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A superoptimizing compiler—one that performs a meaningful search of the program space as part of the

optimization process—can find optimization opportunities that are missed by even the best existing optimizing

compilers. We created Minotaur: a superoptimizer for LLVM that uses program synthesis to improve its code

generation, focusing on integer and floating-point SIMD code. On an Intel Cascade Lake processor, Minotaur

achieves an average speedup of 7.3% on the GNU Multiple Precision library (GMP)’s benchmark suite, with a

maximum speedup of 13%. On SPEC CPU 2017, our superoptimizer produces an average speedup of 1.5%, with

a maximum speedup of 4.5% for 638.imagick. Every optimization produced by Minotaur has been formally

verified, and several optimizations that it has discovered have been implemented in LLVM as a result of our

work.
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1 Introduction
Optimizing compilers emit better code than non-optimizing compilers do, but even so their output

is usually far from optimal. Our work started when we noticed substantial opportunities for

improvement in the output of LLVM’s autovectorizer. As a step towards fixing these, we created

Minotaur: a synthesis-based superoptimizer for the LLVM intermediate representation [17] that

focuses on LLVM’s portable vector operations as well as its x86-64-specific SIMD intrinsics. Our

goal is to automatically discover useful optimizations that are missed by LLVM.

Minotaur works on code fragments that do not span multiple loop iterations; it is based on the

assumption that existing compiler optimization passes such as loop unrolling, software pipelining,

and automatic vectorization will create the necessary opportunities for its optimizations to work

effectively. For example, consider this loop, in C, from the compression/decompression utility gzip,

where name is the base address of a string and p is a pointer into the string:

do {
if (*--p == '.') *p = '_';

} while (p != name);

When it is compiled by LLVM 18 for a target supporting AVX2 vector extensions, this code is

found inside the loop:
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Fig. 1. Overview of how Minotaur works, and how it fits into the LLVM optimization pipeline

%1 = shufflevector <32 x i8> %0, poison, <31, 30, 29, 28, 27, ... 4, 3, 2, 1, 0>
%2 = icmp eq <32 x i8> %1, <46, 46, 46, 46, 46, ... 46, 46, 46, 46, 46>
%3 = shufflevector <32 x i1> %2, poison, <31, 30, 29, 28, 27, ... 4, 3, 2, 1, 0>

The first shufflevector reverses a 32-byte chunk of the string, the icmp instruction checks which

elements of the chunk are equal to 46 (ASCII for the period character), and then the second

shufflevector reverses the vector containing the results of the computation. This code cannot be

optimized further by LLVM 18; when it is lowered to object code and executed on an Intel Cascade

Lake processor, it requires 13 uOps, or “micro-operations,” processor-internal RISC-like instructions

that modern x86 implementations actually execute. Minotaur, on the other hand, automatically

determines that the vector reversals are unnecessary, and rewrites the code in this equivalent, but

significantly cheaper (three uOps), form:

%3 = icmp eq <32 x i8> %0, <46, 46, 46, 46, 46, ... 46, 46, 46, 46, 46>

Although SIMD operations are Minotaur’s main focus, it also discovers optimizations for scalar

code. For example, this code, from the SPEC CPU 2017 benchmark 619.lbm, computes the difference

between two floating-point values, and then checks if the result is greater than zero:

%0 = fsub float %x, %y
%1 = fcmp ogt float %0, 0.000000e+00

Minotaur found that this code is equivalent to checking if the second value is less than the first:

%1 = fcmp ogt float %x, %y

It is perhaps surprising that LLVM, in 2024, could not perform this simple rewrite, which reduces

the computation cost from seven uOps to five. However, it has now been implemented in upstream

LLVM as a result of our work.

Figure 1 illustrates Minotaur’s high-level structure, and how it fits into LLVM. It works by

extracting many different cuts from an LLVM function. Each cut serves as the specification for a

program synthesis problem, where the objective is to synthesize a new cut that refines the old one

and is cheaper. When such a cut is found, Minotaur uses it to rewrite the original LLVM function,

and also caches the rewrite.

Reasoning about the correctness of optimizations at the level of LLVM IR can be very difficult;

we have repurposed Alive2 [22] to serve as a verification backend. To Alive2, we added formal

semantics for Intel-architecture-specific SIMD intrinsics. Reasoning about the relative costs of code
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sequences is another difficult problem; the solution adopted by Minotaur is to reuse the LLVM

Machine Code Analyzer [10], which has adequately accurate pipeline models for various modern

processors. These tools, along with the LLVM compiler itself, form the foundation upon which

Minotaur is built.

Research contributions: First, we designed and implemented a domain-specific program

transformer that extracts an SSA value from an LLVM function, along with context about how

that value was computed. Extracting enough context to permit interesting optimizations, without

extracting so much context that the underlying SMT solver was overwhelmed, was an interesting

empirical problem. Second, we created a synthesis engine that searches for cheaper code sequences;

it enumerates partially symbolic candidates where the instructions are concrete, but constants are

symbolic. For this part of our work, we created formal semantics for 165 LLVM intrinsic functions

that correspond to SIMD operations supported by x86-64 processors, and added these to Alive2.

We also modified Alive2 to support synthesis of literal constants. Third, to mitigate the large

performance overhead of running program synthesis at compile time, we developed infrastructure

for caching optimizations. Thus, while Minotaur can be hundreds of times slower than clang -O3
when its cache is cold, with a warm cache it is just 3% slower, when building the SPEC CPU 2017

benchmarks.

We performed a detailed evaluation of Minotaur’s ability to speed up code, showing that it can

find numerous optimizations that LLVM fails to perform, and also that it can achieve speedups on a

variety of real-world libraries and benchmarks. Minotaur is also useful for compiler developers, and

in fact several optimizations it has discovered have now been implemented in upstream LLVM.

2 Cutting LLVM Functions
Using a typical function in LLVM IR as the specification, it is not practical to directly synthesize an

optimized version of that function. The state of the art in program synthesis simply does not scale

up to the size of LLVM functions found in the wild. Instead, Minotaur takes a divide-and-conquer

approach: we individually attempt to optimize each instruction in an LLVM function by extracting a

cut—a subset of that instruction’s dependencies. If this cut of LLVM instructions can be optimized by

program synthesis then, by the compositionality of refinement, so can the original LLVM function.

The rest of this section describes this process in more detail.

2.1 Problem Statement
Given a function 𝐹 , an instruction 𝐼 within 𝐹 , and a depth bound 𝐵, our goal is to create a new

LLVM function 𝐶 that:

(1) is loop-free,

(2) returns the value computed by 𝐼 , and

(3) contains every instruction in 𝐹 that can be reached by following up to 𝐵 backwards data,

control, and memory dependency edges.

Informally, we can think of 𝐶 as summarizing a subcomputation in 𝐹 , that is (hopefully) tractable

for an SMT solver to reason about.

When an instruction is part of 𝐶 but its inputs are not, they become free inputs—these are

implemented by adding them as parameters to 𝐶 . We can think of every instruction that is not part

of the cut as being part of a residual function 𝑅. However, note that Minotaur does not explicitly

construct 𝑅—it computes and optimizes 𝐶 , and then applies the discovered optimization, if any,

directly to 𝐹 using a rewrite mechanism described in Section 4.4.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 326. Publication date: October 2024.



