
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Supplementary Material for:
Reconciling High-level Optimizations and Low-level

Code with Twin Memory Allocation
Anonymous Author(s)

1 Full Semantics
1.1 Syntax
Figure 1 shows syntax of IR with some instructions omitted

for brevity.

1.2 Memory
In our semantics, memory Mem is defined as a tuple of a

current “time”, a partial function from block ids to memory

blocks, and a partial function from call ids to call times. We

use M(l) to refer to memory block l , and M(cid) to refer

to the call time of call cid. Memory allocation/deallocation

(callmalloc(), alloca, call free()) increments the time of the

memory. The time never decreases during the execution of

a program.

The memory has two parameters: First, a partial function

ptrsz saying for each address space, if it exists, how large the

pointer is. Address space 0 has to exist. Second, the parameter

memtwins says how many memory ranges are allocated

for each block. The details of this “twin allocation” will be

discussed later.

Memory Block. A memory block is defined as a tuple (t , r ,
n,a, c, P). t is a tag indicating which instruction was used to

allocate this block: For memory blocks allocated by alloca,
the tag is stack; formalloc it is heap; for global variables, it
is global tag; and for functions (i.e., the target of function

pointers), it is function.
r is a pair of timestamps defining the lifetime of the block.

If r = (s, e), the block is alive in the time range [s, e). When

a block is newly allocated, r is assigned (s,∞) where s is the
current time. If the block is freed, r is changed to (s, e)where
e is the current time. We say that l is alive, or aliveM (l), if its
lifetime has not ended.

n is the size of the block in bytes. a is the alignment of
the block in bytes. When a logical block becomes a concrete

block, its integer address (P(s), which we will discuss shortly)
must be divisible by a.
c is the content of the block, stored as a sequence of n

bytes.

P stores, for each address space, the integer addresses of

the beginning of the block. These addresses are assigned

on allocation. For all address spaces s and twin indices i ,

Conference’17, July 2017, Washington, DC, USA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

P(s)i + n should not exceed the maximal integer address

of address space s . For example, if address space 1 has size

2
16
, then we must have P(1)i + n < 2

16
. Furthermore, in

address space 0, the first and last address (0 and 2
ptrsz(0) − 1)

must not be used for any block. For every address space,

the first address (P(s)0, or just P(s) for short) is the base

address of the block on the physical machine. The remain-

ing addresses (at indices 1, . . . ,memtwins − 1) are the base

addresses of the twin blocks. For every block allocated via

malloc or alloc, we actually reserve several blocks of the
same size in the address space. This lets us prove that it

is impossible for others to correctly “guess” the address

that the block has been allocated at. The twin blocks’ ad-

dresses are not used anywhere in the semantics. However,

we demand that all the address ranges covered by the alive

blocks of an address space are disjoint: For all address spaces

s and all l1, l2, i1, i2, if (l1, i1) , (l2, i2) and aliveM (l1) and
aliveM (l2), then [M(l1).P(s)i1 ,M(l1).P(s)i1 + P(l1).n) is dis-

joint from [M(l2).P(s)i2 ,M(l2).P(s)i2 + P(l2).n). Furthermore,

the base address of one alive block must not be in the address

range covered by another alive block: For all address spaces

s and all l1, l2, i1, i2, if (l1, i1) , (l2, i2) and aliveM (l1) and
aliveM (l2), then M(l1).P(s)i1 < [M(l2).P(s)i2 ,M(l2).P(s)i2 +
P(l2).n). This second condition is required to handle 0-sized

blocks.

convert(s, i, s ′) is a partial function that maps an integer

address i from address space s to s ′. If there exists P(s) = i
and P(s ′) = i ′, we have for all offsets o ≤ n that convert(s, i+
o, s ′) = i ′ + o and convert(s ′, i ′, s) = i + o.

Memory Addresses. There are two kinds of memory ad-

dresses (besides poison): logical addresses Log(l ,o, s), and
physical addresses Phy(o, s, I , cid). Both track their address

space to be able to detect partial loads of a pointer, and to

detect address space punning on load.

A logical memory address is of the shape Log(l ,o, s), where
l is a block id, o is a byte offset from the beginning of the

block and s is its address space. An offset o is an inbounds
offset of l , written inboundsM (l ,o), if o is non-negative and
not larger than size of the block, i.e., 0 ≤ o ≤ n. The offset
one-past-the-end is explicitly allowed. Because the last ad-

dress of address space 0 is never allocated, we know that

computing on inbounds addresses can never overflow. The

offset is strictly inbounds, written strict_inboundsM (l ,o), if

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Conference’17, July 2017, Washington, DC, USA Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

stmt : := reg=inst | br op, label, label | br label
| call ty funcname (ty op[, ty op]∗) fnattr | store ty op, ty∗ op
| ret void | ret ty op | unreachable

inst : := load ty, ty∗ op, align op | alloca ty, align op
| ptrtoint ty op to ty | inttoptr ty op to ty
| addrspacecast ty op to ty
| getelementptr [inbounds] ty op [, [inrange] ty op]∗

| select ty op, ty op, ty op | freeze ty op
| psub ty op op | icmp cond, op, op
| phi ty [op, label], . . . , [op, label]
| call ty funcname (ty op[, ty op]∗) fnattr

| aop [nuw] [nsw] ty op, op // arithmetic ops
| div [exact] ty op, op // divisions
| lop ty op, op // logical ops
| castop ty op to ty // casting ops
| . . .

op : := reg | constant | poison
bty : := isz | ty ∗ addrspace n // base type
vty : := < sz × bty> // vector type
sty : := { ty [, ty]∗ } // struct type
aty : := [sz × ty] // array type
ty : := bty | vty | sty | aty

funcname : := malloc | free | . . .

fnattr : := alwaysinline | readnone | readonly | writeonly . . .
cond : := eq | ne | ugt | uge | ult | ule | sgt | sge | slt | sle
fcond : := oeq | ogt | olt | ole | one | ord | ueq | uno | . . .

aop : := add | sub | mul | shl
div : := udiv | sdiv | urem | srem | lshr | ashr
lop : := and | or | xor

castop : := trunc | zext | sext | fptrunc | fpext | fptoui | fptosi | . . .

