not scale to machines bigger
than 8 bits

— 8 bit Is important: Many architectures, huge
sales volume, used in critical systems

e Current work

— Replace BDDs with high-level symbolic
representation

— Gain scalabllity but lose many other
advantages of Hoist




Conclusions

 Reduce barriers to entry for analyzing
embedded software

* Hoist generates transfer functions for
Interval and bitwise domains
— Near-zero specification effort, maximal precision

* \We use Hoisted operations in day-to-day
development / use of our static analyzer

— Biggest benefit is never wondering if the
transfer functions are the problem