326:4 Zhengyang Liu, Stefan Mada, and John Regehr

%x %y

xor

xor

srem

%z

ret

sdiv
B = 2

ret

B = 1

B = 0

Fig. 2. Example of cutting an LLVM function

2.2 Example
Consider this LLVM function that takes three 64-bit arguments and returns a 64-bit value, where

sdiv is signed integer division and srem is the signed integer modulus operator:

define i64 @f(i64 %x, i64 %y, i64 %z) {
%a = sdiv i64 %x, %y
%b = xor i64 %a, -1
%c = xor i64 %b, -1
%d = srem i64 %c, %z
ret i64 %d

}

Figure 2 illustrates various cuts of this function. If we cut this function with respect to %c with
𝐵 = 0 then we get the following decomposition (however, again, please bear in mind that Minotaur

does not actually construct 𝑅—we show it here to make the explanation concrete):

define i64 @r0(i64 %x, i64 %y, i64 %z) {
%m = sdiv i64 %x, %y
%n = xor i64 %m, -1
%o = call i64 %c0(i64 %n)
%p = srem i64 %o, %z
ret i64 %p

}

define i64 @c0(i64 %t1) {
%t2 = xor i64 %t1, -1
ret i64 %t2

}

This is not useful, the cut c0 contains too little context to support any optimizations. If we cut f
with respect to %c with 𝐵 = 1 then we get:

define i64 @r1(i64 %x, i64 %y, i64 %z) {
%m = sdiv i64 %x, %y
%o = call i64 @c1(i64 %m)
%p = srem i64 %o, %z
ret i64 %p

}

define i64 @c1(i64 %t1) {
%t2 = xor i64 %t1, -1
%t3 = xor i64 %t2, -1
ret i64 %t3

}
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This decomposition is useful: c1 can be optimized to simply return its argument. If we increase

the depth bound to two, then we would get:

define i64 @r2(i64 %x, i64 %y, i64 %z) {
%o = call i64 @c2(i64 %x, i64 %y)
%p = srem i64 %o, %z
ret i64 %p

}

define i64 @c2(i64 %t1, i64 %t2) {
%t3 = sdiv i64 %t1, %t2
%t4 = xor i64 %t3, -1
%t5 = xor i64 %t4, -1
ret i64 %t5

}

Here the cut c2 can again be optimized (it can just return %t3), but now the solver must reason

about a 64-bit signed division—operations like this are difficult and frequently lead to timeouts.

Choosing an appropriate depth bound is an empirical problem that we address in Section 5.2.

2.3 Correctness Argument
The composition of 𝑅 and 𝐶 is equivalent to the original function: 𝐹 = 𝑅 ◦𝐶 . In other words, the

decomposition of 𝐹 into 𝑅 and 𝐶 preserves the behavior of the original function—the difference is

simply that some dependency edges that were previously internal to 𝐹 now cross the boundary

between 𝑅 and 𝐶 .

Next, if Minotaur can synthesize 𝐶′, an optimized function that refines 𝐶 , then we can compose

that with the residual function to get a new function 𝐹 ′ = 𝑅 ◦𝐶′. Since refinement is compositional,

it follows that 𝐹 ′ refines 𝐹 , which is the property that we need for Minotaur to be a correct optimizer.

The details of establishing a refinement relation between functions in LLVM IR were presented by

Lopes et al. [22].

Alive2 is intended to be a sound refinement checker for LLVM IR for LLVM functions that do

not contain loops. We avoid this potential unsoundness by ensuring that 𝐶 is loop-free, in which

case 𝐶′ is also loop-free since Minotaur never synthesizes a loop.

2.4 Detailed Solution
Algorithm 1 shows the procedure that Minotaur uses to extract a cut. It works in two phases. In the

first, Minotaur determines which instructions will be part of the cut, using a depth-bounded depth-

first search. During the search, two sets, Harvest and Unknown, are propagated which will be used

in the second phase for constructing the cut. Minotaur uses LLVM’s LoopInfo pass [18] to identify

loops in the source function. If instruction 𝐼 is in a loop, Minotaur will only extract instructions

that are defined inside the loop. If the loop is nested, Minotaur will only extract instructions that

are defined inside the innermost loop. Minotaur gives up if the loop is irregular. If 𝐼 is not in a loop,

Minotaur will skip the instructions that are in a loop. Minotaur marks non-intrinsic function calls,

operations on global variables, and operations that are not recognized by Alive2 as unsupported.

All unsupported operations, operations that are beyond the depth limit, and operations that are

outside the loop are discarded and replaced with free inputs.

For each conditional branch instruction, Minotaur extracts the branch condition, since these

carry control flow information that is useful during synthesis. Similarly, when it extracts a load from

memory, Minotaur consults LLVM’s MemorySSA pass [19] to get a list of stores that potentially

influence the loaded value. MemorySSA marks memory operations with one of the three memory

access tags: MemoryDef, MemoryUse, and MemoryPhi. Each memory operation is associated with a

version of the memory state. A MemoryDef can be a store, a memory fence, or any operation that

creates a new version of the memory state. A MemoryPhi combines multiple MemoryDefs when
control flow edges merge. A MemoryUse is a memory instruction that does not modify memory, it
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Algorithm 1 Extract a cut from an LLVM function

1: function ExtractCut(F: Function, I: Instruction, B: N)
2: if 𝐼 is in a loop then
3: AllowedBasicBlocks← all basic blocks in I’s loop (innermost loop if nested)

4: else
5: AllowedBasicBlocks← all basic blocks in F that is not in a loop

6: Harvested← ∅
7: Unknown← ∅
8: Visited← ∅
9: WorkList← { (I, 0) }

10:

11: ⊲ Phase 1: Instruction extraction

12: whileWorkList is not empty do
13: (WI, Depth)←WorkList.pop()

14: if WI ∈ Visited then
15: continue
16: Insert WI into Visited

17: if Depth > B then
18: Insert WI into Unknown

19: continue
20: if WI is not supported then
21: Insert WI into Unknown

22: continue
23: BB←WI’s basic block

24: if BB ∉ AllowedBasicBlocks then
25: Insert WI into Unknown

26: continue
27: Insert WI into Harvested

28: if WI is a Load instruction then
29: M←WI’s linked MemoryPhi or MemoryDef
30: if M is a MemoryDef ∧M is a store then
31: MI←M’s stored value

32: Push (MI, Depth + 1) into WorkList

33: else
34: for all operand Op in WI do
35: Push (Op, Depth + 1) into WorkList

36: T← terminator of WI’s basic block

37: if T is a conditional branch instruction then
38: TI← T’s condition value

39: Push (TI, Depth + 1) into WorkList

40: Insert every terminator instruction in F to Harvested

41:

42: ⊲ Phase 2: Construct a loop-free LLVM function

43: Clone F into C

44: Delete instructions in C except those in Harvested

45: Delete all back-edges in C

46: Add values in Unknown to C as function arguments

47: Create return instruction for I in C

48: return C
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...

...
  %load = load <4 x i32>, ptr %sv_flags, !tbaa !24
...
...
  %and = and <4 x i32> %shuf0, <i32 255, i32 65280, i32 16826623, i32 2097152>
...
...
  %eq = icmp eq <4 x i32> %and, %load
...
...
  %ne = icmp ne <4 x i32> %and, %load
...
...
  %shuf1 = shufflevector <4 x i1> %eq, <4 x i1> %ne, <4 x i32> <i32 0, i32 5, i32 2, i32 7>
...
...

push into worklist push into worklist

 define <4 x i1> @src(<4 x i32> %x, <4 x i32> %y) {
 entry:
   %0 = icmp eq <4 x i32> %x, %y
   %1 = icmp ne <4 x i32> %x, %y
   %2 = shufflevector <4 x i1> %0, <4 x i1> %1, <4 x i32> <i32 0, i32 5, i32 2, i32 7>
   ret <4 x i1> %2
 }

extract

 first visit: beyond depth limit, push into Unknown and Visited. second visit: skipped

 first visit: beyond depth limit, push into Unknown and Visited. second visit: skipped

push into worklist push into worklistpush into Visited and Harvested

push into worklist push into worklistpush into Visited and Harvested

push into Visited and Harvested

Fig. 3. Example of cut extraction

only reads the memory state created by MemoryDef or MemoryPhi; a load instruction is always a

MemoryUse. Because it must overapproximate, Minotaur is conservative when finding load-affecting

stores: it starts from the loads in MemoryUse’s memory version and walks along the MemorySSA’s

def-use chain. When the associated memory operation is a MemoryDef, it checks if the operation is

a store and pushes the stored value into the worklist, to provide Minotaur a more specific context

to optimize the load instruction.