Figure 1. Syntax of LLVM IR (unnrelated instructions omitted for brevity)

it is inbounds and it does not point beyond the end of the

block, i.e., 0 ≤ o < n.
Physical addresses are of the shape Phy(p, s, I , cid) where

o is the physical address, i.e., it is an offset starting at ad-

dress 0x0. s is the address space, and I and cid are addi-

tional constraints which should be met when the pointer is

dereferenced. I is a set of integer addresses which should

be inbounds addresses of the dereferencing memory block

when the physical pointer is dereferenced. cid is a CallId

enforcing that the physical pointer cannot access memory

blocks created inside the function call. I and cid are both

used for supporting more alias analysis rules. They are not

used in pointer comparison, pointer subtraction, and pointer

to integer casting, but address space casting may update I .
For simplicity, we write Phy(o, s) whenever I is an empty set

and cid is None.
To describe cid, we first introduce the concept of a call

id. A call id is a natural number that is uniquely assigned to

each function call. For each function call, the time at which

it occurs is maintained in the partial map CallID → Time

that is part of the memory. If a physical pointer is passed to

a function call and cid of the physical pointer is either None
or a call that has already returned, cid is updated to the call

id of the new function call. Otherwise, cid does not change.

Inside the function call, even if a physical pointer points to

some memory block l , dereferencing the physical pointer is

UB if the beginning of the lifetime of l is not earlier than call

time of cid. Escaping the physical pointer (e.g., storing it into
a global variable or returning it at the end of the function)

does not change cid. After the function call is returned, all

physical pointers having the call id act as if their cid are

None. In other words, even if a pointer with a cid is returned

back to its caller, it is no longer restricted in how it can be

used.

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Supplementary Material for: Twin Memory Allocation Conference’17, July 2017, Washington, DC, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Num(sz) : := { i | 0 ≤ i < 2
sz }

Time : := N
BlockID : := N
CallID : := N
Mem : := Time × (BlockID↛ Block) × (CallID↛ Time ⊎ None)
AddrSpace : := N
Block : := { (t , r ,n,a, c, P) | t ∈ { stack, heap, global, function }

∧ r ∈ (Time × (Time ⊎ {∞})) ∧ n ∈ N ∧ a ∈ N ∧ c ∈ Byte
n

∧ P ∈ ((s ∈ AddrSpace)↛ Num(ptrsz(s))memtwins) }

LogAddr(s) : := { Log(l ,o, s) | l ∈ BlockID ∧ o ∈ Num(ptrsz(s)) }
PhyAddr(s) : := { Phy(o, s, I , cid) | o ∈ Num(ptrsz(s)) ∧ I ⊂ Num(ptrsz(s))

∧ cid ∈ CallID ⊎ {None} }
Addr(s) : := LogAddr(s) ⊎ PhyAddr(s)
⟦isz⟧ : := Num(sz) ⊎ { poison }

⟦⟨sz×ty⟩⟧ : := {0, . . . , sz − 1} → ⟦ty⟧
⟦ty ∗ addrspace(s)⟧ : := Addr(s) ⊎ { poison }

Name : := { %x, %y, . . . }
Reg : := Name → { (ty,v) | v ∈ ⟦ty⟧ }
Byte : := Bit

8

Bit : := ⟦i1⟧ ⊎ AddrBit

AddrBit : := { (p, i) | ∃s . p ∈ Addr(s) ∧ (0 ≤ i < ptrsz(s)) }

Figure 2. Semantic domain

To actually perform a memory access of size sz > 0

through a pointer p, it must be dereferencable as some block-

offset-pair, written derefM (p, sz, l ,o). If p is a logical pointer

Log(l ,o, 0) and aliveM (l) and inboundsM (l ,o + sz), then we

have derefM (p, sz, l ,o). Ifp is a physical pointerPhy(p, 0, I , cid),
there must be a block l and an offset o such thatM(l).P(0) +
o = p and aliveM (l) and inboundsM (l ,o + sz) and moreover,

for all p ′ ∈ I , we must have inboundsM (l ,p ′−M(l).P(0)) (i.e.,
all thesep ′ are inbounds of the same block) and if cid , None
and M(cid) , None, then M(l).b < M(cid) (i.e., the block

was allocated before the function call identified by cid began,

and that function call is still ongoing). If all these require-

ments are satisfied, we have derefM (p, sz, l ,o). Notice that
l and o are uniquely determined even for physical pointers

due to memory blocks being disjoint.

The NULL pointer of address space s is defined as

Phy(0, s, ∅,None). DefiningNULL pointer as physical pointer
allows folding inttoptr(0) into NULL (inttoptr(x) is an in-

struction that casts integer x to pointer), and replacing p by

NULL if p == NULL holds. Also LLVM can optimize NULL

+ idx into inttoptr(idx).

Values. ⟦ty⟧ denotes the set of values of type ty. An inte-

ger value of type isz is either a concrete number i within
range 0 ≤ i < 2

sz
, or poison. A pointer value of type

‘ty ∗ addrspace(s)’ is defined as either a logical address

Log(l ,o, s), a physical address Phy(o, s, I , cid), or poison.
There is no distinction between pointer values of differ-

ent types (i32*, i64*, ..), but there is a distinction between

pointer values of different address spaces.
1
This is needed

to make sure that load punning cannot be used to perform

an address space cast, and because the size of a pointer may

depend on its address space. The register file Reg maps a

name to a type and a value of that type.

