HOIST: A System for
Automatically Deriving
Static Analyzers for

Embedded Systems

John Regehr Alastair Reid
School of Computing, University of Utah

* Hoist makes it significantly easier to do
static analysis of embedded software

— E.g. TinyOS
« Automatically derives transfer functions for
analyzing object code

— This Is new

— Hoisted transfer functions are maximally
precise

— Brute-force approach that works well for small
architectures

SIMIT|W|T |F|S

S|IM|T|W|T|F|S
B|B|8|B|8|8|®
B|B|B|B|8|8|®
B|B|B|B|8|8|®
B|B|8|B|8|8|®
B|B|B|B|8|8|®

Before Holst:

Use Static Analysis to Eliminate...

e Concurrency errors

e Deadline misses
e Stack overflow

 Language-level errors
— Array bound violations
— Null pointer dereferences _
— Numerical problems sl PR

e Everything else Jim Larus talked about!

r0 =7?7117001
rl1 =70011077

0
ransfer

x Function

r0 =?7117001
rl1 =72001?7007

Abstract Transfer Functions

2?11?7001 [3.. 6]
& 20011077 [36..607]
= 20017007 [39..66]}

272117001 [3.. 6]
+ 20011077 [36..60]

Bitwise Interval

Transfer Functions can be Hard

Domain / operation mismatch
Condition codes — input and output
Hard to know where precision matters

Lots of transfer functions:
domains * # Iinstructions * # architectures

Result: Wasted time, bugs, imprecision

Hoist Contributions

e Derive transfer functions with
— Near-zero developer effort
— Maximal precision
— Sufficient performance
— High confidence in correctness

{

‘ Extract results ‘

e Extract complete
l result table for

Hoist into instruction
abstract domain _ Dest register +

l cond codes

‘Encode as BDD‘ * |deas:
l — No high-level model of

Instruction
‘Generate code‘ I
l — brute 10rce

‘ Test \

{

Extract results
‘ l ‘ e Generate complete

—— abstract transfer

abstract domain _
l e |deas:

— Recursive

‘ Encode as BDD‘ decomposition of
| abstract domain

| Generate code | — Speedup through
l dynamic programming

‘ Test \

{

‘ Extract results ‘ . Binary decision
l diagrams can compactly
Hoist into represent many

abstract domain functions
l Encode transfer function

[Encode as BDD| ~ @s vector of BDDs
| » |deas:

‘Generate Code‘ — Vanablg orderlng NEUGIES
l — Operation ordering

HEEIES
‘ Test \

{

‘ Extract results ‘

!

Hoist Into

abstract domain| . Tyrn BDD into code
| Implementing the

‘Encode as BDD‘ transfer function

!

‘Generate code‘

!

‘ Test \

{

‘ Extract results

!

Hoist into Probabilistically or

abstract domain exhaustively verify
l — Correcthess

‘Encode as BDD‘ — Meflximal precision |
l Original result table is

round-truth
‘Generate code‘ J

!

Hoisting Atmel AVR Architecture

Up to 45 minutes to Hoist a bitwise
operation
U
0

p to 34 hours to Hoist an interval
peration

Dominated by BDD library
Parallelizes trivially across operations

Performance at Analysis Time

* Analyze programs that ship with TinyOS
for worst-case stack depth

— Analysis time increases from 8.3s to 8.9s for
the program that takes longest to analyze

Precision 1n Bitwise Domain

 Fed random bitwise values to Hoisted and
hand-written operations
— 59% more known bits in result register
— 130% more known bits in condition codes

 Analyzed 26 TinyOS programs
— 8% more known bits In result register
— 40% more known bits in condition codes
 Hand-written operations had been tuned for
months

16

Twist #1: Pseudo-Unary Ops

* Problem:
—xor 0710?77?11, 0710?77?11 == 0?00?7700
However:
—Xor r3, r3 == 00000000
— Oops! Maximal precision doesn'’t help here
e Solution: Create a pseudo-unary version
of each binary operation
— E.g. xor,, sub,, and,, or,
— Without these, analysis fails miserably
— Not fun to implement these by hand

Twist #2: Interacting Domains

* If a register contains
[160..210] and ???711011

* \We can show that it actually contains
[187..187] and 10111011

* In general: Use Hoist to create a reduced
product of the interval and bitwise domains

— [Cousot & Cousot 79] says this Is Impossible
— For finite domains we can brute-force it
— Maximally precise

Elephant in the Closet

 Hoist does not scale to machines bigger
than 8 bits

— 8 bit Is important: Many architectures, huge
sales volume, used in critical systems

e Current work

— Replace BDDs with high-level symbolic
representation

— Gain scalabllity but lose many other
advantages of Hoist

Conclusions

 Reduce barriers to entry for analyzing
embedded software

* Hoist generates transfer functions for
Interval and bitwise domains
— Near-zero specification effort, maximal precision

* \We use Hoisted operations in day-to-day
development / use of our static analyzer

— Biggest benefit is never wondering if the
transfer functions are the problem