In the second phase, Minotaur builds the extracted function; it does this by cloning the original

function and then deleting all instructions that are not in the cut. Minotaur then deletes all loop

backedges, so that the extracted function is loop-free. Finally, a return instruction is added to return

the value computed by the instruction that is the basis for the cut.

Figure 3 shows an example of cut extraction for value %shuf1. The cutting algorithm starts

on %shuf1 and walks along the def-use chain to extract the instructions that are involved in the

computation of %shuf1. A new function is created to hold the extracted instructions shown in the

bottom of the figure.

2.5 Relation to Previous Cut-Based Superoptimizers
Minotaur’s cut extraction algorithm is fundamentally more aggressive than Bansal and Aiken’s

approach [4], which extracted a small window of sequential instructions. It is also considerably

more aggressive than Souper [27], which had a very limited view of control flow and refused to

consider memory operations, vector operations, and floating-point operations.

3 Formalizing Vector Intrinsics in Alive2
In order for Minotaur to use Alive2 as a verification backend, we had to modify Alive2 to support a

number of x86-64-specific vector intrinsics.
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Algorithm 2 Semantics of @llvm.x86.{avx|avx2|avx512}.pavg.{b|w}

1: pavg<lanes, bits, masked>(𝑆𝑎 , 𝑆𝑏 , PassThrough, Mask)

2: for each 𝑖 in range [0 to lanes - 1]

3: if masked ∧¬Mask[𝑖] then
4: 𝑆𝑟𝑒𝑡 [𝑖].val← PassThrough[𝑖].val

5: 𝑆𝑟𝑒𝑡 [𝑖].poison← PassThrough[𝑖].poison

6: else
7: 𝑆𝑟𝑒𝑡 [𝑖].val← (𝑆𝑎[𝑖].val +bits 𝑆𝑏[𝑖].val +bits 1) /bits 2
8: 𝑆𝑟𝑒𝑡 [𝑖].poison← 𝑆𝑎[𝑖].poison ∨ 𝑆𝑏[𝑖].poison

Algorithm 3 Semantics of @llvm.x86.{sse2|avx2|avx512}.pmadd.wd

1: pmadd.wd<lanes, masked>(𝑆𝑎 , 𝑆𝑏 , PassThrough, Mask)

2: for each 𝑖 in range [0 to lanes - 1]

3: if masked ∧¬Mask[𝑖] then
4: 𝑆𝑟𝑒𝑡 [𝑖].val← PassThrough[𝑖].val

5: 𝑆𝑟𝑒𝑡 [𝑖].poison← PassThrough[𝑖].poison

6: else
7: 𝑆𝑟𝑒𝑡 [𝑖].val←sext(𝑆𝑎[2·𝑖].val ×16 𝑆𝑏[2·𝑖].val) +32 sext(𝑆𝑎[2·𝑖 + 1].val ×16 𝑆𝑏[2·𝑖 + 1].val)
8: 𝑆𝑟𝑒𝑡 [𝑖].poison←𝑆𝑎[2·𝑖].poison ∨ 𝑆𝑏[2·𝑖].poison ∨ 𝑆𝑎[2·𝑖 + 1].poison ∨ 𝑆𝑏[2·𝑖 + 1].poison

3.1 Background: Vectors in LLVM
LLVM uses a typed, SSA-based intermediate representation (IR). It supports a derived vector type;
for example, a vector with eight lanes, where each element is a 64-bit integer, would have type <8
x i64>. Many LLVM instructions, such as arithmetic operations, logical operations, and pointer

arithmetic, can operate on vectors as well as scalars. IR-level vectors are target-independent;

backends attempt to lower vector operations to native SIMD instructions, if available.

Beyond the vertical ALU instructions that are element-wise vector versions of scalar instructions,

LLVM supports a variety of horizontal vector reduction intrinsics and an assortment of memory

intrinsics such as vector load and store, strided load and store, and scatter/gather. Additionally,

there are three vector-specific data movement instructions: extractelement retrieves the element at

a specified index from a vector; insertelement non-destructively creates a new vector where one

element of an old vector has been replaced with a specified value; and, shufflevector returns a new
vector that is a permutation of two input vectors using elements whose indices are specified by a

constant mask vector. Finally, to provide direct access to platform-specific vector instructions, LLVM

provides numerous intrinsic functions such as @llvm.x86.avx512.mask.cvttps2dq.512, aka
“convert with truncation packed single-precision floating-point values to packed signed doubleword

integer values.”

3.2 Assigning a Formal Semantics to Vector Intrinsics
The version of Alive2 that we started with supports most of the core LLVM intermediate representa-

tion, including its target-independent vector operations. However, Alive2 did not have a semantics

for any of the numerous LLVM-level intrinsic functions that provide predictable, low-level access

to target-specific vector instructions.

We added semantics for 165 x86-64 vector intrinsics to Alive2; these come from the SSE, AVX,

AVX2, andAVX-512 ISA extensions. The resulting version of Alive2 supports the x86 vector intrinsics

that are widely used and that an SMT solver can reason about fairly efficiently. This includes special

vertical operations that do not overlap with LLVM’s platform-independent vector instructions
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(such as @llvm.x86.avx2.psign.b), special data movement intrinsics that operate differently

than LLVM’s shufflevector (such as @llvm.x86.avx512.packsswb.512), and special horizontal
operations that are only available in x86 processors (such as @llvm.x86.avx512.vpdpbusd.512).
We have not supported dedicated cryptographic operations (that an SMT solver is unlikely to be able

to make use of within a reasonable amount of CPU time), nor have we supported some unpopular

SIMD intrinsics that we have not observed being used in programs that we have compiled with

Minotaur.

There is significant overlapping functionality between vector instructions; for example, there

are eight different variants of the pavg instruction that computes a vertical (element-wise) average

of two input vectors. To exploit this overlap, our implementation is parameterized by vector width,

vector element size, and by the presence of a masking feature that, when present, uses a bitvector to

suppress the output of vector results in some lanes. Algorithms 2 and 3 show our implementations

of the pavg (packed average) and pmadd.wd (packed multiply and add) families of instructions.

This parameterized implementation enabled a high level of code reuse, and our implementation

of these semantics is only 660 lines of C++. Our semantics differ slightly from the semantics of

the corresponding processor instructions because, at the LLVM level, we must account for poison

values—a form of deferred undefined behavior. Our strategy for dealing with poison follows the one

used by existing LLVM vector instructions: poison propagates lane-wise, but does not contaminate

non-dependent vector elements.

3.3 Validating our Changes to Alive2
We made heavy use of randomized differential testing to ensure that our new intrinsics correctly

implement the intended semantics. Each iteration of our tester randomly chooses constant inputs

to a single vector intrinsic and then:

(1) Creates a small LLVM function passing the chosen inputs to the intrinsic.

(2) Evaluates the effect of the function using LLVM’s JIT compilation infrastructure [20]. The

effect is always to produce a concrete value, since the inputs are concrete.

(3) Converts the LLVM function into Alive2 IR and then asks Alive2 whether this is refined by

the output of the JITted code.