Byte and Bit denote the set of values that one byte or bit

can hold, respectively. A byte can hold 8 bits. A bit can hold

either a value of type i1 (i.e., 0, 1, or poison) or the ith bit of

a pointer value p. Storing to memory involves converting a

value to an array of bits. ty⇓(v) is a function that converts

value v to bits. Similarly, loading a value from memory in-

volves converting bits to a value. ty⇑(b) is a function that

converts bits b to a value of type ty.

ty⇓ ∈ ⟦ty⟧ → Bit
bitwidth(ty)

ty⇑ ∈ Bit
bitwidth(ty) → ⟦ty⟧

To convert an individual bit, we define a partial function

getbitv i that returns ith bit of a value v with base type bty.
If v is an integer, getbitv i returns ith bit of the integer v . If
the integer v is poison, all its bits are poison; otherwise all
bits are either 0 or 1. If v is a pointer, getbitv i returns either
poison if v is poison or a pair (p, i) which is an element of

AddrBit denoting the ith bit of a non-poison pointer p. We

1
This matches LLVM’s plans to move to a ptr type: https://lists.llvm.org/
pipermail/llvm-dev/2015-February/081822.html.

3

https://lists.llvm.org/pipermail/llvm-dev/2015-February/081822.html
https://lists.llvm.org/pipermail/llvm-dev/2015-February/081822.html

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Conference’17, July 2017, Washington, DC, USA Anon.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

define all bits of poison to be poison, regardless of its type.

getbit ∈ ⟦bty⟧ → N→ Bit

getbitn i = platform dependent

where n ∈ ⟦isz⟧, 0 ≤ i < sz
getbitp i = (p, i)

where p ∈ ⟦ty ∗ addrspace(s)⟧,
0 ≤ i < ptrsz(s)

Further details of these definitions will be given together

with the load/store instructions.

1.3 Instructions
In this subsection, we introduce the semantics of the IR in-

structions. Instruction ι updates the register file R ∈ Reg

and the memory M ∈ Mem, denoted R,M
ι
↪−→ R′,M ′

. Note

that program text and program counter are omitted in state

because every operation explained in this section increments

the program counter by one and does not change the pro-

gram text. The aforementioned global map from call id to call

time is omitted as well. For semantics of branch instructions,

we follow earlier work [?].
The value ⟦op⟧R of an operand op in register file R is given

by:

⟦r⟧R = R(r) // register

⟦C⟧R = C // constant

⟦poison⟧R = poison // poison

We propose to add one new instruction to LLVM: psub.2

This instruction takes two pointers p1, p2 and returns p1 −p2
as an integer. Currently LLVM uses ‘sub (ptrtoint p1),
(ptrtoint p2)’ to subtract two pointers. This is already cor-
rect in this semantics, but using psub can improve compiler’s

optimization power.
3

Integer↔Pointer Casting. We formally define the seman-

tics of ptrtoint and inttoptr instructions. Figure 3 shows

semantics of ptrtoint and inttoptr. There are two auxiliary

functions cast2intM (l ,o, s) and cast2ptr(o, s):

cast2intM (l ,o, s) = (P(s) + o)%2ptrsz(s) where

M(l) = (t , r ,n,a, c, P)

cast2ptr(o, s) = Phy(o, s, ∅,None)

Casting from a logical pointer to integer, or

cast2intM (l ,o, s), yields an integer P(s) + o based on

block l . If P(s) + o overflows the size of the address space, it
wraps around to 2’s complement. (This can only happen if

the pointer is not inbounds.) The semantics of ptrtoint is eas-
ily represented by cast2int. ‘ptrtoint Log(l ,o, s)’ computes

cast2intM (l ,o, s) and returns it. ‘ptrtointPhy(o, s, I , cid)’
simply returns o. If the size of the destination type isz is

2
Currently psub is implemented as an intrinsic function, @llvm.psub. For
simplicity, it is represented as an instruction in this document.

3
SPEC CPU2017 has up to 2% speedup.

larger than the size of the source type, it is zero-extended. If

it is smaller than it, most significant bits are truncated.

Casting from an integer to a pointer, or cast2ptr(o, s), re-
turns a physical pointer with no provenance information.

One option here is to add o to I upon casting, making sure

that if this pointer is ever dereferenced, it is still in the block

that it started out in. However, that would invalidate replac-

ing p by inttoptr(ptrtoint(p)). 4

‘inttoptr isz o to ty ∗ addrspace(s)’ is equivalent to

cast2ptr (o, s) if the size of the source type isz is equivalent
to the size of the destination type ty ∗ addrspace(s). If the
size of the source type is larger, high bits of o are truncated.
If the size of the source type is smaller, o is zero-extended.
In this semantics, inttoptr and ptrtoint instructions are

allowed to freely move around, be removed, or be introduced.

Address-Space Casting. LLVM IR is a general-purpose in-

termediate language, and it can be used to compile programs

for GPUs as well. The address space of a GPU typically dis-

joint from the one of the CPU, and moreover, many have mul-

tiple address spaces themselves. A programmer can choose

which memory to use for allocation. To handle that, LLVM

IR tracks address space of a pointer it its type. A pointer

in one address space can be casted to a pointer in another

address space using addrspacecast.
Figure 4 shows formal semantics of addrspacecast. If the

given pointer is a physical pointer Phy(o, s, Icid), the instruc-
tion translates both the offset o and the inbounds offsets I
using convert(s, _, s ′). If the result of convert is not defined
(the function is partial, after all), the result is poison. If con-
verting any offset in I fails, it is poison aswell. addrspacecast
is a capturing operation, as is ptrtoint.

If the given pointer is a logical pointer Log(l ,o, s), its block
id is maintained, and the new offset is calculated as follows.

