
Undefined	Behavior	in	LLVM	

John	Regehr	
Trust-in-So:	/	University	of	Utah	

•  sqrt(-1)	=	?	
–  i	
– NaN	
– Arbitrary	value	
– ExcepLon	
– Undefined	behavior	

•  Undefined	behavior	(UB)	is	a	design	choice	
– System	designers	use	UB	when	they	don’t	feel	like	
commiQng	(or	can’t	commit)	to	any	parLcular	
semanLcs	

Undefined	behavior	is	
undefined	
•  Technically,	anything	can	
happen	next	
– “Permissible	undefined	
behavior	ranges	from	ignoring	
the	situaLon	completely	with	
unpredictable	results,	to	
having	demons	fly	out	of	your	
nose.”	

•  In	pracLce,	UB	is	
implemented	lazily:	by	
assuming	it	will	never	
happen	

(image	from	@whitequark)	

(image	from	EvilTeach	
on	Stackoverflow)	

Common	consequences	include…	
•  Predictable	and	useful	result	on	one	pla^orm,	
different	result	on	another	pla^orm	

•  Unpredictable	or	nonsensical	result	
•  Memory	corrupLon	
•  Remote	code	execuLon	
•  Trap	or	fault	
•  No	consequences	at	all	

•  AVR32	(embedded	CPU):	

•  Scheme	R6RS:	

•  C/C++	have	tons	and	tons	of	undefined	
behaviors	
– divide	by	zero,	use	of	dangling	pointer,	shi:	past	
bitwidth,	signed	integer	overflow,	…	

•  LLVM	has	undefined	behavior	too	

int foo (int x) {
 return (x + 1) > x;
}
int main () {
 printf("%d\n", (INT_MAX + 1) > INT_MAX);
 printf("%d\n", foo(INT_MAX));
 return 0;
}
$ gcc -O2 intmax-overflow.c ; ./a.out
0
1

int main() {
 int *p = (int*)malloc(sizeof(int));
 int *q = (int*)realloc(p, sizeof(int));
 *p = 1;
 *q = 2;
 if (p == q)
 printf("%d %d\n", *p, *q);
}
$ clang -O realloc.c ; ./a.out
1 2

	

void foo(char *p) {
#ifdef DEBUG
 printf("%s\n", p);
#endif
 if (p != 0)
 bar(p);
}

_foo:
 testq %rdi, %rdi
 je L1
 jmp _bar
L1: ret

Without	-DDEBUG	

void foo(char *p) {
#ifdef DEBUG
 printf("%s\n", p);
#endif
 if (p != 0)
 bar(p);
}

_foo:
 pushq %rbx
 movq %rdi, %rbx
 call _puts
 movq %rbx, %rdi
 popq %rbx
 jmp _bar

With	-DDEBUG	

As	developers,	what	can	do	we	about	undefined	
behavior	in	C	and	C++?	
•  Only	use	these	languages	appropriately	
•  Use	modern	coding	style	
•  Dynamic	tools	
– UBSan,	ASan,	Valgrind	
– And	test	like	crazy,	use	fuzzers,	etc.	

•  StaLc	analysis	tools	
– Enable	and	heed	compiler	warnings	
– Lots	more	

Facts	About	UB	in	LLVM	

•  It	exists	to	support	generaLon	of	good	code	
•  It	is	independent	of	undefined	behavior	in	
source	or	target	languages	
– You	can	compile	an	UB-free	language	to	LLVM	

•  It	comes	in	several	flavors	
•  Reasoning	about	opLmizaLons	in	the	
presence	of	UB	is	very	difficult	

•  Compilers	transform	source	programs	to	
target	programs	in	a	series	of	steps,	e.g.	
– Swi:	è	SIL	
– SIL	è	LLVM	
– LLVM	è	ARMv8	

•  At	each	step	
– OK	to	remove	UB	
– Must	not	add	UB	
– This	is	refinement	

•  Example:	Shi:	instrucLons	are	defined	for	
shi:s	past	bitwidth	
– But	different	processors	define	it	differently	

LLVM	has	three	kinds	of	UB	

1.  Undef	
– Explicit	value	in	the	IR	
– Acts	like	a	free-floaLng	hardware	register	
•  Takes	all	possible	bit	pakerns	at	the	specified	width	
•  Can	take	a	different	value	every	Lme	it	is	used	