Any failure of refinement indicates a bug. When we fielded this tester, it rapidly found 11 cases

where our semantics produced an incorrect result, usually for some edge case. For example, the

semantics for pavg were incorrect when the sum overflowed. It also found three cases where

Minotaur generated SMT queries that failed to typecheck. For example, we set the wrong lane

size when parameterizing the semantics for psra.w and psra.d, causing the solver to reject our

malformed queries. After we fixed these 14 bugs, extensive testing failed to find additional defects.

4 Synthesizing Optimizations
For every cut extracted from an LLVM function, Minotaur’s goal is to synthesize a cheaper way to

compute the value returned by that cut. It does this by enumerating candidates—code fragments

that potentially refine the current cut. When a candidate is found that refines the original cut,

Minotaur consults a cost model. If the new code is cheaper than the original cut, Minotaur applies

the rewrite to the function that is being optimized.

4.1 Designing an Appropriate Synthesis Procedure
A delicate part of designing a practical program synthesis algorithm is determining how much of

the search is pushed to the solver, and how much searching gets done by code outside the solver. At

one extreme, as the Denali paper [15] points out, we could simply give the SMT solver a conjecture
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Operation Type Instructions
Unary integer ctpop, ctlz, cttz, bitreverse, bswap

Unary floating point fneg, fabs, fceil, ffloor, frint, fround, fnearbyint, froundeven

Binary integer add, sub, mul, udiv, sdiv, umax, umin, smax, smin

Binary floating point fadd, fsub, fmul, fdiv, frem, fmaximum, fminimum, fmaxnum, fminnum

Bitwise and, or, xor, shl, lshr, ashr

Comparison icmp, fcmp, select

Conversion zext, sext, trunc, fptrunc, fpext, fptosi, sitofp, fptoui, uitofp

Data movement extractelement, insertelement, shufflevector

SIMD intrinsics 165 vector intrinsics mapping to SSE, AVX, AVX2, and AVX-512 instructions

Table 1. Operations that Minotaur can synthesize. The data movement and SIMD intrinsic instructions
require vector operands. The rest of the operations apply to both scalar and vector values.

of the form “No program of the target architecture computes P in at most eight cycles.” If the solver

can disprove this conjecture, then its counterexample will tell us how to compute P in eight or

fewer cycles. This kind of query is asking the solver to do all of the work of finding a program that

disproves the conjecture, including reasoning about the costs of various alternatives, in a single,

complicated query—this is very heavy lifting. At the other extreme, we could enumerate completely

concrete candidates, and use the SMT solver only to perform the necessary refinement checks. The

problem with this approach is literal constants: even a single 64-bit constant in the synthesized

code will require us to enumerate and check 2
64
alternatives; this is clearly infeasible.

We spent a considerable amount of time investigating different points between these extremes,

and finally settled on a design that makes things as easy as possible for the solver, but without

exploring all possible choices of values for literal constants. Minotaur creates partially symbolic
candidates where instructions are represented concretely, but constants are symbolic. This gives a

reasonably tractable enumeration space without giving up synthesis power. Our rationale for this

design is that, based on extensive experience with LLVM and Alive2, a lot of individual refinement

checks that we want to perform—especially those that contain multiplications, divisions, floating

point operations, and pointer indirections—are already very difficult.

4.2 Synthesis in Minotaur
Algorithm 4 describes Minotaur’s synthesis procedure. In Phase 1, it creates a pool of instructions

whose operands are selected from the available SSA values in the current cut (a dominance check is

not required since cuts are constructed in such a way that every existing SSA definition dominates

the synthesized portion of the function), from symbolic constants, and from holes that represent
instructions that have not yet been enumerated. The list of instructions that Minotaur can synthesize

is shown in Table 1. The description in Algorithm 4 only shows the case for instructions taking

two operands, and it also omits a number of simple pruning strategies that are useful in practice,

such as avoiding enumeration of redundant versions of commutative operations. In Phase 2 of the

synthesis procedure, instructions from the pool are used to recursively fill holes; this procedure

terminates when all holes are filled (in which case a complete candidate has been generated) or

when at least one hole remains, but there is no remaining instruction budget to fill it (in which case

the incomplete candidate is discarded). A subtlety here is that LLVM’s bitcast instruction, which

changes the type of an SSA value without changing its representation, does not count towards the

instruction limit. This is because Minotaur takes a low-level, untyped view of values. For example,

it internally treats a 16-way vector of 8-bit values the same as an 8-way vector of 16-bit values:

both of these are simply 128-bit quantities. This lack of type enforcement allows Minotaur to find
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Algorithm 4Minotaur’s Synthesis Procedure

1: function SynthesizeRefinements(Cut: Function, InstLimit: N, TimeLimit: N)
2: ⊲ Phase 1: Populate the instruction pool

3: Inputs← all the SSA definitions in Cut

4: InstPool← ∅
5: for all op in binary operations listed in Table 1

6: InstPool← InstPool ∪ { (op hole, hole), (op sym-const, hole), (op hole, sym-const) }

7: for all input1 in Inputs

8: InstPool← InstPool ∪ { (op input1, sym-const), (op sym-const, input1) }

9: InstPool← InstPool ∪ { (op input1, hole), (op hole, input1) }

10: for all input2 in Inputs

11: InstPool← InstPool ∪ { (op input1, input2) }

12: for all other operations in Table 1 ⊲ omitted for brevity

13: ...

14:

15: ⊲ Phase 2: Generate partially-symbolic candidates

16: WorkList← { (ret hole), (ret sym-const) }

17: Candidates← Inputs

18: whileWorkList ≠ ∅
19: I←WorkList.pop()

20: if I does not contain holes then
21: Candidates← Candidates ∪ { I }

22: continue
23: for all Hole in I

24: if CountNewInsts(I) ≥ InstLimit then
25: continue
26: for all Inst in InstPool

27: J← I with Hole substituted by Inst

28: if TargetTransformInfoCost(J) ≥ TargetTransformInfoCost(Cut) then
29: continue
30: WorkList←WorkList ∪ { J }

31:

32: ⊲ Phase 3: Refinement checking and constant synthesis

33: Sort Candidates by TargetTransformInfoCost

34: StartTime← time()

35: Refinements← ∅
36: for all C in Candidates

37: if C does not contain symbolic constants then
38: if Alive2 claims that C refines Cut then
39: Refinements← Refinements ∪ { C }

40: else
41: Build exists-forall query to get a model for symbolic constants

42: if satisfiable then
43: C’← C with symbolic constants substituted by the constants in the model

44: Refinements← Refinements ∪ { C’ }

45: if time() - StartTime ≥ TimeLimit then
46: break
47: return Refinements

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 326. Publication date: October 2024.



326:12 Zhengyang Liu, Stefan Mada, and John Regehr

generate candidate

has literal constant
emit exist-forall query

∃ %literal, ∀ %x, %y. src => tgt

find model

%literal = <i1 0, i1 1, i1 0, i1 1>

 define <4 x i1> @tgt(<4 x i32> %x, <4 x i32> %y) {
 entry:
   %0 = icmp eq <4 x i32> %x, %y
   %1 = xor <4 x i1> %1, <i1 0, i1 1, i1 0, i1 1>
   ret <4 x i1> %1
 }

 define <4 x i1> @src(<4 x i32> %x, <4 x i32> %y) {
 entry:
   %0 = icmp eq <4 x i32> %x, %y
   %1 = icmp ne <4 x i32> %x, %y
   %2 = shufflevector <4 x i1> %0, <4 x i1> %1, <4 x i32> <i32 0, i32 5, i32 2, i32 7>
   ret <4 x i1> %2
 }

rewrite

%x

icmp
eq

xor

%y

literal

%x

icmp
eq

%y

return value mismatch
candidate is discarded

no literal constants
run translation validation

icmp
eq

icmp
ne

shuffle
vector

%x %y

mask

generate candidate

many more candidates

...
ret

A cut of an LLVM function that serves as the specification in Minotaur's synthesis procedure 

Synthesized LLVM function that refines the original cut

Fig. 4. Example of synthesizing a rewrite that contains literal constants. Purple nodes are instructions reused
from the original cut; blue and orange nodes are synthesized instructions and literal constants.

interesting, low-level optimizations such as those that use bitwise operations to rapidly perform

certain floating point operations.