First, the pointer is casted to integer using cast2intM . Next,

the integer is converted into the corresponding integer ad-

dress in s ′ using convert. Finally, offset is calculated by get-

ting relative offset from l in s ′.
The reason why the calculation of offset is complex is due

to a possible overflow. Let’s assume that the size of address

space 1 is 4, i.e., there are 16 bytes, and the size of address

space 2 is 5, i.e., there are 32 bytes. Also, let’s assume that

convert(1,x , 2) = x (identity function). Finally, let’s assume

that the beginning of a block l is 8 in both address spaces (it

must be the same because convert is the identity function).

Then, pointer p = Log(l , 15, 1) will have integer address

(8 + 15)%16 = 7, but addrspacecastp to 2 = Log(l , 15, 2) will
return (8 + 15)%32 = 23. This breaks our property that any

pointer p can be replaced with inttoptr(ptrtoint(p)).

4
This enables replacing p with NULL if p == NULL is given. Also we can

make optimizers like GVN insert this if needed, although we didn’t utilize

this replacement in our prototypes.

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Supplementary Material for: Twin Memory Allocation Conference’17, July 2017, Washington, DC, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

(ι = “r = ptrtoint ty ∗ addrspace(s) op to isz”)
Log(l, o, s) = ⟦op⟧R cast2intM (l, o, s) = j

R, M
ι
↪−→ R[r 7→ j%2sz], M

(ι = “r = ptrtoint ty ∗ addrspace(s) op to isz”)
Phy(o, s, I, cid) = ⟦op⟧R
R, M

ι
↪−→ R[r 7→ o], M

(ι = “r = ptrtoint ty ∗ addrspace(s) op to isz”)
poison = ⟦op⟧R

R, M
ι
↪−→ R[r 7→ poison], M

(ι = “r = inttoptr isz op to ty ∗ addrspace(s)”)
poison , ⟦op⟧R cast2ptr(⟦op⟧R, s) = p

R, M
ι
↪−→ R[r 7→ p], M

(ι = “r = inttoptr isz op to ty ∗ addrspace(s)”)
poison = ⟦op⟧R

R, M
ι
↪−→ R[r 7→ poison], M

Figure 3. Semantics of ptrtoint, inttoptr

(ι = “r = addrspacecast ty1 ∗ addrspace(s1)op to ty2 ∗ addrspace(s2)”)
Phy(o, s1, I , cid) = ⟦op⟧R o′ = convert(s1,o, s2) I ′ = { convert(s1, i, s2) | i ∈ I }

R,M
ι
↪−→ R[r 7→ Phy(o′, s2, I ′, cid)],M

(ι = “r = addrspacecast ty1 ∗ addrspace(s1)op to ty2 ∗ addrspace(s2)”)
Log(l ,o, s1) = ⟦op⟧R o′ = (convert(s1, cast2intM (l ,o, s1), s2) − cast2intM (l , 0, s2))%2

ptrsz(s2)

R,M
ι
↪−→ R[r 7→ Log(l ,o′, s2)],M

Figure 4. Semantics of addrspacecast

Pointer Comparison. Now we define the semantics of

pointer comparison. icmp compares two pointers in the same

address space, and returns a value of type i1. In this seman-

tics, icmp can freely move across any other operations like

callmalloc(), free(). Also, icmp on two logical pointers does

not capture their integer addresses. In address space 0, icmp
NULL,p also does not ecsape p if p is inbounds address, be-

cause integer address ofp is always positive if it is inbounds.5

The definition of icmp eq p1 p2 is as follows.

1. If p1,p2 are both logical addresses Log(l1,o1, s) and
Log(l2,o2, s), we first check whether their block ids are
same, e.g., l1 = l2. If they are same, the comparison

is equivalent to o1 = o2. If l1 , l2, the comparison

can evaluate to false. However, there are also some

cases where comparison is non-deterministic, i.e., it

can evaluate to either false or true. This is the case if
either one of the offsets is not strictly inbounds, i.e.,

¬(0 ≤ o1 < n1) ∨ ¬(0 ≤ o2 < n2), or if the lifetimes

of the two blocks do not overlap. In other words, the

result is only guaranteed to be false if both offsets are

strictly inbounds and the lifetimes overlap. These are

sufficient conditions to ensure that the bit representa-

tions of the two pointers on the hardware differ.

5
Note that LLVM is rather conservative, so it assumes that p == NULL does

not capture only if p is some system memory allocating function.

p = malloc(4)
…
q = malloc(4)
…
free(p)
…
free(q)

p = malloc(4)
…
free(p)
…
q = malloc(4)
…
free(q)

q

p

q

MemoryMemory
Ex
ec
u
ti
o
n

Ex
ec
u
ti
o
n

Case 1 Case 2

p

This figure visualizes two cases where (1) lifetimes

overlap, and (2) lifetimes do not overlap. If lifetimes

overlap, the two blocks never have overlapping mem-

ory addresses. Therefore comparison on pointers from

each of these blocks yields false if the offsets are

strictly inbounds. Notably, the result of the comparison

does not depend on whether p or q has already been

freed. However, if their lifetimes are disjoint, p and q
may overlap their addresses, and comparison on two

pointers is nondeterministic value.
6
Note that whether

the two blocks overlap or not is determined when the

second malloc is called. The result of the comparison

does not depend on whether a block is still allocated,

so icmp eq is allowed to freely move across free.
2. If p1,p2 are both physical addresses Phy(o1, s, I1, cid1),

Phy(o2, s, I2, cid2): the result is equivalent to o1 = o2.
3. If p1 = Phy(o1, s, I1, cid1) and p2 = Log(l2,o2, s)

or vice versa, the result is equivalent to o1 =

cast2intM (l2,o2, s).

The rules for comparing logical pointers allow ‘p+n == q’
to be folded into ‘false’, which is an optimization currently

6
This is the case of http://lists.llvm.org/pipermail/llvm-dev/2017-April/
112009.html.

5

http://lists.llvm.org/pipermail/llvm-dev/2017-April/112009.html
http://lists.llvm.org/pipermail/llvm-dev/2017-April/112009.html

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

Conference’17, July 2017, Washington, DC, USA Anon.