– Comes	from	uniniLalized	variables	
– Further	reading	
•  hkp://sunfishcode.github.io/blog/2014/07/14/undef-
introducLon.html	

•  We	want	this	opLmizaLon:	
%add = add nsw i32 %a, %b
%cmp = icmp sgt i32 %add, %a
 =>
%cmp = icmp sgt i32 %b, 0

•  But	undef	doesn’t	let	us	do	it:	
%add = add nsw i32 %INT_MAX, %1
%cmp = icmp sgt i32 undef, %INT_MAX

•  There’s	no	bit	pakern	we	can	subsLtute	for	
the	undef	that	makes	%cmp	=	true	

LLVM	has	three	kinds	of	UB	
	
2.  Poison	
– Ephemeral	effect	of	math	instrucLons	that	violate	
•  nsw	–	no	signed	wrap	for	add,	sub,	mul,	shl	
•  nuw	–	no	unsigned	wrap	for	add,	sub,	mul,	shl	
•  exact	–	no	remainder	for	sdiv,	udiv,	lshr,	ashr	

– Designed	to	support	speculaLve	execuLon	of	
operaLons	that	might	overflow	

– Poison	propagates	via	instrucLon	results	
–  If	poison	reaches	a	side-effecLng	instrucLon,	the	
result	is	true	UB	

LLVM	has	three	kinds	of	UB	

3.  True	undefined	behavior	
– Triggered	by	
•  Divide	by	zero	
•  Illegal	memory	accesses	

– Anything	can	happen	as	a	result	
•  Typically	results	in	corrupted	execuLon	or	a	processor	
excepLon	

•  Which	of	these	transformaLons	is	OK?	

%result = add nsw i32 %a, %b !
 => !
%result = add i32 %a, %b	

%result = add i32 %a, %b !
 => !
%result = add nsw i32 %a, %b	

I’m	OK	

•  Use	Alive	to	do	automated	proofs	about	LLVM	peephole	
opLmizaLons:	
–  hkps://github.com/nunoplopes/alive	
–  Alive	understands	all	three	kinds	of	UB	

$./alive.py add.opt
--
Optimization: 1
Precondition: true
 %result = add nsw i32 %a, %b
=>
 %result = add i32 %a, %b

Done: 1
Optimization is correct!

$./alive.py add-bad.opt
--
Optimization: 1
Precondition: true
 %result = add i32 %a, %b
=>
 %result = add nsw i32 %a, %b

ERROR: Domain of poisoness of Target is smaller
than Source's for i32 %result

Example:
%a i32 = 0x7FFFEFFF (2147479551)
%b i32 = 0x7FFFFBFF (2147482623)
Source value: 0xFFFFEBFE (4294962174, -5122)
Target value: poison

•  We	translated	a	bunch	of	InstCombine	
pakerns	into	Alive	
– Found	some	wrong	ones,	reported	bugs	
– Found	some	missed	opportuniLes	to	preserve	UB	
flags	(nsw,	nuw,	exact)	

•  Details	can	be	found	in	a	paper	
– hkp://www.cs.utah.edu/~regehr/papers/
pldi15.pdf	

•  Please	try	out	Alive	if	you	reason	about	
peephole	opLmizaLons	in	LLVM	

ConflicLng	design	goals	for	LLVM	UB	
1.  Enable	all	opLmizaLons	that	we	want	to	

perform	
2.  Be	internally	consistent	
3.  Be	consistent	with	the	LLVM	implementaLon	
The	current	scheme	generally	works	fine	
•  But	it’s	not	clear	that	it	actually	meets	any	of	
these	three	goals	

•  Nuno	Lopes	is	heading	an	effort	to	rework	
poison	and	undef	
– Currently	they	are	(we	think)	unnecessarily	
complicated	

– Goal	is	to	make	undef	a	bit	stronger	and	drop	
poison	enLrely	

– No	change	to	“true	UB”	
•  Other	compilers	(GCC,	Microso:)	have	similar	
UB-related	concepts	
– Detailed	specificaLons	are	hard	to	find	
– Same	moLvaLon:	support	efficient	code	gen	

Thanks!	