In Phase 3 of Algorithm 4, Minotaur uses Alive2 to eliminate every candidate that does not

refine the specification. First, we sort the candidates in order of increasing cost using LLVM’s

TargetTransformInfo [21]: a cost model that roughly captures execution cost on the target, and is

cheap to compute. We do this to ensure that likely-beneficial rewrites are tested first, before the

synthesis time limit is reached. For candidates that do not contain symbolic constants, we can use

Alive2 as-is. To support symbolic constants, we modified Alive2 to wrap its refinement check in an

exists-forall query. In other words, Minotaur asks the question: “Does there exist a valuation of

the symbolic constants such that the synthesis candidate refines the specification for all possible

values of the inputs?” When such a query is satisfiable, the model returned by the solver can be

inspected to find satisfying values of the symbolic constants in the candidate, which now become

literal constants, giving a complete, sound optimization. To avoid potentially-expensive exists-forall

queries, we experimented with various techniques such as generalization by substitution [11].

However, these failed to outperform exists-forall queries, in the version of Z3 that we used (4.12.4).

Figure 4 illustrates Minotaur’s synthesis procedure.
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4.3 Identifying Profitable Rewrites
The output of Algorithm 4 is a list of candidates that all refine the cut. Of these, we want to

choose the best one—but predicting throughput of code running on modern microprocessors is not

straightforward. We leverage the LLVM Machine Code Analyzer (LLVM-MCA) [10], which was

created to help developers improve performance-critical code. It is an interactive tool that emits a

graphical depiction of pipeline behavior, but its functionality can also be accessed programmatically,

and this is what Minotaur does, after lowering each candidate to x86-64 object code. Then, Minotaur

only applies a rewrite if its estimated cost, using LLVM-MCA, is lower than that of the original cut,

and lower than that of any other synthesized refinement of the original cut.

Although LLVM-MCA can estimate the cycle cost of LLVM functions, we instead use the number

of uOps (“micro-operations,” a modern x86-64 processor’s internal instruction set) as the estimated

cost. This choice was driven by empirical data: after extensive experimentation, we determined

that, for our purposes, uOps are a better performance predictor than cycles.

4.4 Representing and Caching Rewrites
Minotaur stores each potential rewrite as a pair: (𝐶, 𝑆) where𝐶 is a cut, represented by a function in

LLVM Intermediate Representation (IR), and 𝑆 is a rewrite description—an expression in Minotaur’s

own intermediate representation that describes a different way to compute the return value of 𝐶 .

Rewrite descriptions are directed acyclic graphs containing nodes that represent operations, and

edges representing data flow. Although the elements found in Minotaur IR are similar to those

found in LLVM IR, we could not reuse LLVM IR to represent rewrites since LLVM IR does not

support incomplete code fragments, and also rewrites must contain enough information to support

connecting the new code in the rewrite to code in the unoptimized function.

To support caching, rewrites must be serializable. The cut 𝐶 can be serialized using existing

LLVM functionality, and we created a simple S-expression syntax for serializing the 𝑆 part. Figure 5

shows the syntax of the IR. For example, if the returning value of 𝐶 , a 32-bit instruction is replaced

by left shift by one bit position, the textual format for the expression is (shl (val i32 %0),
(const i32 1), i32).

Rewrites are cached in a Redis instance: this implementation choice allows the cache to be

persistent across multiple Minotaur runs and also makes the cache network-accessible. Synthesis

can be done online—during compilation—but also offline, in a mode where Minotaur extracts cuts

into the Redis cache but does not perform synthesis. In this mode, compilation is only slowed down

by a few percent. Minotaur’s offline mode is designed for batch processing. In this mode, a separate

program called cache-infer retrieves cuts from the cache, runs synthesis on them, and stores any

optimizations that it discovers back into the cache. Unlike the online mode, which runs synthesis

tasks one after the other, offline mode can run all synthesis jobs in parallel.

4.5 Integration with LLVM
Minotaur is loaded into LLVM as a shared library where it runs as an optimization pass. We

arranged for it to run at the end of LLVM’s auto-vectorization pipeline. We invoke LLVM’s Dead

Code Elimination pass after Minotaur to clean up the resulting code.

5 Evaluation
Our primary evaluation metric for Minotaur is its ability to speed up legacy application code,

compared to an optimized build using LLVM 18. Secondarily, we look at Minotaur’s impact on

compile time, optimizations that have been integrated into upstream LLVM based on our work,

and other issues.
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Op ::= Inst | Constant | Value
Inst ::= (UnaryOp Op, Type) | (BinaryOp Op, Op, Type) | (Conversion Op, Type) |

(insertelement Op, Op, Op) | (extractelement Op, Op) | (shufflevector Op, Op, Constant) |
(Comparison Op Op) | (select Op, Op, Op) | (Intrinsic Op, Op)

Constant ::= (const Type number-literal)
Value ::= (val Type llvm-identifier)
Type ::= ScalarType | <elements × ScalarType>

ScalarType ::= i1 | i8 | i16 | i32 | i64 | half | float | double | fp128

BinaryOp ::= xor | and | or | add | sub | mul | udiv | sdiv | ashr | lshr | shl | umax | umin | smax | smin

fadd | fsub | fmul | fdiv | copysign | fmaximum | fminimum | fmaxnum | fminnum

UnaryOp ::= ctpop | ctlz | cttz | bswap | bitreverse | ret

fneg | fabs | fceil | ffloor | frint | fround | ftrunc | fnearbyint | froundeven

Conversion ::= zext | sext | trunc |

fptrunc | fpext | fptosi | sitofp | fptoui | uitofp

Comparison ::= eq | ne | ult | ule | slt | sle |

oeq | ogt | oge | olt | ole | one | ord | ueq | ugt | uge | ult | ule | une | uno

Intrinsic ::= ssse3.phadd.d.128 | avx2.pavg.b | avx512.pmaddubs.w.512 | . . . (165 intrinsics in total)

Fig. 5. Syntax for Minotaur rewrites

5.1 Correctness
Every optimization discovered by Minotaur has been formally verified by Alive2. Even so, bugs

might remain in the instruction semantics that we have added to Alive2, in our cut extractor, in

our rewrite mechanism, in Alive2, or in Z3. To defend against implementation errors, we have

compiled numerous open source applications using Minotaur, and then run those applications’ test

suites, to ensure that they were not miscompiled. Furthermore, we have compiled SPEC CPU 2017

using Minotaur and used the SPEC drivers to ensure that all of its benchmarks behave as expected.

5.2 Effect of Depth Bounds in the Cut Extractor
It is important for Minotaur to extract cuts that are of an appropriate size. If they are too large,

compile times suffer and also the SMT solver can be overwhelmed, leading to timeouts; if cuts

are too small, then they form an insufficient basis for driving an optimization. To determine a

good value for 𝐵, the depth parameter to the cut extraction procedure shown in Algorithm 1, we

performed an empirical study. We started with FlexC’s benchmark suite [36], a collection of 2,386

compilable, non-trivial C functions containing loops from FFMPEG, FreeImage, DarkNet, xz, bzip2,

and the LivermoreC benchmark. When compiled to LLVM IR, these functions contain a total of

123,062 instructions; thus, our cut extractor was invoked 123,062 times for each depth bound. We

chose this code as the basis for our experiment because it is derived from real applications while

also being small enough to keep compile times manageable (compared to, e.g., SPEC CPU 2017,

which is much larger).