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

performed by gcc/llvm. Figure 5 shows the formal rules for

‘icmp eq’.
icmpnep1, p2 is simply defined as a negation of

icmp eqp1, p2. This enables free conversion between p ==
q and !(p != q).

icmp ulep1, p2 (or p <= q) is defined as follows.

1. If p1 = Log(l ,o1, s) and p2 = Log(l ,o2, s), we check

whether the offsets o1 and o2 are inbounds. This con-
dition is needed because l + o1 or l + o2 can overflow

at runtime. If this is the case, the result is o1 ≤u o2.
Otherwise, we allow non-deterministic choice.

2. If p1 = Log(l1,o1, s), p2 = Log(l2,o2, s) and l1 , l2, the
result is nondeterministic choice.

3. If p1 = Phy(o1, s, I1, cid1) and p2 = Phy(o2, s, I2, cid2),
the result is o1 ≤u o2.

4. If p1 = Phy(o1, s, I1, cid1) and p2 = Log(l2,o2, s), it is
o1 ≤u cast2intM (l2,o2, s).

Figure 6 shows the rules for ‘icmp ule’. The semantics of

‘icmp ult’ is defined in a similar way to ‘icmp ule’.
For all equality/inequality comparisons, the result is

poison if one or more operands are poison.

(ι = “r = icmp op ty ∗ addrspace(s) op1 op2”)
poison = ⟦op1⟧R ∨ poison = ⟦op2⟧R

R,M
ι
↪−→ R[r 7→ poison],M

MemoryAllocation / Deallocation. Memory allocating op-

erations create a newmemory block and pick integer base ad-

dresses P(s) for each address space they operate in, including
some number of twin blocks. Our semantics is parameterized

in how many twin blocks are allocated. In address space 0,

the base addresses P(0)i may not be 0 and the last strictly

inbounds address P(0)i + n − 1 may not be 2
ptrsz(0) − 1, i.e.,

the first and last byte of address space 0 are not allocatable.

In particular, this means that P(0) + n cannot overflow. The

standard operations alloca, callmalloc only work in address

space 0. In order to maintain the memory invariants, all the

base addresses must be divisible by the alignment. Further-

more, P(s)i + n must not exceed the size of s . Finally, for
all s , all the [P(s)i , P(s)i + n) must be mutually disjoint and

disjoint from all existing alive blocks’ ranges. Figure 7 shows

semantics of alloca and callmalloc.
alloca creates a new logical block of the size of ty. Every

bit of value of a new block is initialized with poison. The tag
of a new block is stack meaning that the block cannot be

freed by free. It is freed when a function returns.

malloc creates a new logical block of len bytes, or returns

NULL nondeterministically. If len is poison, it is UB. Similar

to alloca, every bit is initialized with poison. The alignment

of blocks created bymalloc is determined by the ABI (hence

platform dependent), and it corresponds to the maximum

alignment required for any type. Note that for aggregate

types like struct type / array type only a single block is allo-

cated and the block contains all members of the aggregated

type. malloc(0) returns NULL.
The pointers returned by alloca and malloc all have ad-

dress space 0.

Figure 8 shows semantics of free(). free invalidates the
memory block that ptr refers to by updating its time range.

Calling free on NULL pointer is a NOP. Otherwise, calling

free on a pointer p requires derefm(p, 1, l , 0) for some block l ;
otherwise, it is UB. Notice that the offset must be 0. Moreover,

deref only ever holds for pointers of address space 0.

These three operations alloca,malloc, free all increment

the time of the memory τcur .

Address Calculation. The getelementptr instruction is

used to get the address of a subelement of an aggregate

data structure. getelementptr does not check whether the

block is alive or not. This enables getelementptr to freely

move across free calls.
getelementptr on a logical pointer yields a logical pointer

with shifted offset. If the operand is p = Log(l ,o, s),
getelementptrp, i returns Log(l , (o + i ′)%2ptrsz(s), s) where
i ′ is i multiplied by the size of its element type. The

getelementptr instruction may have the inbounds tag,

which imposes further requirements on the operands and

helps LLVM do further alias analysis. Concretely, it demands

that both the base pointer and the returned pointer are in-

bounds of the block. getelementptr inboundsp, i returns
poison if that is not the case.

getelementptr on a physical pointer yields a physi-

cal pointer with shifted offset. If the base pointer is

p = Phy(o, s, I , cid), then getelementptrp, i simply returns

Phy((o + i ′)%2ptrsz(s), s, I , cid) where i ′ is i multiplied by

size of its element type. This operation does not affect

I and cid, which enables optimizing getelementptrp, 0
to p. In the inbounds variant, the returned pointer has

an updated inbounds set I ′ = I ∪ {o, ((o + i ′)%2ptrsz(s))}.
This allows for further alias analysis even on physical

pointers. Also, tracking inbounds addresses and checking

them later instead of returning poison instantly allows re-

ordering of getelementptr inbounds and memory allocat-

ing/deallocating operations. getelementptr inbounds on a

physical pointer is poison if the added offset overflows.

The formal semantics of getelementptr is given in Fig-

ure 9.