We then ran Minotaur on these functions with all depth bounds from 0–7, measuring the number

of unique cuts that were extracted, the number of optimizations found, and the compilation time.

We used a one-minute timeout for individual Z3 queries, and we also gave Minotaur a total of up to

five minutes to synthesize an optimized version of each cut. Figure 6 summarizes the results of this

experiment. The number of unique cuts that are extracted grows quickly with 𝐵, but eventually

begins to saturate simply because the functions being compiled do not always have very long

dependency chains. The number of synthesized optimizations also grows quickly, but it peaks when

𝐵 = 6 and then it decreases because the size of the cuts causes many solver timeouts. Finally, the
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Fig. 6. Evaluating the effect of varying 𝐵, the depth bound for cut extraction

memory FP vector FP scalar integer vector integer scalar overall

Number of rewrites 3 17 4 191 109 324

Geomean speedup 1.0605x 1.0600x 1.0572x 1.0142x 1.0506x 1.0610x

Contribution to speedup 0.65% 1.64% 5.90% 75.57% 16.23% 100%

Table 2. Results of an ablation study based on optimization categories

total compile time increases smoothly with the depth bound, eventually leveling off as most solver

queries time out.

For the experiments in the rest of the evaluation section, we chose 𝐵 = 4 because this gets

close to the maximum observed number of optimizations without requiring exorbitant compile

times. It seems likely that there is room for improvement in this aspect of Minotaur: perhaps the

depth bound should be determined adaptively. In this scenario, we would extract more and more

components into the cut, until either an optimization is found or else the solver begins to time out.

We leave explorations of this nature for future work.

5.3 What Kind of Optimizations Matter Most?
To determine which of Minotaur’s optimizations matter most, we performed an ablation study, again

using the FlexC benchmark suite that we described in Section 5.2. We split the optimizations that

Minotaur found into five categories: memory, floating-point vector, floating-point scalar, integer

vector, and integer scalar. Then, we ran Minotaur in a way that omitted each of these categories of

optimizations. As shown in Table 2, integer vector optimizations produce the most rewrites, and

also produce the majority of the observed speedup.

5.4 Speedups for Benchmarks and Applications
In this section, we show how Minotaur speeds up real-world benchmarks and applications.

Experimental setup. We used two machines for our evaluation. The first has an Intel Xeon

Gold 6210U processor running at 2.5 GHz, and has 20 cores; this implements the Cascade Lake

microarchitecture [13] and supports the AVX-512 instruction set. The second has an AMD Ryzen

5950X processor running at 3.4 GHz, and has 16 cores; this processor implements the Zen 3

microarchitecture [2]. Both machines run Linux and were idle except for a single core running our

benchmarks (however, when measuring compile times, as reported in Table 3, we used all cores).

To reduce the performance variation caused by frequency scaling, we disabled turbo boost on the
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Intel Cascade Lake AMD Zen 3

Compilation time (minutes) Stats Compilation time (minutes) Stats

Benchmarks Cold cache Warm Clang # Cuts # Opts. Cold cache Warm Clang # Cuts # Opts.

SPEC CPU 2017 2,337 3 3 109,177 2,683 2,580 3 3 114,612 2,820

gmp-6.2.1 440 < 1 < 1 9,170 336 445 < 1 < 1 9,265 387

libYUV 2,196 < 1 < 1 6,849 334 2,193 < 1 < 1 6,809 357

Table 3. Minotaur’s effect on compilation time

Intel machine and core performance boost on the AMD machine. We also disabled simultaneous

multithreading on both machines.

We invoked LLVM with the -march=native compilation flag to ask it to take maximum advan-

tage of processor features; we left other compilation flags unchanged, except where noted. All

benchmarks are compiled at the -O3 optimization level. We set the timeout for Z3 [9] queries to

one minute. Finally, for each instruction that it tries to optimize, Minotaur gives up if no solution is

found within five minutes.

Benchmark selection. We evaluate on SPEC CPU 2017
1
because it is a widely accepted standard

benchmark. We only evaluate on the speed subset of the SPEC suite, and we omit 648.exchange,

607.cactuBSSN, 621.wrf, 627.cam4, 628.pop2, 649.fotonik3d, and 654.roms as they contain Fortran

code. We additionally use GMP, the GNUMultiple Precision Library,
2
and libYUV,

3
which is used by

Google Chrome/Chromium for manipulating images in the YUV format. We chose these libraries

because they have been heavily tuned for performance, they are loop-intensive, and they come

with performance benchmark suites that we could simply reuse.

Compile times. Table 3 shows how long it takes Minotaur to build our benchmarks, along with the

number of potentially optimizable values and the number of optimizations found. The compile times

are for parallel builds; we set the make’s -j flag and SPEC CPU 2017’s build_ncpus configuration

to the number of cores on the machine. Minotaur is very slow when it runs with a cold cache

because it performs many solver queries. However, with a warm cache, it is only 3% slower than

baseline clang.
In most cases, Minotaur found more optimizations when targeting the AMD processor. We

believe this is because LLVM is more mature targeting AVX2 than AVX-512. Queries with 256-bit

vectors are also less likely to timeout in Z3 than are queries with 512-bit vectors.

Optimizing GMP with Minotaur. GMP provides a portable C-language implementation and then,

for several platforms, a faster assembly language implementation. For this evaluation, we selected

the C implementation, because Minotaur works on LLVM IR and cannot process assembly code

at all. The benchmark suite that we used is GMPbench.
4
Figure 7 summarizes the results. When

Minotaur targets the Intel Cascade Lake processor, and when the resulting executables are run on

that same microarchitecture, all the benchmarks sped up; across all of the benchmarks, the mean

speedup was 7.3%. The analogous experiment using the AMD Zen 3 microarchitecture resulted

in one benchmark slowing down, and the rest of benchmarks speeding up, for an overall mean

speedup of 6.5%.

1
https://www.spec.org/cpu2017/

2
https://gmplib.org/

3
https://chromium.googlesource.com/libyuv/libyuv/

4
https://gmplib.org/gmpbench
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Fig. 7. GNU Multiple Precision Library (GMP) speedups, on a logarithmic scale

Optimizing libYUV with Minotaur. This library has an extensive test suite, part of which is

explicitly intended for performance testing; we used this part as a benchmark. Each test program

scales, rotates, or converts a 1280 x 728 pixel image 1,000 times. Figure 8 shows the results of

this experiment. When Minotaur targets an Intel processor, 148 programs slowed down, 72 did

not change performance, and 2, 312 sped up, for an overall speedup of 2.2%. Targeting an AMD

processor, 188 programs slowed down, 85 did not change performance, and 2, 259 sped up, for

an overall speedup of 2.9%. Minotaur can make code slower because it looks at optimizations in

isolation; it does not attempt to model interactions between optimizations.

libYUV is portable code, but it has already been heavily tuned for performance; most commits to

its repository over the last several years have been performance-related. Our hypothesis is that this

manual tuning has already eaten up most of the performance gains that we would have hoped to

gain from Minotaur. For some time now, Google’s released versions of Chrome have been compiled

using LLVM; the Chrome engineers have had ample time to ensure that this compiler achieves

decent code generation for performance-critical libraries.