If the base pointer points to a nested aggregate value,

the getelementptr instruction may have multiple in-

dexes as its operands. In this case, it is allowed for

getelementptr inbounds to point past the range of a sub-

type. For example, ‘int a[5][5]; int* t=&a[0][7];’ is
translated into

%a = alloca [5 x [5 x i32]], align 16
%t = getelementptr inbounds [5 x [5 x i32]]* %a,

i64 0, i64 0, i64 7

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Supplementary Material for: Twin Memory Allocation Conference’17, July 2017, Washington, DC, USA

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

(ι = “r = icmp eq ty ∗ addrspace(s) op1 op2”)
icmp-ptr-logical-same-block

Log(l ,o1, s) = ⟦op1⟧R Log(l ,o2, s) = ⟦op2⟧R
R,M

ι
↪−→ R[r 7→ (o1 = o2)],M

(ι = “r = icmp eq ty ∗ addrspace(s) op1 op2”)
icmp-ptr-logical-different-block

Log(l1,o1, s) = ⟦op1⟧R
Log(l2,o2, s) = ⟦op2⟧R l1 , l2

R,M
ι
↪−→ R[r 7→ false],M

(ι = “r = icmp eq ty ∗ addrspace(s) op1 op2”)
icmp-ptr-logical-nondet-true

Log(l1,o1, s) = ⟦op1⟧R
Log(l2,o2, s) = ⟦op2⟧R

l1 , l2

M(l1) = (t1, (b1, e1),n1,a1, c1, P1)
M(l2) = (t2, (b2, e2),n2,a2, c2, P2)

¬(0 ≤ o1 < n1) ∨ ¬(0 ≤ o2 < n2) ∨ [b1, e1) ∩ [b2, e2) = ∅

R,M
ι
↪−→ R[r 7→ true],M

(ι = “r = icmp eq ty ∗ addrspace(s) op1 op2”)
icmp-ptr-physical

Phy(o1, s, I1, cid1) = ⟦op1⟧R
Phy(o2, s, I2, cid2) = ⟦op2⟧R
R,M

ι
↪−→ R[r 7→ (o1 = o2)],M

(ι = “r = icmp eq ty ∗ addrspace(s) op1 op2 ′′)
icmp-ptr-physical-logical

(Phy(p, s, I , cid1) = ⟦op1⟧R ∧ Log(l ,o, s) = ⟦op2⟧R) ∨
(Phy(p, s, I , cid) = ⟦op2⟧R ∧ Log(l ,o, s) = ⟦op1⟧R)

R,M
ι
↪−→ R[r 7→ (p = cast2intM (l ,o, s))],M

Figure 5. Semantics of icmp eq

(ι = “r = icmp ule ty ∗ addrspace(s) op1 op2”)
Log(l ,o1, s) = ⟦op1⟧R
Log(l ,o2, s) = ⟦op2⟧R

inboundsM (l ,o1)
inboundsM (l ,o2)

R,M
ι
↪−→ R[r 7→ (o1 ≤u o2)],M

(ι = “r = icmp ule ty ∗ addrspace(s) op1 op2”)
Log(l1,o1, s) = ⟦op1⟧R Log(l1,o2, s) = ⟦op2⟧R l1 , l2 b ∈ {true, false}

R,M
ι
↪−→ R[r 7→ b],M

(ι = “r = icmp ule ty ∗ addrspace(s) op1 op2”)
Phy(o1, s, I1, cid1) = ⟦op1⟧R
Phy(o2, s, I2, cid2) = ⟦op2⟧R
R,M

ι
↪−→ R[r 7→ (o1 ≤u o2)],M

(ι = “r = icmp ule ty ∗ addrspace(s) op1 op2”)
Phy(p, s, I , cid1) = ⟦op1⟧R

Log(l ,o, s) = ⟦op2⟧R
R,M

ι
↪−→ R[r 7→ (p ≤u cast2intM (l ,o, s))],M

(ι = “r = icmp ule ty ∗ addrspace(s) op1 op2”)
Log(l ,o, s) = ⟦op1⟧R

Phy(p, s, I , cid2) = ⟦op2⟧R
R,M

ι
↪−→ R[r 7→ (cast2intM (l ,o, s) ≤u p)],M

Figure 6. Semantics of icmp ult

(ι = “r = alloca ty, align a”)
n = bytewidth(ty) u = i(8 × n)⇓(poison) l fresh P unallocated physical addresses

R, (τcur , f ,C)
ι
↪−→ R[r 7→ Log(l , 0, 0)], (τcur + 1, f [l 7→ (stack, (τcur ,∞),n,a,u, P)],C)

(ι = “r = call i8∗ malloc(iptrsz(0) len))”
n = ⟦len⟧R u = i(8 × n)⇓(poison) l fresh P unallocated physical addresss n > 0

R, (τcur , f ,C)
ι
↪−→ R[r 7→ Log(l , 0, 0)], (τcur + 1, f [l 7→ (heap, (τcur ,∞),n,a,u, P)],C)

(ι = “r = call i8∗ malloc(iptrsz(0) len))”
−

R,M
ι
↪−→ R[r 7→ NULL],M

Figure 7. Semantics of alloca, callmalloc()

In this case, %t is not poison. Pointer Subtraction. We define a new instruction

psub(ptr1,ptr2) that calculates ptr1 − ptr2. This operation

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

Conference’17, July 2017, Washington, DC, USA Anon.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(ι = “call void free(i8∗ op)”)
Log(0, 0, 0) = ⟦op⟧R

R,M
ι
↪−→ R,M

(ι = “call void free(i8∗ op)”)
Log(l , 0, 0) = ⟦op⟧R M(l) = (heap, (b,∞),n,a, c, P)

R, (τcur , f ,C)
ι
↪−→ R, (τcur + 1, f [l 7→ (heap, (b,τcur),n,a, c, P)],C)

(ι = “call void free(i8∗ op)”)
Phy(o, 0, I , cid) = ⟦op⟧R M(l) = (heap, (b,∞),n,a, c, P) cast2int(l , 0) = o b < calltime(cid)

R, (τcur , f ,C)
ι
↪−→ R, (τcur + 1, f [l 7→ (heap, (b,τcur),n,a, c, P)],C)

Figure 8. Semantics of free() (cases not mentioned here all raise UB)

(ι = “r = getelementptr ty ∗ addrspace(s) op1 isz op2”)
getelementptr-logical

Log(l ,o, s) = ⟦op1⟧R i = ⟦op2⟧R
R,M

ι
↪−→ R[r 7→ Log(l , (o + bytewidth(ty) ∗ i)%2ptrsz(s), s)],M

(ι = “r = getelementptr ty ∗ addrspace(s) op1 isz op2”)
getelementptr-physical

Phy(o, s, I , cid) = ⟦op1⟧R i = ⟦op2⟧R
R,M

ι
↪−→ R[r 7→ Phy((o + bytewidth(ty) ∗ i)%2ptrsz(s), s, I , cid)],M

(ι = “r = getelementptr inbounds ty ∗ addrspace(s) op1 isz op2”)
getelementptr-inbounds-logical

Log(l ,o, s) = ⟦op1⟧R M(l) = (t , r ,n,a, c, P)
inboundsM (l ,o) inboundsM (l ,o + bytewidth(ty) ∗ i)

R,M
ι
↪−→ R[r 7→ (l ,o + bytewidth(ty) ∗ i, s)],M

(ι = “r = getelementptr inbounds ty ∗ addrspace(s) op1 isz op2”)
getelementptr-inbounds-physical

Phy(o, s, I , cid) = ⟦op1⟧R i = ⟦op2⟧R o′ = (o + bytewidth(ty) ∗ i) o + bytewidth(ty) ∗ i < 2
ptrsz(s)

R,M
ι
↪−→ R[r 7→ Phy(o′, s, I ∪ { o,o′ }, cid)],M

Figure 9. Semantics of getelementptr (cases not mentioned here are all poison)

does not read or write memory. ptr1 and ptr2 should have

same address space by type checking. Alias analysis can

treat psub specially so it does not consider the addresses of

its operands escaped in some cases. Originally clang used

ptrtoint and integer arithmetic to emit pointer subtraction;

with psub we enable a more precise alias analysis.

1. If ptr1,ptr2 are both logical addresses, they must

point to the same logical block; otherwise the result is

poison.
2. If ptr1,ptr2 are both physical addresses, say ptr1 =

Phy(o1, s, I1, cid1),ptr2 = Phy(o2, s, I2, cid2), the result
is (o1 − o2)%2

ptrsz(s)
.

3. If ptr1 is a logical address and ptr2 is a physical ad-

dress or vice versa, say ptr1 = Log(l1,o1, s),ptr2 =

Phy(o2, s, I2, cid2), the result is equivalent to
(cast2intM (l1,o1, s) − o2)%2

ptrsz(s)
.

Figure 10 shows formal semantics of psub. The transfor-
mation (p1 - p2) == 0→ p1 == p2 is valid, but its inverse
is not. Similarly, (p1 - p2) > 0→ p1 > p2 is valid, but its in-
verse is not. This instruction is implemented as @llvm.psub
intrinsic function in our prototype.

Load and Store. As mentioned in the beginning of this sec-

tion, we define two meta operations to support conversion

between values of types and low-level bit representation.

ty⇓ ∈ ⟦ty⟧ → Bit
bitwidth(ty)

ty⇑ ∈ Bit
bitwidth(ty) → ⟦ty⟧

For base types, ty⇓ transforms poison into the bitvector

of all poison bits, and defined values into their standard

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Supplementary Material for: Twin Memory Allocation Conference’17, July 2017, Washington, DC, USA

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

(ι = “r = psub ty ∗ addrspace(s) op1, op2”)
Log(l ,o1, s) = ⟦op1⟧R
Log(l ,o2, s) = ⟦op2⟧R

R,M
ι
↪−→ R[r 7→ (o1 − o2)%2

ptrsz(s)],M

(ι = “r = psub ty ∗ addrspace(s) op1, op2”)
Log(l1,o1, s) = ⟦op1⟧R
Log(l2,o2, s) = ⟦op2⟧R l1 , l2

R,M
ι
↪−→ R[r 7→ poison],M

(ι = “r = psub ty ∗ addrspace(s) op1, op2”)
Phy(o1, s, I1, cid1) = ⟦op1⟧R
Phy(o2, s, I2, cid2) = ⟦op2⟧R

R,M
ι
↪−→ R[r 7→ (o1 − o2)%2

ptrsz(s)],M

(ι = “r = psub ty ∗ addrspace(s) op1, op2”)
Log(l ,o1, s) = ⟦op1⟧R

Phy(o2, s, I2, cid2) = ⟦op2⟧R o′ = cast2intM (l ,o1, s)

R,M
ι
↪−→ R[r 7→ (o′ − o2)%2

ptrsz(s)],M

Figure 10. Semantics of psub

p = Log(l ,o, s)
M(l) = (t , r ,n,a, c, P)

derefM (p, sz, l ,o)
b = substr8×nsz (c,o)

o%a = 0

Load(M,p, sz,a) = b

p = Log(l ,o, s)
M(l) = (t , r ,n,a, c, P)
M = (τcur , f ,C)

derefM (p, sz, l ,o)
o%a = 0

c ′ = overwrite8×nsz (c,b,o)
M ′ = (τcur , f [l 7→ (t , r ,n,a, c ′, P)],C)

Store(M,p,b,a) = M ′

Figure 11. Semantics of two auxiliary functions, Load and Store (when p is logical pointer only). If p is a logical pointer and it

does not match these two cases, it fails.

isz⇑(b) =

n such that ∀0≤i<sz b[i] = n.i∨

b[i] = (Phy(n, 0, ∅,None), i)
poison if there’s no such n

Figure 13. Converting a bit vector to an integer

low-level representation. getbitv i is a function that returns

ith bit of a value v . For vector types, ty⇓ transforms values

element-wise, where ++ denotes the bitvector concatenation.

isz⇓(v) or ty ∗ addrspace(s)⇓(v) = λi . getbitv i
⟨sz×ty⟩⇓(v) = ty⇓(v[0])++ . . .