Optimizing SPEC CPU 2017 with Minotaur. Figure 9 shows the effect of optimizing the benchmarks

from SPEC CPU2017 using Minotaur. When optimizing for, and running on, the Intel processor, we

observed a mean speedup of 1.5%. When optimizing for, and running on, the AMD processor, we

observed a mean speedup of 1.2%. It is notoriously difficult to speed up the SPEC CPU benchmarks
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Fig. 8. LibYUV speedups, on a logarithmic scale
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because compiler engineers have already put considerable effort into achieving good code generation

for them.

5.5 Impact on Upstream LLVM
In several cases where an optimization discovered by Minotaur seemed to be simple and broadly

applicable, we have reported its absence as an LLVM defect, using the project’s issue tracker. This

section summarizes the results of this informal LLVM-improvement project.
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We reported ten missing floating-point optimizations. Five of these (including the one we

presented in Section 1) have now been implemented in LLVM. Three of them are in the code review

phase: a patch exists and is being discussed by developers. Finally, two of them are being discussed,

but a candidate patch does not yet exist.

We also reported five missing vector optimizations. One of these has been fixed, one has a patch

that is under review, and three are still being discussed.

5.6 Optimizations Discovered by Minotaur
The purpose of this section is to examineMinotaur’s strengths by presenting some optimizations that

it found while compiling benchmark programs. None of these optimizations can be performed by the

version of LLVM that Minotaur is based on,
5
at its -O3 optimization level. We present optimizations

in an SSA format that is close to LLVM IR, but we have edited it slightly for compactness and

legibility.

Example 1. This code is from perlbench in SPEC:

%0 = zext <16 x i8> %x to <16 x i16>
%1 = zext <16 x i8> %y to <16 x i16>
%2 = call @llvm.x86.avx2.pavg.w(%0, %1)
%3 = trunc <16 x i16> %2 to <16 x i8>
ret <16 x i8> %3

=>
%0 = call @llvm.x86.sse2.pavg.b(%x, %y)
ret <16 x i8> %0

The unoptimized code zero-extends each 8-bit element of the two input vectors to 16 bits, calls

the AVX2 variant of pavg to perform element-wise averaging of the extended vectors, and then

truncates elements of the resulting vector back to eight bits. The optimized code simply calls an

SSE2 version of the pavg instruction that operates on 8-bit elements, reducing the uOp cost of the

operation from four to one.

Example 2. This code is from libYUV:

%0 = call @llvm.x86.avx2.pmadd.wd(%x, <0,1,0,1, ...>)
%1 = call @llvm.x86.avx2.pmadd.wd(%x, <1,0,1,0, ...>)
%2 = sub nsw <8 x i32> %1, %0
ret <8 x i32> %2

=>
%0 = call @llvm.x86.avx2.pmadd.wd(%x,<1,-1,1,-1, ...>)
ret <8 x i32> %0

The pmadd.wd (multiply and add packed integers) instruction multiplies signed 16-bit integers

element-wise from two input vectors, and then computes its output by adding adjacent pairs

of elements from the resulting vector. Thus, the input to this instruction is two 16-way vectors

containing 16-bit elements, and its output is a single 8-way vector of 32-bit elements.

In this example, the second argument to each pmadd.wd instruction in the unoptimized code is

a vector of alternating zeroes and ones, which has the effect of selecting odd-indexed elements

into %0 and even-indexed elements into %1. Then, after the sub instruction, which simply performs

element-wise subtraction of %0 and %1, the overall effect of this code is to compute the difference

between adjacent pairs of elements of %x. Minotaur is able to perform this same computation using

a single pmadd.wd instruction which negates odd-numbered elements of %x before performing the

addition. The optimized code requires 5 uOps to execute whereas the original code requires 8.

5
Minotaur uses LLVM 18.1.0 for all results in this paper.
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Example 3. This code is from libYUV:

%0 = shufflevector <32 x i8> %x, poison, <3, 7, 11, 15, 19, 23, 27, 31>
%1 = lshr %0, <6, 6, 6, 6, 6, 6, 6, 6>
%2 = zext 8 x i8> %1 to <8 x i32>
ret <8 x i32> %2

=>
%0 = bitcast <32 x i8> %x to <8 x i32>
%1 = call @llvm.x86.avx2.psrli.d(<8 x i32> %0, 30)
ret <8 x i32> %1

The shufflevector instruction in the unoptimized code selects every fourth byte-sized element

from the input %x. The resulting 8-way vector is right-shifted element-wise by six bit positions,

and that result is zero-extended to an 8-way vector of 32-bit elements. Minotaur’s optimized

version (which executes in 4 uOps instead of 11) first reinterprets the input vector’s data as 32-bit

elements; this bitcast is relevant to LLVM’s type system, but it is a nop at the CPU level. Then, the

prsli instruction shifts each 32-bit element to the right by 30 bit positions. This right-shift-by-30

achieves the same effect as the unoptimized code, where the shufflevector can be seen as a

right-shift-by-24, followed by an explicit right-shift-by-6.

Example 4. This code, from compiling perlbench from SPEC CPU 2017, illustrates Minotaur’s

ability to reason about control flow:

entry:
br i1 %c, label %body, label %if.end

body:
br label %if.end

if.end:
%p1 = phi [ %a, %body ], [ %b, %entry ]
%p2 = phi [ %b, %body ], [ %a, %entry ]
%r = call @llvm.x86.avx2.pavg.b(%p1, %p2)
ret <32 x i8> %r

=>
%r = call @llvm.x86.avx2.pavg.b(%a, %b)
ret <32 x i8> %r

The intent of the code is to compute the element-wise average of input vectors %a and %b, with
a Boolean value %c determining the order in which the input vectors are presented to the pavg
instruction. However, the order of arguments to this instruction does not matter, and Minotaur’s

version executes in 4 uOps while the original code requires 10. Note that Minotaur was not explicitly

taught that pavg is commutative; the necessary information was inferred naturally from the formal

specification.

Example 5. This is an optimization discovered by Minotaur when it was used to compile GMP:

%0 = lshr i64 %x, 1
%1 = and i64 %0, 0x5555555555555555
%2 = sub i64 %x, %1
%3 = lshr i64 %2, 2
%4 = and i64 %2, 0x3333333333333333
%5 = and i64 %3, 0x3333333333333333
%6 = add nuw nsw i64 %4, %3
%7 = lshr i64 %6, 4
%8 = add nuw nsw i64 %7, %6
%9 = and i64 %8, 0xf0f0f0f0f0f0f0f
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ret i64 %9
=>

%0 = bitcast i64 %x to <8 x i8>
%1 = call @llvm.ctpop(<8 x i8> %0)
%2 = bitcast <8 x i8> %1 to i64
ret i64 %2

The original code performs a series of bit-level manipulations on a 64-bit integer value, with

the net result of performing an 8-way vectorized 8-bit popcount operation.
6
The optimized code

simply calls an intrinsic function to do the popcount; it costs 13 uOps instead of the original code’s

19. Although robust recognition of open-coded idioms is not the focus of our work, Minotaur does

sometimes manage to achieve this.

Taking a strict view of types in the synthesis process could help prune the search space, but

it would also cause us to miss optimizations that require a flexible view of types. This example

illustrates the latter case: the original code contains no indication that a good optimization can

be found using a vector of type <8 x i8>, and therefore a strictly type-guided synthesis procedure

would miss this one.

Example 6. This code comes from 644.nab in SPEC CPU 2017:

%0 = fcmp oge float %x, 0.000000e+00
%1 = fneg float %x
%2 = select i1 %0, float %0, float %2
%3 = fcmp oeq float %2, 0.000000e+00
ret i1 %3

=>
%1 = fcmp oeq float %x, 0.000000e+00
ret i1 %oeq

The original code computes the absolute value of a floating-point number %x and then checks if

the result is zero. Minotaur found that that the original code is equivalent to simply checking if %x
is zero.