++ ty⇓(v[sz − 1])

where b = b0 ++ . . .++bsz−1

Figure 12. Converting a value to a bit vector

isz⇑(b) transforms bitwise value b to an integer of type isz.
It creates integern from bits. Notationn.i is used to represent
ith bit of non-poison integer n. Type punning from pointer

to integer yields poison and this explains redundant load-

store pair elimination.
7
One exception is when the pointer

is a physical pointer of address space 0. In this case, type

punning yields the integer address of the physical pointer. If

any bit of b is poison, the result of isz⇑(b) is poison. Figure
13 shows the definition of isz⇑(b).

ty ∗ addrspace(s)⇑(b) transforms a bitvector b into a

pointer of type ty ∗ addrspace(s). If b is exactly all the bits

of pointer p in the right order, it returns p. If all bits contain
a non-poison integer, it reconstructs a physical pointer of

address space 0 with the corresponding integer address. Oth-

erwise, it returns poison. Combined with the definition of

isz⇑(b), this allows vectorization of loading heterogeneous

aggregates containing both aligned pointers and integer.
8

Figure 13 shows the definition of isz⇑(b).
For vector types, ty⇑ transforms bitwise representations

element-wise.

⟨sz×ty⟩⇑(b) = ⟨ty⇑(b0), . . . , ty⇑(bsz−1)⟩

7
Redundant load-store pair eliminations means removing ‘v = load i64
ptr; store v, ptr’. If reading a logical pointer as integer implicitly casts

the pointer, removing this load-store pair is not allowed.

8
For example, vectorizing load and store of struct T{float* a;

uintptr_t b} type as <2 x i8*> type is allowed.

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

Conference’17, July 2017, Washington, DC, USA Anon.

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

ty ∗ addrspace(s)⇑(b) =


p such that addrspace(p) = s ∧ ∀

0≤i<2ptrsz(s) b[i] = (p, i)
Phy(n, 0, ∅,None) such that s = 0 ∧ isz⇑(b) = n
poison if there’s no such p or n

Figure 14. Converting a bit vector to a pointer

Figure 11 is the semantics of two auxiliary functions Load

and Store. substrnsz (c,o) is a partial function (Bitn × N) →
Bit

sz
which returns (c[o×8], c[o×8+1], . . . , c[o×8+sz−1]).

overwritensz (c,b,o) is a partial function (Bitn × Bit
sz ×N) →

Bit
n
that overwrites bits b over c at byte offset o. If a deref-

erenceable physical pointer p = Phy(o, s, I , cid) is given,

Load(M,p, sz,a) behaves exactly same as Load(M,p ′, sz,a)
where p ′ is a logical pointer Log(l ,o′, s), which is uniquely

determined for p as described in the early part of this section.

If there’s no such p ′, Load(M,p, sz,a) fails. Store(M,p,b,a)
on a dereferenceable physical pointer p behaves exactly

same as Store(M,p ′,b,a), where p ′ is a logical pointer

which is uniquely determined for the physical pointer p.
If there’s no such p ′, Store(M,p,b,a) fails. Load(M,p, sz,a)
and Store(M,p,b,a) fail ifp is not dereferenceable, regardless
of p’s type.
Now we define semantics of load/store operations.

Load(M,p, sz,a) returns the bits p points to if it successfully

dereferences the pointer with given size sz and alignment

a. load yields v if Load(M,p, sz,a) successfully returns a

value, or UB if Load(M,p, sz,a) fails. The store operation

Store(M,p,b,a) successfully stores the bit representation b
into the memoryM and returns the updated memory if p is

dereferenceable with the given alignment a. store is UB if

Store(M,p,b,a) fails, or updates memory toM ′
otherwise.

(ι = “r = load ty, ty∗ op, align a”)
Load(M, ⟦op⟧R , bitwidth(ty),a) fails

R,M
ι
↪−→ UB

Load(M, ⟦op⟧R , bitwidth(ty)) = v
R,M

ι
↪−→ R[r 7→ ty⇑(v)],M

(ι = “store ty op1, ty∗ op, align a”)
Store(M, ⟦op⟧R , ty⇓(⟦op1⟧R),a) fails

R,M
ι
↪−→ UB

Store(M, ⟦op⟧R , ty⇓(⟦op1⟧R)) = M ′

R,M
ι
↪−→ R,M ′

Figure 15. Semantics of load, store

Function Call. ‘call ty funcname ’ calls a function with ar-

guments which are given as operands of the instruction. call
creates a fresh call id cid, and adds (cid,τcur) where τcur is
current time of memory M to the global call id map. If an

argument x is given to a call, register x inside the call has

value updatecid(x). updatecid(x) is a function that updates

every bit of x to have current cid if possible. ty is type of the

argument.

updatecid(x) = ty⇑(map(ty⇓(x), updatebit))

updatebit(b) = (Phy(o, s, I , cid), i) if b = (Phy(o, s, I ,None), i)
updatebit(b) = b otherwise

By recording call id in physical pointers, alias analysis

can assume that physical pointer which is given as argu-

ment never aliases with memory blocks allocated inside the

function. Any actual access violating this rule would be UB

because of the cid checks performed by load and store.

Function Return. When a function call with call id cid re-

turns, its entry in the global call ID map gets changed to

None, indicating that the call has ended.

Non-memory Operations. For the remaining operations

we follow earlier work [?]. All operations on poison un-

conditionally return poison except phi and select. The in-
struction freeze(isz op) non-deterministically chooses an

arbitrary non-poison value of the given type if op is poison.
Otherwise, it is a NOP. Branching on poison is immediate

UB. Select yields poison iff the condition is poison or the

selected value is poison.

10

	1 Full Semantics
	1.1 Syntax
	1.2 Memory
	1.3 Instructions