Example 7. This code comes from 619.lbm in SPEC CPU 2017:

%0 = fmul float %x, 0x3FF0CCCCC0000000
%1 = fcmp olt float %t1, 0x3FE20418A0000000
ret i1 %1

=>
%0 = fcmp ole float %x, 0x3FE12878E0000000
ret i1 %0

The original code multiplies a floating-point value %x by a constant, and then checks if the result

is less than another constant. Minotaur found that this code is equivalent to checking if %x is

less than or equal to a third constant. This example shows that Minotaur can reason about and

synthesize floating point literals.

Example 8. This code comes from 638.imagick in SPEC CPU 2017:

%0 = fmul float %x, 0.000000e+00
%1 = fmul float %0, 3.000000e+00
ret float %1

=>
%0 = fmul float %x, 0.000000e+00
ret i1 %0

6
The popcount, or Hamming weight, of a bitvector is the number of “1” bits in it.
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The original code multiplies a floating-point value %x by zero, and then multiplies the result by

3.0. Minotaur found that this code is equivalent to multiplying %x by zero directly. Note the original
code cannot be optimized to 0.0 directly, because of the NaN and signed zero propagation rules in

floating-point arithmetic. This example shows that Minotaur is able to reason about these corner

cases and synthesize the correct code.

Example 9. This code comes from FlexC’s benchmark suite:

%0 = extractelement <4 x ptr> %0, i32 0
%1 = extractelement <4 x ptr> %0, i32 3
%2 = load i32, ptr %0
%3 = load i32, ptr %1
%4 = insertelement <4 x i32> zeroinitializer, i32 %2, i32 0
%5 = insertelement <4 x i32> %4, i32 %3, i32 3
ret <4 x i32> %5

=>
%0 = call @llvm.masked.gather(%0, 4, <true, false, false, true>, zeroinitializer)
ret <4 x i32> %0

The original code extracts two pointers from a vector of pointers, loads the values from these

pointers, and then inserts these values into a vector of integers. Minotaur found that this code is

equivalent to performing a masked gather operation, which loads values from memory using a

vector of pointers and a mask.

6 Related Work
A superoptimizer is a program optimizer that meaningfully relies on search to generate better code,

in contrast with traditional compilers that attempt a fixed (but perhaps very large) sequence of

transformations. The eponymous superoptimizer [23] exhaustively generated machine instruction

sequences, using various strategies to prune the search space, and using testing to weed out infeasi-

ble candidates. Also predating modern solver-based methods, Davidson and Fraser [8] constructed

peephole optimizations from machine description files. In contrast, modern superoptimizers rely

on solvers to perform automated reasoning about program semantics.

Souper [27] is a synthesizing superoptimizer that works on LLVM IR; it is the most directly

connected previous work to Minotaur. Souper’s slicing strategy is similar to Minotaur’s in that it

extracts a DAG of LLVM instructions that overapproximates how a given SSA value is computed.

However, unlike Souper, Minotaur extracts memory operations and multiple basic blocks, so it is

capable of (we believe) strictly more transformations than Souper is able to perform. Additionally,

Souper’s undefined behavior model does not capture all of the subtleties of undefined behavior in

LLVM, whereas we reuse Alive2’s model, which is the most widely used formalization of these

semantics, and the one that is most widely recognized as being correct. Finally, Minotaur focuses on

vector-related transformations, whereas Souper supports neither LLVM’s portable vector instruction

set nor its platform-specific intrinsics. It is worth noting that, over the years, the LLVM developers

have implemented numerous optimizations discovered by Souper. These are all, of course, present

in LLVM 18, the compiler that is the baseline for our experimental evaluation. In other words,

Minotaur is an effective superoptimizer on top of a previous solver-based superoptimizer (and

Souper was effective on top of an even earlier LLVM superoptimizer [26]).

Minotaur is also strongly inspired by Bansal and Aiken’s work [4]; their superoptimizer operated

on x86 assembly code and was able to make interesting use of vector instructions. Starting from

unoptimized assembly produced by GCC, it was able to produce code competitive with higher

optimization levels. The overall structure of this superoptimizer, where program slices are extracted,

canonicalized, checked against a cache, and then optimized in the case of a cache miss, is very similar
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to Minotaur, but there are many differences in the details, particularly in Minotaur’s slice extractor

which allows its synthesis specification to approximate the original code’s effect much more closely.

Another assembly superoptimizer, STOKE [28–30], is not as closely related; it is based on randomly

perturbing assembly-language functions. STOKE can potentially perform transformations that

Minotaur cannot, but we believe that its results are more difficult to translate into standard peephole

optimizations than are Minotaur’s.

Several recent projects have focused not on optimizing individual programs but rather on

generating program rewrite rules. OptGen [5] finds scalar peephole optimizations that meet a

specified syntactic form. Even at small rewrite sizes, it was able to find numerous optimizations

that were missing from the 2015 versions of GCC and LLVM. VeGen [6] generates SLP vectorization

rules—an SLP vectorizer [16] merges a set of scalar operations into vector instructions. VeGen parses

the Intel Intrinsics Guide [14] and uses this to build pattern matchers for x86 vector instructions.

VeGen applies the pattern matchers to an input scalar program, and replaces scalar expressions

with vector instructions when it finds a profitable match. VeGen uses syntactic pattern matching

rather than solver-based equivalence/refinement checking. Diospyros [35] is another vector rewrite

rule generator, it takes an equality saturation [32] approach and uses a translation validator to

reject unsuitable candidates. As an equality saturation-based tool, Diospyros builds its search space

with existing rewrite rules.

Program synthesis—generating implementations that conform to a given specification—is in-

timately related to superoptimization. Rake [1] performs instruction selection for vectorized

Halide [25] expressions using a two stage synthesis algorithm. First, Rake synthesizes a data-

movement-free sketch [31], and then in the second stage it concretizes data movement for the

sketch via another synthesis query. Rake targets Hexagon DSP processors [33] which share some

functionally similar SIMD instructions with x86. Cowan et al. [7] synthesized quantized machine

learning kernels. Their work introduces two sketches: a compute sketch, which computes a matrix

multiplication, and a reduction sketch that collects the computation result to the correct registers.

It relies on Rosette [34] to generate an efficient NEON [3] implementation that satisfies the specifi-

cations for those two sketches. Swizzle Inventor [24] is another tool built on Rosette; it synthesizes

data movement instructions for a GPU compute kernel, and it requires user-defined sketches de-

scribing the non-swizzle part of the program. MACVETH [12] generates high-performance vector

packings of regular strided-access loops, by searching for a SIMD expression that is equivalent

to a gather specification. All of these works show good performance results, but they focus on

relatively narrow tasks, whereas Minotaur attempts to improve SIMD programs in general.

Most previous superoptimizers and program synthesizers use simple cost models. For example,

Souper [27] assigns each kind of instruction a weight and uses the weighted sum as the cost

of a rewrite. This kind of cost model is not a very good predictor of performance on a modern

out-of-order processor. Minotaur and MACVETH [12] use the LLVM-MCA [10] microarchitectural

performance analyzer, which can still lead to mispredictions, but it is generally more accurate than

simple approaches are.

7 Conclusion
We created Minotaur because we noticed that LLVM appeared to be missing relatively obvious

optimizations in code containing both its portable vector instructions and also its platform-specific

intrinsic functions that provide direct access to hardware-level primitives. Minotaur cuts loop-free

DAGs of instructions—including branches and memory operations—out of LLVM functions and

then attempts to synthesize better implementations for them. When improved code is found, the

optimization is performed and also the synthesis result is cached. On the libYUV test suite, Minotaur

gives speedups up to 1.64x, with an average speedup of 2.2%.
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